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1 Introduction 

A wide class of proble~s exis.ts, where it is necessary to assign certain values to 
some group of variables that nmt'ually satisfy to given constraints. Such a cla;s of 
the problems is known a~ Consti:ain'.Satisfaction Problems (CSP) [1]. For example, 
among CSP there is a problem of schedule generating. The next CSP is_ known in 
combinatorics: there are given both .th~ s~t or'elements S = a1 , a2 , •• • aN and the 
set of its subs~ts · So = Si, S2 , ••• SAf. · It is necessary to choose from each subset 
S; (;,,,, 1, M only one element different from others. · , 

The most famous in the latter class is so-called N-queens ·problem: to allocate 
N queens on an N * N chessboard,' one on each row, so that no queen threatens 
another. 

As it'll be shown below in the next section, the track-match problem of high 
energy physics (HEP) can be also reduced to a CSP. · 

We consider CSP's in the following general formulation [l): 
The set of variables X1 , •• • XN is given. Each variablle X; can take only certain 
values d;j from the finite domain 

A number of constraints is given explicitly as the prohibition of certain X; and 
Xk pairwise combinations C(X;,Xk)- If, for instance (d13,d24 ) E C(X1,X2) then it 
can mean 

X1 -:/ d13, when X2 = d24 

A CSP purpose is to assign values from D; to all variables X; i = l, N without 
any transgression of C(X;, Xk), · 

The mai; problem of CSP solving by a conventional search algorithm is the 
enormous computer time· consumption. In particular, N-queens problem can't 
be solved in reasonable time on serial computers already, when N 2:: 97. A more 
complicate example relates to the generating of the half-year activity schedule for the 
satellite called ROSAT (Roentgeen Satellite). The solving of this problem by the 
method based on mathematical optimisations required about 30 hours of a serial 
computer. However, a new approach using a special type of an Artificial Neural 
Networks (ANN) was succesfully applied to solve this problem on the same computer 
in 1 minute [1]. This approach allows to solve the N-queens problem for N = 1024 
in about 10 minutes. 

Such encouraging results stimulated us to develope a new approach of an.exter­
nal influence into a Hopfield ANN [2) dinamics in order to control its e':olution in a 
desirable way, mainly to avoid sticking into local minima of this ANN energy func­
tion. As the first relatively simple application of our approach we chose the solution 
of the famous HEP track-match problem. This ANN application is considered in 
this paper. 



2 Binary ac:ljusency matrix construction 

The· t~ack-match problem arised originally as a part of the general problem of the 
reconstruction of sp~ce trajectories of charged particles on the basis of their projec­
tions measu~ed in several views [3]. At least two views are nec~ssary to.the autentive 
space reconstruction, which is carried out by a set of physical ~nd geometrical crit­
era testing for each pair of views their compatibility in space. However, if the event 
multiplicity (the number of secondary tracks) are greater than 15, the con1binatorics 
of all pairs to be tested are so numerous that any conventional algorithm based on 
the sequentional search would be too time consuming. · 

The analogous track-match problem arised in" many HEP experiments, when it's 
necessary to identify the group of tracks with their continuations after intersecting 
some "black box" (for example, magnet, see fig._ 1)-. 
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fig. 1 

In both examples track-matching procedure consists of two steps: 

1. Each input track is tested to be appropriate to' each output track by some 
set of physical and geometrical tests n. As the result one obtaines the list 
of pairwise track combinations to be tested (for example, some track before 
magnet with some one after). . 

Let us. consider an example of two possible lists of track pairing: 

list a) (1,1)(1,2)(2,1)(2,2)(3,3)(4,4)(4,5)(5,4)(5,5) 

for another event 

list b) (l,l)(l,2)(1,3)(1,4)(2,1)(2,3)(3,1)(4,1) 

where the first element in each pair is the track number before magnet and 
the second element is the track number after magnet. 
For the event with a large number of tracks the number of p·airs in such lists 
can be much greater than the event multiplicity because of the changes of 
track ordering before" and after magnet and of errors of the track recognition. 

2. The subset of on~~to-one-correspondending pairs is extracted fron1 °the '~b-; 
tained list in such .;_ ~ay that th~ number of pairs in this subs~t ~ust be equal 
to the number of the tracks of .the event. , 

:2 

~ ~,. . ' . 

One can see that for the list a) it is possible; for example (1, 2)(2, 1 )(3, 3)(4, 5)(5, 4). 
However, for the list b) it is· impossible, as maximum number of the tracks with 
one~to-one-correspondenci; is equal to 3, but the number of the tracks in the event 
equais 4: '(1, 2)(2, 3)(3, 1) or ( 1, 2)(2, :3)( 4, 1 ). , , 

Let us formulate this matter in terms of'binary matrices called in graph theory 
as adjucency or incid~1~~y matrices [4]. 

Consider ·the track numbers before Il).agnet as the number of a matrix columns 
and the track numbers afte~ magnet as the matrix row numbers. If in the list of 
pairs constructed on the first step of the track-match procedure there is a pair (i,j), 
then ~ve have to place 1 on the intersection of i - th column and j :- th row of 
matrix. The other elements of the matrix are equal to 0. This binary matrix is in 
one-to-one-correspondence to the list of pairs. 

· Therefore, the second step of the track-match procedure can be formulated as 
follO\vs: for each row of the constructed a.djucency matrix only one non-zero element 
must be extracted so that a'll these elements are lyeng on different columns of tne 
matrix. 

On the chess language this problem can be formulated as follows: some number of 
rooks a.re pla.ced on a chessboard without empty rows. One should remove soine of 
rooks leaving one on ea.ch row, so that no rook threatens another. 

Unlike to N -queens allocation problem, this problem is not always soluable. 
Besides, since rooks don't threaten by diagonals like queens, the number of variants 
of their allocations on a chessboard is mu~h greater that leads to increasing search. 
attempts. '' . . . ' . . ' . . . ' ' . 

3 Controlled neural networks 

It is clear that the problem formulated. above belongs to the class of CSP. For 
solving this problem let us construct a Hopfield's neural network (HNN) [2J, i. e. 
a system of mutually connected binary elements (neurons), which connections are 
characterized by synaptic efficacies (weights). · 

As Hopfield proved [2], if an HNN-weight matrix is symmetric with zero diagonal, 
then the energ)'. function _of ~his neural net is decreasing for arbitrary HNN-dynamicl'> 
being attraded to one of lo~al minima.. 

Therefor~;' ~ve ha~e to defi~IC 
• ' • j 

•·neurons 

• topology of their connections 

• weight function 

• en~rgy function 

• HNN dynamics rules 
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To dea_l with tern\s of incidency matrices invented in the provides section, let us 
consider only non-zero elements of such a matrix. These elements U;i can be chosen 
as binary neurons with two possible states: · 
- U;i = 1 (neuron is firing or active), if the i·ook is placed on the cross of i-th row 
and j-th column; · 
- U;i = 0 (neuron is non-active), if onJ removes the rook from its place. 

The HNN topology is simple: each neuron is connected with each other. 
The weight function selection should guarantee that no rook threatens another 

for their given dislocation, i. e. weights must supp.ort (=l) permitted connections 
and punish (be strongly negative) connection indicating the threat between two· 
rooks. According to the general HNN requirements the diagonal elements of the 
weight matrix must be equal to zero. Thus for an N * N matrix one has 

{ 0 if i ~ m & J ~ n 
1 . if i # m & j # n (1) 

W;j,mn = -4* N ~f ~ = m & ! # n 
-4 * N zf z # m & J = n 

The value of the local field generated by HNN in the neuron U;j is determined by 
the standard formula [2] 

N 

f;j = L W;j,mnUmn 
m,n 

This defin~s the easiest stepwise functio~ ~f HNN dinamics. The state of each ne~ron 
chqnges asynchronously 

U· _ { 1 if l;i > 0 
· 'J - · 0 if : I;i :s; 0, 

where 0 is the chosen threshold constant. 
The HNN energy function is defined also in the standard way [2]: 

1 N N 

E == - 2 LL W;j,mnUiPmn 
-i,j m,n 

l (2} 
• ! . 

(3) 

The solution of our problem is achieved if and only if the only one neuron is active on 
each row of our matrix, while all these neurons are placed in. its different columns. 
Since the definitions (1)-(3) satisfy the conditions of Hopfield's theorem [2], this 
final HNN configuration giving the solution corresponds to the global minimum of 
(1). In our particular case due to (1)-(3) the exact value of this global minimum 
can be calculated explicitly as 

1 
--N*(N-1) 

2 
(4) 

This remarkable fact should simplify very much the criterium of the exit from algo­
rithm of the global minimum search. 
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Our approach to design such an algorithm is. based on the following concept 
stimulated by [l], our previous works [5], [6] ~nd ideas of the stochastic' ~earch 
from [7], [8]. 

1. Decrease· of the number of HNN degree of freedom by constraint applying 
neurons with the maximum value of the local field. 

2. Forced escape from the local minima of the energy function. 

3. Stochastic steps of HNN evolution.· 

After many various attemts to develop an aigorithm carried out these principles we 
elaborated the following effective 
procedure for CSP solving: 

1. Set up to zero all neurons and threshould 0. 

2. Select randomly a row ·of the matrix. 

3. At this row look for neurons with the local field satisfied the conditions 

{ 
I;i i J. U;i = 0 & I;i > 0 ( 5) 
IL·I if U·· - 1 & L· < 0 •J •J - •J -

4. Between these neurons choose one with the maximum of the local field and 
invert its value (set up to O if it was one and vice versa). 

. 5. Check whether all neurons on the current row are non-active (that correspond 
.,.to one.of local minima). Hit's so, invert forcerly the first neuron from the 

right or left of one chosen on the previous step (in a case, if only one neuron 
in this row, invert it). 

6. Repeat steps 2-5 until all rows of the matrix are checked. 

7. Calculate the value of the energy function and if it isn't equal to (4) (that 
means we found a solution and can stop), repeat steps 3-7. 

Remark. Since, in principle, our problem can have no solution, the total number of 
steps inn. 7 must be restricted by an reasonable value (N * 200). 

We named our new neural network the Controlled Neural Netwrk (CNN), 
since its evolution is forcerly changed on steps 4, 5, 7 in order to escape from a local 
minimum. 
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4 Results and Conclusion 

The comparable study was accomplished to test the applicability of the CNN al­
gorithm for such a CSP as the track-match problem with a variety of incidency 
m~rires. · , 

The CNN algorithm was compared with the conventional mathematical method 
(CMM) based on the standard sequentional search algorithm. The problem solved 
by both methods for N * N incidency matrices with different complicated structui-es 
was to leave on each row a single element keeping all ofthcn'i in different columns. 

VAX 7;,8350 CPU tinies of this. problem solution for different N are presented 
in the table 

N 30 15 13 
CNN 105.32 s 0.26 s 0.13 s 
CMM 7.5 hours 23.78 s 0.135 s 

Table. Time of CSP solving by CNN and CMM. 

As one can see, for N 2 30 our CNN algorithm shows the very high prefomance, 
while CMM application is not reasonable that confirms the fruitfulness of the CNN 
concept formulated above. 

The specific feature of the solved CSP,is the possibility to calculate in advance 
the exact value of the HNN energy function, which simplify considerably the pro­
posed CNN algorithm. 
However, the generality of the CNN concept allows to predict this algorithm c~n 
be developed for more gerieral applications, in.particular, for the such an impoi-tant 
HEP problem as track finding (5]; (6]. 
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Barnmrn C.A., OcocKOB r.A. 
IlpHMeHeHHe ynpaB;rn:eMoii HeiipoHHoii ceTH 
B npo6JieMe track-match 
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B TepMHHax TaK Ha3hIBaeMOH MaTpHD;hI HHIJ;~eHTHOCTH cq:>OpMyJinpoBaHa 
3aAaqa COOTBeTCTBHSI TpeKOB, OTHOCSim;agcg K npo6JieMaM o6pa60TKH AaHHhIX B 
<pH3HKe BhICOKHX SHeprnii. Ll:JISI pemeHHSI nOA06HhIX 3Maq C orpaHnqeHHSIM.H 
paapa6oTaHa HCKYCCTBeHHaSI HeiipOHHaSI CeTh xon<pHJIAOBa THna. Ha OCHOBe 
npeAJIO)KeHHOH KOHn;enn;H.H ynpaBJISieMhIX HeiipOHHhIX CeTeii C03AaH aJiropHTM, 
peaJinay10~nii sq:,q:,eKTHBHhlii noncK pemeHHSI. IlpHBeAeHhI peayJihTaThl BhI­
qnCJieHnii, noKa3hIBaIOm;.He 3Ha•mTeJihHOe npeBhlmeHHe no CKOpOCTH npeAJIO­
)KeHHOro aJiropnTMa no cpaBHeHHIO c o6hlqHhIM.H MeTOAaM.H, OCHOBaHHhIM.H Ha 
noCJieAOBaTeJihHOM nepe6ope. 

Pa6oTa BhlilOJIHeHa B Jla6opaTOpHH BhlqHCJIHTeJihHOH TeXHHKH n aBTOMa­
TH3aIJ;HH Olf.Sil1. 
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Track-match problem of HEP data handling is formulated in terms of 
incidency matrices. The corresponding Hopfield neural network is developed to 
solve this type of constraint satisfaction problems (CSP). A special concept of 
the controlled neural network is proposed as a basis of an algorithm for the 
effective CSP solution. Results of comparable calculations show the very high 
performance of this algorithm against conventional search procedures. 
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