


1 Introduction o

A wide class of problems ex1sts where it is necessary to assign certain values to
some group of varlables that mutually satisfy to given constraints, Such a class of
the problems is known as Constrain’Satisfaction Problems (CSP) [1]. For example,
‘among CSP there is a problem of schedule generatlng The next CSP is known in
comblna.torlcs there are given both the set of elements S = ay,dy, ...ay and the
set of 1ts subsets Sq = 51,53, .. SM It is necessary to choose from each subset
S; = 1, M only one element d1fferent from others.

The most famous in the latter class is so-called N— queens problem to allocate
N queens on an N * N chessboard, one on each row, so that no queen threatens
another.

As it’ll be shown below in the next section, the track-match problem of high
energy physics (HEP) can be also reduced to a CSP

We consider CSP’s in the following general formulation [1]:
The set of variables X1, ...Xy is given. Each variablle X; can take only certain
values d;; from the finite domam

D;=dy, ... dim

A number of constraints is given explicitly as the prohibition of certain X; and
X pairwise combinations C(X;, Xk). If for instance (di3,d24) € C(X1, X3) then it
‘can mean

- Xy # di3, when X; = dyy

A CSP purpose is to assign values from D; to all variables X; 1 =1, N without
any transgressron of C(Xi, X¢). ' '

The main problem of CSP solving by a conventlonal search algorithm is the
enormous computer time consumption. In particular, N—queens problem can’t
be solved in reasonable time on serial computers already, when N > 97. A more
complicate example relates to the generating of the half-year activity schedule for the
satellite called ROSAT (Roentgeen Satellite). - The solving of this problem by the
method based on mathematical optimisations required about 30 hours of a serial
computer. However, a new approach using a special type of an Artificial Neural
Networks (ANN) was succesfully applied to solve this problem on the same computer
in 1 minute [1]. This approach allows to solve the N —queens problem for N = 1024
in about 10 minutes.

Such encouraging results stimulated us to develope a new approach of an.exter-
nal influence into a Hopfield ANN [2] dinamics in order to control its evolution in a
desirable way, mainly to avoid sticking into local:minima of this ANN energy func-
tion. As the first relatively simple application of our approach we chose the solution
of the famous HEP track-match problem ‘This ANN appllcat1on is cons1dered in
this paper.
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2 Binary adjusency matrix construction

The' track-match problem arised originally as a part of the genelal problem of the
reconstruction of space trajectories of charged part1cles on the basis of their prolec-
tions measured in several views [3]. At least two views are necessary to the autentive
space reconstruction, which is carried out by a set of physrcal and geometr1cal crit-
era testing for each pair of views their compatibility in space. HoWe\"er,’l_f the event
multiplicity (the number of secondary tracks) are greater than 15, the combinatorics
of all pairs to be tested are so numerous that any conventlonal algorlthm based on
the sequentlonal search would be too time consummg

" 'The analogous track-match problem arised in'many HEP exper1ments when it’s
necessary to identify the group of tracks with-their continuations after 1ntersect1ng
some "black box” (for example magnet, see fig. 1)
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In both examples track-matching procedure consists of two steps:

1. Each input track is tested to be appropriate to each output track by some -

set of physical and geometrical tests (1. As the result one obtaines the list
of pairwise track combinations to be tested (for example some track before
magnet with some one after)

Let us cons1der an example of two possible lists of track pairing:
list a) - (1,1)(1,2)(2,1)(2,2)(3, 3)(4 4)(4,5)(5, 4)(5 5)"

for another event

list b) (1,1)(1,2)(1,3)(1,4)(2,1)(2,3)(3,1)(4,1)

where the first element in each pair is the track number before magnet and
the second element is the track number after magnet. : :
TFor the event with a large' number of tracks the number. of pairs in such lists
can be much ‘greater than the event multiplicity because of the changes of

track ordermg before- and after magnet and of errors of the track recogmtron :

2 The subset of one-to -one- correspondendmg pairs.is extracted flom the ob-k

tained list in such a way that the number of pairs in this subset must be equal
to the number of the tracks of the event.

One can see that for the list a) 1t is possxble. for example (1, 2)(2 1) 3 3) 4 5)(5 4).
However, for the list b) it is impossible, as maximum number of the tracks with
one-to-one-correspondence is equal to 3, but the number of the tracks in the event
equals 4: (1,2)(2,3)(3,1) or (1,2)(2,3)(4, 1) .

Let us formulate this matter in terms of blnary matrices called in graph theory
as adjucency or 1nc1dency matrices [4]

Consider the track numbers before maguet as thie number of a matrix columns
and the track numbers after magnet as the matrix row numbers. If in the list of
pairs constructed on the first step of the track-match procedure there is a pair (,7),
then we have to place 1 on the intersection of ¢ — th column and j —.th row of
matrix. The other elements of the matrix are equal to 0. This binary matrix is in
one-to- one-conespondencc to the list of pairs.

Therefore, the second step of the track-match procedure can be formulated as
follows: for each row of the constructed ddjucency matrix only one non-zero element
miist be extracted so that all these (‘lements are'lyeng on different columns of tne
matrix.

On the cliess language this problem can be formulate(l as follows: some number of
rooks are placed on a chessboard without empty rows. One should remove soine of

‘rooks leaving one on each row, so that no rook threatens another.

Unlike to N—queens allocation problem, this problem is not always soluable.
Besides, since rooks don’t threaten by dragonals like queens, the number of variants
of their allocatlons on a chessboard i is much greater that leads to increasing search
attempts.

3 Controlled neural‘ networks

It is clear .that the problem formulated above belongs to the class of CSP. For
solving this problem let us construct a Hopﬁel(l s neural network (HNN) [2], i. e.
a system of mutually connected binary elements (neurons), which connections are
characterized by synaptic efficacies (weights). :

As Hopfield proved [2], if an HNN-weight matrix is symmetric with zero diagonal,
then the energy function of this neural net is decreasing for ar brtrary HNN- dynamlcs
being attracted to oneé of local minima.

Thelefore \\e llave to defne

® ‘neurons -

topology of their connections

weight function
e cnergy function

HNN dynamics rules



To deal with terms of incidency matrices invented in the provides section, let us
consider only non-zero elements of such a matrix. These elements Uij can be chosen
as binary neurons with two possible states: : :

- U;; = 1' (neuron is firing or active), if the rook is placed on the cross of i—th 1ow
and j—th column; A
- U;; = 0 (neuron is non-active), if oné rémoves the rook from its place.

The HNN topology is simple: each neuron is connected with each other.

The weight function selection should guarantee that no rook threatens another
for their given dislocation, i. e. weights must support (=1) permitted connections

and punish (be strongly negative) connection indicating the threat between two’

rooks. According to the general HNN requirements the diagonal elements of the
weight matrix must be equal to zero. Thus for an N * N matrlx one has

0 if i=m &J:n‘

1 if 1#¢m & j#n - : (1)
c—4x N if t=m & j#n - ' :
—4xN if i#m & j=n

u/ij,mn =

The value of the local field generated by HNN in the neuron Uj; is determmed by
the standard formula [2]
’ N
IzJ = Z mj,anmn

This defines the easiest stepwise functlon of HNN dinamics. The state of each neuron

changes asynchronously ]
o 1 of I,'J' >0
Ui = {.‘0 if I <O e et (2)
where 8 is the chosen threshold constant. '
- The HNN energy function is deﬁned also in the standard way [2]:

' ZZWW UsUn - jo
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The solution of our problem is achieved if and only if the only one neuron is active on
each row of our matrix, while all these neurons are placed in. its different columns.
Since the definitions (1)-(3) satisfy the conditions of Hopfield’s theorem [2], this
final HNN configuration giving the solution corresponds to the global minimum of
(1). In our particular case due to (1)-(3) the exact value of this global minimum
can be calculated explicitly as ; ‘
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This remarkable fact should simplify very much the criterium of the ex1t from algo‘
rithm of the global minimum search.

Our approach to design such an algorithm is based on the following concept
stimulated by [1], our previous works [5], [6] and ideas of the stochastic search
flom [7] [8]

e

1. "Decrease of the number of HNN degree of freedom by constraint applylng
neurons w1th the maxunum value of the loca.l ﬁeld

2 F01ced escape from the local minima of: the energy functxon
3. Stochastic steps of_ﬁHNN evolution.” '

After'many various attemts to develop an algorithm carried out these prmaples we
elaborated the following effective
procedure for CSP solving:

1. Set up to zero all neurons and threshould 9
2. Select randomly a row 'of the matrix.
3. At this row look for neurons with the local field satisfied the 'conditionsr

L'_,' Z'f‘ U,'_,‘=0 & I,'J'>0v (5)
II,'J'I if Uj=1 & I;; <0
4. Between these neurons choose one with the maximum of the local field a.nd
invert its value (set up to 0 if it was one and vice versa) -

.5. Check whether all neurons on the current row are non-active (tha.t correspond
..to one of local minima). If it’s so, invert forcerly the first neuron from the
rlght or left of one chosen on the previous step (in a case, if only one neuron

in this row, invert it).

6. Repeat steps 2-5 until all rows of the matrix are checked.

7. Calculate the value of the energy function and if it isn’t equal to (4) (that
means we found a solution and can stop), repeat steps 3-7.

Remark. Since, in principle, our problem can have no solution, the total number of
steps in n. 7-must be restricted by an reasonable value (N * 200). ‘

We named our new neural network the Controlled Neural Netwrk (CNN),
since its evolution is forcerly changed on steps 4, 5, 7 in order to escape from a local
minimum.




4 Results and Conclusion

The comparable study was accomplished to test the applicability of the CNN al-
gorithm for such a CSP as the track-match problem w1th a varlety of incidency
matrices. :

The CNN algorithm was compared w1th the conventlonal mathematlcal method
(CMM) based on the standard sequentional search algorithm. The problem solved
by both methods for N * N incidency matrices with different complicated structures
was to leave on each row a single element kecping all of them in different coluinns.

VAX - 8350 CPU times of this problem solution for dlfferent N are presented
in the table

N 30 15 13 .
CNN |105.32s |0.26s |0.13s
CMM [ 7.5 hours | 23.78 s | 0.135 s

Table. Tlme of CSP solvmg by CNN and CMM.

As one can see, for N > 30 our CNN algorlthm shows the very hlgh prefomance,
while CMM application is not reasonable that confirms the fruitfulness of the CNN
concept formulated above.

The specific feature of the solved CSP:is the possibility to calculate in advance
the exact value of the HNN energy function, which simplify considerably the pro-
posed CNN algorithm.

However, the generality of the CNN concept allows to predict this algorithm can
be developed for more general apphcatlons in. partlcular, for the such an 1mportant

HEP problem as track ﬁndmg {5); [6].
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Barunau C.A., Ocockos T.A. E10-93-415
IIpuMenenne ynpasiaseMoil HepOHHOHN CeTH
B npoGaeMe track-match

B TepMuHax Tak HasHBaeMO MATPHILI MHIHAEHTHOCTH ChOpMYIHPOBAHA
3a37a4Ya COOTBETCTBHS TPEKOB, OTHOCSIMANACH K rpolaemMaM 06paboTKH JaHHHIX B
tusuke BrICOKHX 3Hepruil. 14 pemenud NMOao0HKX 334ay C OrpaHHYEHUIMH
pazpaloraHa UCKYCCTBEHHAS HEHPOHHAS ceTh xondimopa tuna. Ha ocHose
NPEIJIOXEHHON KOHIEITIUN YIPABIAIEMEIX HEHPOHHHX CeTei CO3MaH a/ITOPUTM,
peaymusyomuit acddexTHBHNEN nouck pemenud. [IpuBefeHK pe3yibTaTH BH-
YHCJIEHUH, TOKA3KBAOMUE 3HAYNTENBHOE MPEBHIIEHNE 10 CKOPOCTH NPERJIO-
KEHHOIO AJITOPUTMA 110 CPABHEHUIO ¢ OOKIYHEIMI METONAMM, OCHOBAHHKIMH HA
MOCAENOBATEILHOM nepebope.

< Pa6ota Betmonnena B JJaGopaTopuu BREIMHCIATENLHOM TEXHUKH H aBTOMa~
tu3zanuu OUSIHU.
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Baginyan S.A., Ososkov G.A. E10-93-415
Controlled Neural Network Application
in Track-Match Problem

Track-match problem of HEP data handling is formulated in terms of
incidency matrices. The corresponding Hopfield neural network is developed to
solve this type of constraint satisfaction problems (CSP). A special concept of
the controlled neural network is proposed as a basis of an algorithm for the
effective CSP solution. Results of comparable calculations show the very high
performance of this algorithm against conventional search procedures.

The investigation has been performed at the Laboratory of Computing
Techniques and Automation, JINR.
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