


1 INTRODUCTION

Recently polynomlal forms of the representation of Boolean functions |

in the form of the Zhegalkin polynom have found wider application
to the problems of analysis and synthesis of them by means of truth-

table combinatorial layouts [1],[2]. These forms have a homogeneous

algebraic structure and are well realized in modern microelectronic.
However, capacity of calculating the coefficients in the Zhegalkin poly-

noms is high and grows essentially with increasing number of variables.’

In [3],[4] it is shown that the system of Boolean functions is made to
represent in the form of generalizing arithmetic polynom, which allows"
the parallel calculation of Boolean functions system more conveniently. -

The method of constructing polynoms in Galois field GF(2™) is also

known, which is based on the interpretation of inputs and outputs of
switching layout as field elements.

This direction is investigated in -
[5]-[7). In [5] an expression for immediate calculation of polynomial de-
composition coefficients is given. The results of this work were used for '

the creation of switching layouts with a goal of a combinatorial sum-
mator and sequential automaton synthesis [8]. The goal of the work is™ -

to show the efficiency of polynomial decomposition in the Galois fields.

for the synthesis of UDPLM .

.2 Basic attributes and definitions. Basic decom-

position theorem

The Galois fields are the natural extention of the Boolean field. They
were well investigated and have a wide spectrum of applications [9]-
[11]. Any switching function with m inputs and m outputs has no more

than 2™ values. Therefore, it is given over finite field, frequently called
Galois field GF(p™). The number p is called a ﬁeld basis and must

be simple. We shall consider the case p = 2, however all results are .
valid for other simple p, therefore the actuality of the given direction
Let us:

is increasing with the creation of maltivalued logic devices.
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introduce a field of coefficients GF(2) with elements 0 and 1, modulo . §~

2 addition as a field’s addition operation and a conjuction as a field’s.
multiplication operation. In this field the operations of addltlon and
- subtraction are completely identical. ]
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“element of the Galois field.

Introduce over GF(2) a field GF(2™) as a field of polynoms with
coeflicients from GF(2) and degree less than m.  The primitive root
of irreducible polynom of degree m with its all degrees will be play
the role of variables. There is'a belief in this case that the irreducible
polynom generates a field. The root is called primitive, if within a set

~of all its 2™ different degrees they do not coincide. Thus, the degrees

of the primitive polynom cover all the field GF(2™). The addition
operation in this field is the usual operation of polynom’s addition,
where the coefficients are added in the field GF(2). Multiplication is
a multiplication of polynoms in modulo of a bearing polynom. In this
field all the usual field’s axioms are valid. Let us give additionally the
attributes of the finite fields which will be useful for understandlng the

paper (in more detail see [5]).

*Attribute 1. For any. X € GF(2™): X + X =0.
Attribute 2. For any nonzero X € GF(2™): X™! =1.

- Attribute 3. For any X,Y € GF(2™): (X +Y)2 = X2+ Y2
Attribute 4. For any non-one X € GF(2™): Y2 7' Xk =1. . :
The first m degrees of primitive root a®,a,a?, @3,...,a""! are linearly

independent and can be given as a basis of the Galois field. This means

‘that any field ’s element X can be represented in the form:

(1) - X::ao*a°+al*a4~-3+am_1#am;%

where a; € 0,1. If we take any binary number (ag,a;,...,an_;) of
length m as a set of coefficients a; from (1), we may. interpret it as the

THEOREM 1(expansion). Any sWitching function f(X) can be,._
represented in the form (and in a unique way)

2m-1
(2) f(X) O+ > Gix?,
. - i=0
: 2m-1
(3 Gi= Y of'fj,
_ =

where f; = f(a;), and a; = o’ - j-th degree of a.

The proof of the theorem is given in [5]: In [6] theorems of the same
type for the case of multivalued functions are given. Theorem 1 is a
basis for the creatlon of UDPLM.
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3 The creatlon of polynom for dynamlcally ad-
justed switching layout

Starting from (1), we can calculate in the general form:

X = apa’+-- +am_1a™L,
X? = (aoa®+ -+ am-10™ ) (aga® + - + am-12™"1),
X?"-1 = (aga® + St Qo127 L

When performing raising to a power by means.of multiplication of
(1) by itself (appropriate number of times), one gets all the X* from
(2) in polynomial form. If for a concrete switching function coefficients
G; are calculated from formula (3) and its values with degrees of X
in polynomial form are substituted into (2), after eliminating of equal
values we can get a Zhegalkin polynom system Each polynom will be
represented as a coefficient of basic element . This method of getting
polynoms is described in [8],[12]. However, in this case the values of
G; will be hardwired in layout, the general form will be a little simpler
but the possibility of adjusting the layoutfor different functions will

be lost. For UDPLM together with variable X, coefficients G; should

be inputs for the module.

Let us represent G; in the general polynomial form through basis as
we have represented X in (1):G; = b;,@® + -+ + b;,_,a™'. The given
expressions with the expressions for all X' are substituted into (2). As

a result we will get the required polynom for UDPLM, in which X and-

all G; are variables given via expansion in the basis. On'its basis one
can synthesize UDPLM, X and all G; being inputs for layout. To adjust
UDPLM to a concrete function it is enough to calculate values of all
G; for this function from formula (3) and to load them into storage
registers. The values of G; are directed to the inputs of layout together
with the values of X during operating'UDPLM . In appendexes 1,2 the
polynomial form of X* and GX* accordingly is given for m=4 and the

irreducible polynom X* = X +1 (table of the irreducible polynoms for .

m < 34 is given in [9]). The expressions obtained for X* are bulky,
therefore all the calculations should be performed on- computer, which
has been done by the authors: ‘
Using the fact that X* = XX* !, the layout of UDPLM can be
simplified by means of increasing the number of cascades in it, i.e. by
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increasing the delay time. For example, only even parity degrees of
X can be realized (their expressions are in average simpler),.and odd
parity degrees are obtained on the further cascade by means of mul-:
= Y X, where Y is outputs from layout of X% and
1=1,2,...,(2™"! —1)/2. Different methods of the realization of multipli-
cation, division and addition operations are given in [13]-[19].

- Using the fact that expressions for X 2 , 1=0,1,...,m-2 are essentially
easier (see appendix 1, it is the result of attribute 3), one can also

simplify the layout by means of increasing the number of cascades.

EXAMPLE 1. For the Galois field GF(2*) and the 1rredu01ble
polynom z* =z 4+ 1 formula (2) has the following form:

F(X) = F(0) +G1X + G2X2 4 -+ -+ G15X'5 = F(0) + [G1.X + G2 X? + G5 X%+
XG4+ GsX +GeX? + G7X3] + X8G4+ GoX + G X + G X3+
X12[G1a 4 G13X + Gl4X2 + G15X3).

Substituting the expressions for G; and X* from appendlxes 1,2, we
get a two-cascade layout of the calculation of any 4-input sw1tch1ng

- function. The first cascade represerts the calculation of the expressions

in brackets, the second is the realization of the remaining operations
of multlphcatlon and addition. However, the expressions for X3, X12
are still large. Using only the expressions for X, X 2, X%, X8, we get
the following expressions for F(X): :

F(X) = F(0) + G1X + G2X? + GsX2X + GaX* + GsX*X + GeX* X%+
GrX'X2X + GeX® + GoXX + G1oX3X? + G XPX2X + G XX+
GaXSXiX+ G1aXBX X2 + Gis XBXAX2X =
F(O) + [XS(G's + GIZX4)] +[G1 + X%(Go + G13 X)X +[G2 + Gax-l-

X8(Gro+ GuiX + G1aXH X2+ [Ga + Gs X + (Gs + G2 X)X X4+
Gls[(XsX“)(XZX)] ‘
Flgure 1 glves the structure layout of the realization of the last expres-
sion for UDPLM for 4 inputs and 4. outputs.

Let us consider in more detail the possibilities of fast calculatlon of
expressions (3). For the calculation of G; the layout UDPLM itself may
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be used. It is sufficfently to load into registres of preserving of G; the
values of the functions F; for all i=1,...,2™ — 1 and sequentially put into
the inputs of layout values of X = a™*, where k=1,...,2™ — 1. On the
output we get the required values of G; with the minimal time delay
(2'ns for 1 Gy for one-cascade UDPLM). If for readjusing UDPLM
from one function to another only a small number of values of outputs
is changed, changes of the volume of the calculation for (3) will be
drastically reduced. So by changing one value of the output at the
point oy, from the old Fy,, to the new Fy_,, expression (3) becomes as
follows: ,

Ginew = Giotd + (Fknew - Fkotd)al?’

forall 1=1,...,2™ - 1.
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It is possible also to use systolic structures for the calculation of rG,-.
In this case the accumulation of G; values is accomplished sequentially
during 2™ — 1 steps. The general structural scheme of operating one -
step taking 2™ — 1 cycles of the systolic system is represented on figure
2. - The calculation of expression (2) in more simple way than (3) is
likely to be realized in the systolic system, for example, on the basis
of.the Gorner scheme. Though the speed of the calculations in the
systolic systems is up to 5 billion operations per second as the process
of calculations is iterative, for definite classes of the problems the de-

Jlay time can be larger than is needed. In this case depending on the
‘requirements on speed calculations may be parallel. For example, for
~m=6, 2™ — 1 =63 it is possible to realize the calculation of F(X) as a
~sum F(X)=F14+F2+F3+F4. Here F1, F2, F3 and F4 are partial sums

from (2) at #: from 0 to 15 for F1, from 16.to 31 for F2, from 32 to 47
for F3, and from 48 to 63 for F4. The calculation of F1, F2, F3 and F4
is performed parallelly, initial values of X'6, X3? and X* for F2, F3
and.F4 are calculated directly by means of the layouts similar to those
given in appendix 1. Thus, for the calculation of F(X) instead of 63
cycles of the systolic system 16 cycles are required at 4-fold increasing
of the hardware in the systolic system. -

' a =
* temn 21 clocks for

, . each coefficient

—

+ K —

R

 RESULT

Result in register
m
after 2—1 clocks

Figure 2. Structural scheme of getting values of coefficients G;
in systolic system. * is multiplication operation in Galois field, + is
modulo 2 addition, F; is the value of function at point o*



4 Construction of m-input UDPLM by means of
UDPLM of a lesser number of inputs

- With increasing . m the complexity of the expression for UDPLM in-
creases, therefore it would be useful to get values of any switching
function of m .inputs by means of UDPLM of a lesser number:of in-
puts/outputs, in other words, working in Galois fields of lesser order.
Let us consider any function F with m inputs and m outputs. ‘The
domain of its definition X-is a set of all binary of m length. Let Y be
a domain of values of F (the length m binary number). We assume
that the inputs (outputs) of the function are from left to right. Let
us call for convenience m; left inputs (outputs) lower, the remaining
my = m — m; inputs (outputs) higher (we have m > m; > my ).
Partitioning X into 2™ x 2 classes K; is as follows: element z from X
belongs to K; if its higher bits represent number ¢ in binary form. Each
class has 2™ x 2 elements. They differ only in lower bits. In each K;
let us define a pair of functions F;, and F;,as follows. Any = belonging

to K; may be represented in the form (z1,22,..., Tm1, Tmit1s-- <y Tm)s
(Tm+1s---,Tm) being a constant for any « from K;. If y = F(z), then
y can be also represented in the form (y1,Y2;- -, Ymy> Ymit1s- -« Ym),
and in accordance with the definition assume Fi,(z) = (y1,.. -, Ym,)

and Fi, = (Ym; +1,...,Ym). As for each K; the high-order bits of
inputs values are constant, we may take for any F; as inputs only lower
bits, and consequently. to realize it.in m; inputs/outputs of UDPLM.
For each F; let us calculate from expression (3) coefficients G;, where
t = 1,2m2, 5§ =1,2™. Then we may get the values of the function F
(separately lower and higher bits) by formulae analogous to (2):

2m1 2m2

F=3 GuX*), Gp=)_ Grpli,z),

k=1 i=1 '
where X = (z1,...,Zm,), p(?,z) equal 1, when the higher bits of =
coincide with ¢ in the binary representation and equal zero otherwise.
In other words, p(i,z) is a term from all (zpm, + 1,.:.,2m,) and z;
is negated if in the j-th position of the number ¢ in the binary rep-
resentation is 0. To obtain all the bits of the outputs, 2 UDPLMs
with m, inputs/outputs are necessary . The mode with UDPLM with
my inputs/outputs and UDPLM with m, inputs/outputs is possible.
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- Figure 3. Structural scheme of UDPLM for m = 5,m; =3 and
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Then G;; from F;, is put into the first UDPLM, but G;; from F;, is
put into the second UDPLM (with m; inputs/outputs), besides for the
second UDPLM the lower bits act as the higher ones and vice versa.
In this case the memory capacity for storing the adjusting coeflicients
is equal to the storage for UDPLM for m inputs/outputs, but layouts
for UDPLM themselves are simplier because of a lesser number of in-
puts/outputs. The global structural scheme for m = 5,m; = 3 and
mq = 2 is represented in figure 3. It is obvious that the problem is sim-
plified for a function with the number of outputs less than the number
of inputs. In this case one can take m; equal a number of outputs, and
UDPLM for obtaining Fj, is not needed. So if the structural scheme in
fig.3 for m=5 inputs had 3 outputs, 8 x 4 matrix for GF(2?) would be
absent. :

EXAMPLE 2. 1t is necessary to construct a polynom for cortege
of Boolean functions

Jo(X) f(X) f2(X),
where
. s fo(X) = (131 + 1)(33 + 1) + Iﬁ,
ChX)=z2\[zi(zs+ 1),

fo(X) = z1(z2 Vl‘a)-
Taking into account X*=X+1 for the field GF(2?) in (2),(3) we get
F(X)=aX +a’X? + aX? + o*X* 4+ o X® + a? X°.
But if we partition by z3, then in GF(22) for both values of :c’3 we get

a function f of 2 variables: f(00)=0, f(01)=0, f(10)=0, f(11)=1, and
as in GF(2?) X? = X +1, the polynom will take the form:

 F(X)=aX +a?X?+ X3,

It should be noted that F(X) = aga;a®, where ag, a, are Boolean vari-
ables both in the GF(2?) and in the GF(2?) cases when the realization
of G; is in the layout itself and X = aoa® + a;a + aza? for GF(23)
and X = aoa® + a1 for GF(2?). It is the case when we bring the
layout to the level of the Zhegalkin polynom. This example was taken
from example 1 in [20], where the global arithmetical polynom for this
‘cortege of functions: D(X) = 3z, + 3z, + 123 has been obtained. In
D(X) all operations are the operations of decimal arithmetics.
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5 Construction of UDPLM for incompletely de-
fined switching functions

In synthesis of switching functions we deal with a large important class
of incompletely defined switching functions [21]. In works {22],{23] in-
teresting results in the problem of constructing minimal polynomial
forms for such functions have been obtained. However, in [22] the
calculation of coefficients is connected with the solving of a system
of linear equations. In [23] a class of polynomial forms is given with
fast calculation of coefhicients, but input limitations are imposed on
the functions for which such forms can be obtained. Below it will be
shown that for functions with a relatively large number of given values
it is useful to use polynomial forms of Galois fields . There exist two
directions. The first is to define the missing values of function as zeroes
and to use the methods given in the above sections. This variant is not
bad for a large number of problems. However, it is less preferable if
a number of inputs is large (m=13 and larger), but a number of the
defined values of function is much less than 2™ — 1, Therefore, the
second direction is to get an array of intermediate coefficients. It is
more preferable if in UDPLM the class of inputs is fixed (and there are
no limitations which inputs are fixed) but only the values of outputs of
the switching function change."Let L values of function (L <« 2™ — 1)
be given. We will represent the function F(X) in the form:

. .
@ CF(X)=F0)+)_ A X",
' k=1 ',
(5) - L A=) K (F() + F(0)),
: Ci=1 RS :

where the coefficients K;, depend only upon the array of inputs X.
The matrix of the coefficients K, is obtained by solving the matrix
equation KxY=E. All matrices have size LxL. E is a unitary matrix.-
K is a matrix of the required coefficients Kj, , and Y is

X, X2 X3 - XL

X2 X2 X2 ... x?
y=| X% X3 X} - X} |,

Xt X3 X§ - Xt

where Xi,...,X are inputs of the switching function where it -is de- -
fined. The equation is solved easily by standard algebraic methods, for’
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example by the Gauss method but with operations in the Galois field.
To prove the validity of (4) (5) it is suﬁiaent to substitute expres-
sion (5) for Ay into (4):

2™ -1 2™ -1
F(X)=F(0)+ > X* Z K,,.<F<J)+F(0))-
k= 1
2"‘—12"‘—1

SR+ >3 (xR (K 5+ FO) =

k=1 j=1

2™ -1 2™ -1

F0)+ Y (F;+F(0) > X*K;,.
-j=1 R k=1 -

Finally, noz‘ﬁe that from Kx Y=E it follows that the internal sum equals

0 for all X # X; and equals'l for X = Xj.  Here X; is the input’

of the: function on which its value equals F;. It immediately follows
that F(X)="F(0)+F; +F(O)_ F;. So our proof is complete. Having
the matrix K from (5) it is easy, and in systolic systems also, to get
values of adjusting coefficients Az used in (4). Polynom (4) 1tself is
realized 1dentlcally as calculations of polynom (2). The matrix K is
made to save in cheaper external storage calculated and loaded, when
necessary, adjusting coeflicients A;. In the given mode we made all
the coefficients of the X degrees larger than L equal zero, therefore
expressions for these degrees of X are not needed. As L < 2™ —1, the
obtained in such a mode layouts for this class of problems are more
economic. Note that the equation A xY=F should be solved directly
(A is a vector of adjusting coefficients for (4)). However, in this case
the obtaining of the adjusting coeflicients, will require the solving: of
the system of linear.equations for each new function. This leads to
increasing delay time for. obtaining the adjusting coefficients, which is
not preferable for the class of problems under study. :

6 Conclusion

As was shown, the representation of switching functions in the form
of Galois field polynom is promising for the calculation and synthesis
- of UDPLM. As such modules are functionally complete, they can be

1mplemented instead of EPROM. UDPLMs are purely combinatorial
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ones and have no decodes, therefore, signal delays in them are mini-
mal, though can be increased with increasing number of cascades. For
obtaining maximal speed it is necessary to use one cascade and to re-
alize it in the form of a chip. For loading the adjusting coefficients
the programmable controlled interface should be installed additionally,

- using both systolic systems and UDPLM itself for increasing the speed

of UDPLM readjusting.

APPENDIX 1;
Expressions of degrees of X in the basis of
Galois field GF(2*) with X* =X +1
X=a" 1%4al ~2+a2?‘4+a3~8 :

X2=a’(14+4)+ ! 4+0%(248)+a>-8

X% = a°(1+5+6+'a)+a1(3+5‘-'i-8+c)+a2(3+4;k5+6+9{a+0)+a3(2+4+8+a+c)
| X* =01+ 2+4+8)+0al(248) + a*(4 +8) +a®- 8
b & =a“(l+3+4+5+8+§+c)+d1(2+4+6+9+a+c)+a2(2+4+6+9+a+c)
X =a’(1+3+44+9+¢)+c'(34+44+5+6+9+a+c)+a’(2+3+4+5+a)+
A2 +4+8+a+rc) ‘

X = (1+2+34+4+T+a+b+e)+a'(2434+5+a4c+d+e)+
a?(3+5+6+8+a+b)+o*2+44+8+9+a+c+e)
X8=a%(1+2)+a'(4+8)+a®-2+0a®-8
X° = a®(14346+8+a+c)+at (2+434-5+6+84-9)+a® (345+8+c)+a’(2+4+8+a+c)
X1 = a®(14243+5+6+8+a)+a'(2+4+6+9+a+c)+a’(2+4+6+9+a+c)
XM =¥l 444 5+4T+b+ctd) +a(2434+4454649+b+c+e)t

» o?(2+34+5+a+c+d+e)+e®(2+4+8+9+a+c+e)

X2 =a’(14245+94+a+¢c)+a’(2+3+4+5+a)+a’(2+3+5+6+8+9)+
a¥(2+4+8+a+c)
XB=a"14+2+3+6+T7+9+d+e)+a'(3+4+5+8+9+d)+
a2(2+3+4+5+6+9+b+c+e)v+a3(2+4+8+9+a+c+e)

X" =a"(14+2+44+54+6+7+8+¢)+a'(3+5+6+8+a+b)+
?(34+4+5+8+94+d)+a’(2+44+8+9+a+c+e)
X¥=a®(14+2+3+4+54+6+7+8+9+a+b+c+d+e+f)
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Compression form 6f recording the polinom’s terms is used. The co-
efficients of o' are represented in bina,ry-pdsition form: in hex num-
bers positions they show which a; is in the term, for example number
5= 010116 = Qopaa, and d = 110116 = Qpasas.

APPENDIX 2.
Express1ons of multiplication of coefficients G by degrees of X
in the Galois field GF(2*) with X* = X +1

GX=0%1-1+2-844-4+8-2)+a’(1-2+2(1+8) +4(4+8) +8(2+4))+
a’(l-4+2-2+4(1+8)+8(4+8))4-a3(1-8+2-4+4-2+8(1+8))
GX?=a®(1(1+4)+2-8+4(2+8)+8-4)+o'(1-4+2(1+4+8)+4-2+
8(4+2+8))+a?(1(2+8)+2-4+4(1+4+8)+8:2)+a3(1-842(2+8) +4-4+8(1+4+8))
GX?=a’(1(14+5+6+a)+22+4+8+a+c)+4(3+4+5+6+9+a+c)+

8(3+5+8+¢)+al(13+5+8+c)+2(1+5+6+2+4+8+c)+
4(3+5+6+9+2+8)+8B8+4+6+9+a)+a’(1(3+4+5+6+9+a+c)+
23+54+8+c)+4(1+5+6+2+4+8+c)+8(3+5+6+9+2+8))+
a3(1(2+4+8+a+c)+2(3+4+5+6+9+a+c)+4(3+5+8+?)+8(1+5+6+2+4+8+c))
GX*= a°(1(1+2+4»+8)+2-8+4(4+8)+8(2+8))+a1(1(2+8)+2(1+2+4)+
4-44+82+4)+a?(1(4+8)+2(2+8)+4(1 +2+4) + 8- )+
a3(1-842(4+8)+4(2+8)+8(1+2+4))
GX® =a®(1(14+3+4+5+8+9+¢)+4(2+4+6+9+a+c) +8(2+4+6+9+a+c))+
a'(1(2+4+6+9+a+c)+2(1+34+4+54+84+94¢)+4(2+4+6+9+a+c))+
a?(12+4+46+9+a+c)+(22+4+6+9+a+c) +4(1+3+4+5+8+9+c)+
8(2+4+6+9+a+c))+
a®(2(2+4+6+9+a+c)+4(2+4+6+9+a+c)+8(1+3+4+5+8+9+¢))
GX® = a"(1(1+3+4+9+c)+2(2+4+8+d+c)+4(2+3+4+5+a)+8(3+4+5+6+9+a+
c))+a‘(1(3+'4+5+6+9+a+c)+2(1+3+é+2+8+a)+4(3+5+8+c)+
' 8(6+9+c+2)+
a®(1(2+3+4+5+a)+23+4+5+6+9+a+¢)+4(1+3+9+2+8+a)+
8(3+5+8+¢c))+
3(1(2+4+8+a+c)+2(2+3+4+5+a)+4(3+4+5+6+9+a+c)+
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8(1+3+9+2+8+a))
GX"=a®(11+2+3+4+T+a+b+e)+22+4+8+9+a+c+e)+
43+5+6+8+a+b)+82+3+5+a+c+d+e))+
al(1(2+3+5+a+c+d+e)+
2(14+3+T+b4+8+9+¢)+4(3+5+6+b+2+4+9+c+e)+8(2+c+d+e+6+8+b))+
o®(1(3+5+6+8+a+8)+2(2+3+5+a+c+d+e)+4(1+3+7+b+8+9+c)+
8(3+5+6+b+2+4+9+c+e))+a’(1(2+4+8+9+a+c+e)+
2(3+5+6+8+a+b)+4(2+3+5+a+c+d+e)+8(1+3+7+b+8+9+¢))
GX®8=a®(1(1+2)+2-8+4-2+8(4+8)+a'(1(4+8)+2(1 +2+8)+ ‘
42+8) +8(4+8+2) +a%(1-2+2(4+8) +4(1 +2+8) + 8(2 + 8)+
a®(1-8+2-2+4(4+8)+8(1+2+8))
GX® = a®(1(143+6+8+a+c)+2(2+4+8+a+c)+4(3+5+8+c)+8(2+3+5+6+8+9))
+a' (1(24+3+5+6+8+9)+2(1+3+6+2+4)+4(3+5+2+4+a)+8(2+6+9+¢c))
+a?(1(3+5+84¢)+2(2+3+5+6+8+9)+4(1+3+6+2+4)+8(3+5+2+4+a))+
a3(1(2+4+8+a+c)+2(3'+5+8+c)+4(2+3+5+6+8+9)+8(1'+3+6+2+4))
GX'® = a®(1(1+2+3+5+6+8+a)+4(2+4+6+9+a+c)+8(2+4+6+9+a+c))+
a1(1(2+4+6+9+a+c)+2(1+2+3+5+6+8+a)+4(2+4+6+9+a+¢)+
Q(1(2+4+6+9+a+0)+22+4+6+9+a+c)+4(1+243+5+6+8+a)+
8(2+4+6+9+a+c))+ |
3(2(2+4+6+9+a+c)+4(2+4+6+9+a+c)+8(1+2+3+5+6+8+a))
GX" = a®°(1(144454T+b+c+d)+2(2+4+8+9+a+c+e)+4(2+3+5+a+c+d+e)+
(243 +44+54+6+9+b+c+e)+al(l@+3+4+5+6+9+b+c+e)t
21+5+T+b+d+2+8+9+a+e)+4(3+5+d+4+8+9)+8(4+6+9+b+a+d))+
a?(1(243+5+a+c+d+e) +22+3+445+6+9+b+cte)t |
41+4+5+T+b+c+d+2+4+8+9+atcte)+8(3+5+d+4+8+9))+
A(12+44+8+9+a+c+e)+22+3+5+a+c+d+e)+
424+34+44+5+6+9+b+c+e)+8(1+5+7+b+d+2+8+9+a+e))
GX'? = a®(1(1424549+a+c)+ 2(2+4+84 atc)+4(2+3+5+6+8+9)+8(2+3+4+5
+0)) +al(12+3+4+5+a) +2(1+5+9+4+8) +4(243+5+6+8+ 9+
d+a+c)+8(4+a+6+8+9))+ '
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a%u2+3+5+6+8+9y+xé+3+4+§y+«1+5+9+4+&+
8-(3+5+6+9+4+a+c))+
B2 +4+8+a+c)+22+3+5+6+8+9)+4(2+3+44+5+a)+
8(1+5+9+4+8))
GXB=a®1(1+2+3+6+7+9+d+e)+2(2+4+8+9+a+c+e)+
424+3+4+5+6+9+b+c+e)t
8(3+44+5+8+9+d)+a'(13+4+5+8+9+d)+
9L43+6+7+d+4+8+a+c)+
4(24+3+4+54+64+9+b+ct+e+2+4+8+9+a+c+e)+8(8+d+24+6+b+c+e))+
?(1(2+3+4+5+6+9+b-+c+e)+2(3+4+5+8+9+d)+
’ AQ+3+6+7+d+4+8+a+c)+
8(3+5+6+b+8+a)+a’(1(2+4+8+9+a+c+e)+
C22+3+4+5+6+9+b+c+e)+
@+4+5+8+9+@+80+3+6+7+d+4+8+a+d) ;
GX“—a%u1+2+4+5+6+7+8+@+2@+4+8+9+a+c+d+
AB+A+5+8+9+ )t
8(3+5+6+8+a+b)+a1(1(3+5+6+8+a+b)+2(1+5+6+7+9+a+c)+
4@+5+d+2+a+c+q+8@+a+b+4+9+@+a%u3+4+5+8+9+@+
23+5+6+8+a+b)+4(1+5+6+7+9+a+c)+83+5+d+2+a+c+e)t
(uz+4+8+9+a+c+ey+%3+4+5+8+9+d}+«3+5+6+8+a+w+
i &1+5+6+7+9+a+®) '
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Anekcauapos M. H., Koror B.M., Hukutiok H.M.
HekoTopsie BONpOCH NPUMEHEHHS
nepex.moqa're.nbnmx (bym(mm B IOJIAX Fanya GF (2“‘)

E10-93-412

PaccMOTpEHa BO3MOXHOCTh INPUMEHEHHS MOJIMHOMUA/IFHHX (PopM mocTpo-
eHHd TIepeKIIoYaTeIbHHX Qyrxumit B noaax amxya GF(2™), nokasana mep-
CIHEKTHBHOCTD UX MCIOJH30BAHAS MPH CHHTE3€ YHHBEPCAILHHX JHHAMHYECKH
NPOrpaMMHPYEMHIX JIOTHYECKHX MOAyJel. PacCMOTPEHH BapMaHTH. CHHTE3a
CX€M KaK JJIsl IOJHOCTHIO, TaK M HE MOHOCTHIO ONpefieyIcHHRX (hyRxuii. ITpu-
BeJcH NPUMED YHHBEPCAIPHOIO JHHAMHYECKH IPOrpaMMHEPY €EMOTO MOAYJIst 4—x
riepeMEHHEIX.

Pa6ora srmossena s JJaGopatopun BHCOKuX SHepruit OUSH.

IIpenpunt OGLEAMHEHHONO MHCTUTYTA SAEPHBIX ﬁcc.nenonauuﬁ. Hy6ua, 1993

Aleksandrov I.N., Kotov V.M., Nikityuk N.M:
Some Questions of an Application
of Galois Fields GF (2™) Switching Functions

- E10-93-412

Possibility of an application of polynomial forms of constructing Galois
fields GF (2™) switching functions is considered, the perspectivity of their using
for synthesis of universal dynamically programmable logic modules (UDPLM)-
is shown. Modes of layouts synthesis both for completely and incompletely
defined functions are presented. An example of the universal dynamically
programmable logic module of 4 variables is given.

The investigation has been performed at the Laboratory of ngh Energies,
JINR.
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