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1. INTRODUCTION 

Recently polynomial forms of the representation of Boolean functions 
in the form of the Zhegalkin polynom have found wider application 
to the problems of analysis and synthesis of them by means of truth-
table combinatorial layouts [1],[2]. These forms have a homogeneous 
algebraic structure and are well realized in modern microelectronic. 
However, capacity of calculating the coefficients in the Zhegalkin poly:. 
noms is high and grows essentially with increasing number of variables. 
In [3],[4] it is shown that the system of Boolean functions is made to 
represent in the form of generalizing arithmetic polynom, which allows· , -. · 
the parallel calculation of Boolean functions system more conveniently. 
The method of constructing polynoms in Galois field GF(2m) is also 
known, which is based on the interpretation of inputs and outputs of 
switching layout as field elements. This direction is investigated in. 
[.5]-[7]. In [.5] an expression for immediate calculation of polynomial de­
composition coefficients is given. The results of this work were used. for 
the creation of switching layouts with a goal of a combinatorial suin­
mator and sequential automaton synthesis [8]. The goal of the work.is 
to show the efficiency of polynomial decomposition in the Galois fields 
for the synthe~is of UDPLM . 

- 2 Basic attributes and definitions. Basic decom­
position theorem 

The Galois fields are the natural extention of the Boolean field. They 
were well investigated and have a wide spectrum of applications [9]­
[ 11]. Any switching function with m inputs and m outputs has no more 
than 2m values. Therefore, it is given over finite field, frequently called 
Galois field GF(pm ). The number p is called a field basis and must 
be simple. We shall consider the case p = 2, however all results are 
valid for other simple p, therefore the actuality of the given direction 
is increasing with the creation of maltivalued logic devices. Let us 

" 

introduce a field of coefficients GF(2) with elements O and 1) modulo . 
2 addition as a field's addition operation and a conjuction as a field's 1

1 

multiplication operation. In this field the operations of addition and 
subtraction are completely identical. 
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Introduce over GF(2) a field GF(2m) as a field of polynoms with 
coefficients from GF(2) and degree less than m. · The primitive root 
of irreducible polynom of degree m with its all degrees will be play 
the role of variables. There is· a belief in this case that the irreducible 
polynom generates a field. The root is called primitive, if within a set 
of all its 2m different degrees they do not coincide. Thus, the degrees 
of the primitive polynom cover all the field GF(2m ). The addition 
operation in this field is the usual operation of polynom's addition, 
where the coefficients are added in the field GF(2). Multiplication is 
a multiplication of polynoms in modulo of a bearing polynom. In this 
field all the usual field's axioms are valid. Let us give additionally the 
attributes of the finite fields which will be useful for understanding the 
paper (in more detail see [5]). 
· Attribute 1. For any.XE GF'(2m): X + X = 0. 

Attribute 2. For any nonzero X E GF(2m) : xm- 1 = L 

Attribute 3. For any X, YE GF(2m): (X + Y) 2 = X2 + Y2• 

Attribute 4. For any non-one XE GF(2m): :z=;:~1 Xk = 1. 
The first m degrees of primitive root a 0 ,a,a2 , a 3 , ... ,an-l are linearly 

independent and can .be given as a basis of the Galois field. This means 
that any field 's element X can be represented in the form: 

(1) X O + + m-·1 =ao*O +a1*0 ... am-1*0 , 

where a; E 0, 1. If we take any binary number ( a 0 , a1, ... , am-d of 
length mas a set of coefficients a; from (1), we may interpret it as the 
element of the Galois field. 

THEOREM !(expansion). Any switching function f(X) can be 
represented in the form ( and in a unique way) 

2m-l 

(2) f(X) = f(O) + E G;Xi' 
i:O 

2m-l 

(3) G; = L o-;i/;, 
i=O 

where Ji= f(a;), and a;= ai - j-th degree of a. 
The proof of the theorem is given in [5]. In (6] theorems of the same 

type for the case of multivalued functions are given. Theorem 1 is a 
basis for the creation of UDPLM. 
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3 The creatidn of polynom for dynamically ad­
justed switching 1<;1-yout 

Starting from (1), we can calculate in the general form: 

X 
x2 

xr-1 

aoa0 +' · · · + am-lU'm-l, 
(aoa 0 + · · · + am-1U'm- 1)(aoa0 + · · · + am-1U'm- 1), 

( 
0 ,' ' aoa +···+am-1U'm-1)2m-1_ 

When performing raising to a power by means.of multiplication of 
(1) by itself (appropriate number of times), one gets all the Xi from 
(2) in polynomial form. If for a concrete switching function coefficients 
Gi are calculated from formula (3) and its values with degrees of.X 
in polynomial form are substituted into (2), after eliminating of equal 
values we can get a Zhegalkin polynom system. Each polynom will be 
represented as a coefficient of basic element ci. This method of getting 
polynoms is described in [8),[12]. However, in this case the values of 
Gi will be hardwired in layout, the general form will be a little simpler 
but the possibility of adjusting the layout for different functions will 
be lost. For UDPLM together with variable X, coefficients Gi should 
be inputs for the module. 

Let us represent Gi in the general polynomial form through basis as 
we have_represented X in (1):Gi = bi0 a0 + ··· + b;m_1 am-1

• The given 
expressions with the expressions for all Xi are substituted into (2). As 
a result we will get the required polynom for-UDPLM, in which X and· 
all G; are variables given via expansion in the basis. On-its basis one 
can synthesize UDPLM, X and all G; being inputs for layout. To adjust 
UDPLM to a concrete function it is enough to calculate values of all 
Gi for this function from formula (3) and to load them into storage 
registers. The values of Gi are directed to the inputs of layout together 
with the values of X during operating UDPLM . In appendexes 1,2 the 
polynomial form of Xk and GXk accordingly is given for m=4 and the 
irreducible polynom X 4 = X + 1 (table of the irreducible polynoms for . 
m ~ 34 is given in [9]). The expressions obtained for Xk are bulky, 
therefore all the calculations should be performed on computer, which 
has been done by the authors. 

Using the fact that Xk = XXk-1, the layout of UDPLM can be 
simplified by means of increasing the number of cascades in it, i.e. by 

4 ,, ,; 
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increasing _the delay time. For example, only even parity degrees of 
X can be realized (their expressions are in average simpler), and odd 
parity degrees are obtained on the further cascade by means of mul-

. tiplication X 21+1 = Y X, where Y is outputs from layout of X 21 and 
l=l,2, ... ,(2m-l __,, 1)/2. Different methods of the realization of multipli­
cation, division and addition operations are given in [13]-[19] . 

Using the fact that expressions for X 21
, 1=0,1, ... ,m-2 are essentially 

easier (see appe11,dix 1, it is the result of attribute 3), one can also 
simplify the layout by means of increasing the number of cascades. 

EXAMPLE 1. Fo_r the Galois field GF(24 ) and the irreducible 
polynom x4 = x + 1 formula (2) has the following form: 

F(X) = F(O) + G1X + G2x2 + ... + G15X15 = F(O) + [G1X + G2X2 + GsX3]+ 

X 4[G4 + GsX + G5X2 + G1X3
] + X 8 [Gs + G9X + G10X2 + G11X3]+ 

, 2 3 
Xl2[G12 + G1aX + G14X + G1sX ]. 

Substituting the expressions for Gi and Xk from appendixes 1,2, , we 
get a two-cascade layout of the calculation of any 4-input switching 
function. The first cascade represents the calculation of the expressions 
in brackets, the second is th_e' realization of the remaining op~rations 
of multiplication and· addition. However, the expressions for X3, X 12 

are still large. Using only th~ expressions for X, X2, X4, X 8
, we get 

the following expressions for F(X): · 

F(X) = F(O) + G1X + G2X2 + GaX2 X + G4 X 4 + G5X 4~ + G6 X 4 X 2+ 

G1X4 X 2 X + GsX8 + G9X8 X _+ G10X8 X 2 + G11X8 X 2 X + G12X8 X 4+ 
G1aX8 X 4 X + G14X8 X 4 X 2 + G1sX8 X 4 X 2 X = 

F(O) + [X8 (Gs + G12X4)] + [G1 + X 8 (G9 + G13X4)]X + [G2 + GaX+ 

X 8 (G10 + G11X + G14X4)]X2 + [G4 + GsX + (G6 + G1X)X2]X4+ 
G1s[(X8 X 4)(X2 X)]. 

Figure 1 give; the structure layout •of the ;ealization of the last expres­
sion for UDPLM for 4 inputs an.cl 4 out'puts. 

Let us consider in more detail the possibilities of fast calculation of 
expressions (3). For the calculation of Gi the layout UDPLM itself may 
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be used. It is sufficiently to load into registres of preserving of Gi the 
values of the functions Fi for all i=l, ... ,2m -1 and sequentially put into 
the inputs of layout values of X = a-k, where k=l, ... ,2m - 1. On the 
output we get the required values of Gi with the minimal time delay 
(2 ns for 1 Gk for one-cascade UDPLM). If for readjusing UDPLM 
from one function to another only a small number of values of outputs 
is changed, changes of the volume of the calculation for (3) will be 
drastically reduced. So by changing one value of the output at the 
point ak from the old Fkoid to the new Fknew expression (3) becomes as 
follows: 

Ginew = Giold + (Fknew - Fko1d)a-;;i, 

for all i = 1, ... , 2m - 1. 

GISI_; 

Gil~ G(8)+G(12lX41 A 

X 
4 

'\.4 
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It is possible also to use systolic structures for the calculation o{ G;. 
In this case the accumulation of Gi values is accomplished sequentially 
during 2m - 1 steps. The general structural scheme of operating one• 
step taking 2m - 1 cycles of the systolic system is represented on figure 
2. • The calculation of expression (2) in more simple'way than (3) is 
likely to be realized in the systolic system, for example, on the basis 
of, the Gomer scheme. Though the speed of the calculations in the 
systolic systems is up to 5 billion operations per second as the process 
of calculations is iterative, for definite classes of the problems the de­
Jay time can be larger than is needed. In this case depending on the 
requirements on speed calculations may· be parallel. For example, for 
m=6, 2m - 1 = 63 it is possible to ,realize the calculation of F(X) as a 
sum F(X)=Fl+F2+F3+F4. Here Fl, F2, F3 and F4 are partial sums 
from (2) at i: from Oto 15 for Fl, from 16 to 31 for F2, from 32 to 47 
for F3, and from 48 to 63 for F4. The calculation of Fl, F2, F3 and F4 
is performed parallelly, initial values of X 16, X32 and X 48 for F2, F3 
and F4 are calculated directly by means of the layouts similar to those 
given in appendix 1. Thus, for the calculation of F(X) instead of 63 
cycles of the systolic system 16 cycles are required at 4-fold increasing 
of the hardware in the systolic system. 

* -: i"' ~':_ 1 clocks for 
I each coefficient 

'--~-' 

+ * i__F, 

RE~ULT 
Result in register 

m 
after 2-1 clocks 

Figure 2. Structural scheme of getting values of coefficients G; 
in systolic system. * is multiplication operation in Galois field, + is 
modulo 2 addition, Fi is the value of function at point ai 
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4 Construction of m-inp.ut UDPLM by means of 
UDPLM of a lesser number of inputs 

With increasing.m the complexity of the expression for UDPLM in­
creases, therefore it would be useful to get values of any switching 
function of m inputs by means of UDPLM of a lesser number,of in­
puts/outputs, in other words, working in Galois fields of lesser order. 
Let us consider any function F with m inputs and m outputs. The 
domain of its definition Xis a set of, all binary of m length. Let Y be 
a domain of values of F (the length m binary number). We assume 
that the inputs (outputs) of the function are from left to right. Let 
us call for convenience m1 left inputs (outputs) lower, the remaining 
m2 = m - m 1 inputs (outputs) higher (we have m > m 1 2:: m 2 ). 

Partitioning X into 2m x 2 classes Ki is as follows: element x from X 
belongs to I<i if its higher bits represent number i in binary form. Each 
class has 2m x 2 elements. They differ only in lower bits. In each J{i 

let us define a pair of functions Fi1 and Fi2 as follows. Any x belonging 
to I<i may be represented in the form (x1, x2, ... , Xm1, Xm1+1, ... , xm), 
(xm+l,··•,xm) being a constant for any x from I<i. If y = F(x), then 
y can be also represented in the form (Y1, Y2, ... , Ym1 , Ymi+l, ... , Ym), 
and in accordance with the definition assume Fi1 ( x) = (Y1, . .. , Ym1 ) 

and Fi2 = (Ym1 + 1, ... , Ym). As for _each I<i the high-order bits of 
inputs values are constant, we may take for any Fi as inputs only lower 
bits, and consequently to realize it. in m 1 inputs/outputs of UDPLM. 
For each Fi let us calculate from expression (3) coefficients Gij, where 
i = 1, 2m2 , j = 1, 2m1 • Then we may get the values of the function F 
(separately lower and higher bits) by formulae analogous to (2): 

2m1 2m2 

F= LGk(Xk), Gk= LGk,P(i,x), 
k::::l i=l 

where X = (x1 , ... ,Xm1 ), p(i,x) equal 1, when the higher bits of x 
coincide with i in the binary representation and equal zero otherwise. 
In other words, p(i,x) is a term from all (xm1 + l,.:.,xm2 ) and Xj 

is negated if in the j-th position of the number i in the binary rep­
resentation is 0. To obtain all the bits of the outputs, 2 UDPLMs 
with m1 inputs/outputs are necessary . The mode with UDPLM with 
m1 inputs/outputs and UDPLM with m 2 inputs/outputs is possible. 
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TRIGGERS 
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Y2 
Y3 
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Y5 

Figure 3. Structural scheme of UDPLM for m = 5, m1 = 3 and 
m 2 = 2 
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Then Gii from Fi1 is put into the first UDPLM, but Gii from Fi2 is 
put into the second UDPLM (with m2 inputs/outputs), besides for the 
second UDPLM the lower bits act as the higher ones and vice versa. 
In this case the memory capacity for storing the adjusting coefficients 
is equal to the storage for UDPLM for m inputs/outputs, but layouts 
for UDPLM themselves are simplier because of a lesser number of in­
puts/outputs. The global structural scheme for m = 5, m1 = 3 and 
m2 = 2 is represented in figure 3. It is obvious that the problem is sim­
plified for a function with the number of outputs less than the number 
of inputs. In this case one can take m1 equal a number of outputs, and 
UDPLM for obtaining Fi2 is not needed. So if the structural scheme in 
fig.3 for m=5 inputs had 3 outputs, 8 x 4 matrix for GF(22

) would be 
absent. 

EXAMPLE 2. It is necessary to construct a polynom for cortege 
of Boolean functions 

fo(X)fi(X)h(X), 

where 
fo(X) = (x1 + l)(x3 + 1) + x:i, 

fi(X) = x2 V x1(x3 + 1), 

h(X) = x1(x2 V X3). 

Taking into account X3=X+l for the field GF(23 ) in (2),(3) we get 

F(X) = aX + a 2X 2 + oX3 + o4X4 +o4X5 + o 2X6
• 

But if we partition by x3 , then in GF(22 ) for both values of x3 we get 
a function f of 2 variables: f(00)=0, f(0l)=0, f(10)=0, f(ll)=l, and 
as in GF(22 ) X 2 = X + 1 , the polynom will take the form: 

F(X) = aX + a 2X 2 + X 3
. 

It should be noted that F(X) = a0a1a 0 , where a0 ,a1 are Boolean vari­
ables both in the GF(23

) and in the GF(22) cases when the realization 
of Gi is in the layout itself and X = a0a 0 + a1 a + a2a 2 for GF(23

) 

and X = a0a 0 + a1a for GF(22 ). It is the case when we bring the 
layout to the level of the Zhegalkin polynom. This example was taken 
from example 1 in [20], where the global arithmetical polynom for this 
cortege of functions: D(X) = 3x1 + 3x2 + x1x3 has been obtained. In 
D(X) all operations are the operations of decimal arithmetics. 
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5 Construction of UDPLM for incomp~etely de-
fined switching functions 

In synthesis of switching functions we deal with a large important class 
of incompletely defined switching functions [21]. In works [22],[23] in­
teresting results in the problem of constructing minimal pol:r,nomial 
forms for such functions have been obtained. However, in l22] the 
calculation of coefficients is connected with the solving of a system 
of linear equations. In [23] a class of polynomial forms is given with 
fast calculation of coefficients, but input limitations are imposed on 
the functions for which such forms can be obtained. Below it will be 
shown that for functions with a relatively large number of given values 
it is useful to use polynomial forms of Galois fields . There exist two 
directions. The first is to define the missing values of function as zeroes 
and to use the methods giyen in the above sections. This variant is not 
bad for a large number of problems. However, it is less preferable if 
a number of inputs is large (m=13 and larger), but a number of.the 
defined values of function is much less than 2m - 1. Therefore, the 
second direction is to get an array of intermediate coefficients. It is 
more preferable if in UDPLM the class of inputs is fixed (and there are 
no limitations which inputs are fixed) but only the values of outputs of 
the switching function change. 'Let L values of function (L ~ 2n_i - 1) 
be given. We will represent the function F(X) in the form: 

L 

(4) F(X) = F(O) + E AkXk; 
k=l 

L 

(5) Ak = E K;k(F(j) + F(O)), 
j =,l 

where the coefficients Ki,. depend only upon the array of inputs X. 
The matrix of the coefficients Kj,. is· obtained by solving the matrix 
equation KxY=E. AU matrices have size LxL. Eis a unitary matrix; 
K is a matrix of the required coefficients Ki,., and Y is 

~ ~ ~ 
~~~ 

Y=I ~ ~ ~ 

XL 
Xl 
Xf 

xf xf x:f •·· xt 
where X1 , ... ,X£ are inputs of the switching function where it is de- . 
fined. The equation is solved easily by standard algebraic methods, for 
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' 
example, by the Gaui.s method, but with operations in the Galois field. 

To prove the validity of (4)-(5) it is sufficient to substitute expres-
sion (5) for Ak into (4): . 

2"'-1 2"'-1 

F(X) = F(O) + E xk( E ·Kik(Fci) + F(o)) = 
k=l i=l 

2"'-12"'-1 

F(O) + E E (XK (Kjk (Fj + F(O))) = 
k=l j=l 

2"'-1 2"'-1 

F(o) + E (Fj + F(o)) E xk Kik. 
-j=l k=l 

Finally, note that from K x Y =E it follows that the internal sum equals 
0 for all X =/ Xi and equals· 1 for X = Xi. Here Xi is the input 
of the function on which its value equals Fj. It immediately follows 
that F(X)= F(0)+Fi+F(0)~ Fi. So our proof is complete. Having 
the matrix 'K from (5) it is easy, and in systolic systems also, to get 
values of adjusting coefficients Ak used in (4). Polynom (4) itself is 
realized identically as calculations of polynom (2). The matrix K is 
made to save in cheaper external storage·calculated and loaded, when 
necessary, adjusting coefficients Ak. In the given mode we made all 
the coefficients of the X. degrees larger than L equal zero, therefore 
expressions for these degrees of X are not needed. As L ~ 2m -1, the 
obtained in such a mode layouts for this class of problems are more 
economic. Note that the equation AxY=F should be solved directly 
(A is a vector of adjusting coefficients f~r (4)). However, in this case 
the obtaining of the adjusting coefficien.ts, will require the solving· of 
the system of linear. equations for each new function. This leads to 
increasing delay time for obtaining the adjusting coefficients, which is 
not preferable for the class of problems under study. 

6 Conclusion 

As was shown, the representation of switching functions in the form 
of Galois field polynom is promising for the calculation and synthesis 
of UDPLM. As such modules are functionally complete, they can be 
implemented instead of EPROM. UDPLMs are purely combinatorial 
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ones and have no decodes, therefore, signal delays in them are mini­
mal, though can be increased with increasing number of cascades. For 
obtaining maximal speed it is necessary to use one cascade and to re­
alize it in the _form of a chip. For loading the adjusting coefficients 
the programmable controlled interface should be installed additionally, 
using both systolic systems and UDPLM itself for increasing the speed 
of UDPLM readjusting. 

APPENDIX 1. 
Expressions of degrees of X in the basis of 

Galois field GF(24
) with X 4 = X + 1 

X = a 0 
• 1 + a 1 

• 2 + a 2 
• 4 + a 3 

• 8 

X2 = a 0(1 + 4) + a 1 
• 4 + a 2(2 + 8) + a 3 

• 8 

X3 = a 0(1+5+6+a)+a1(3+5+8+c)+a2 (3+4+5+6+9+a+c)+a3 (2+4+8+a+c) 

X 4 = a 0(1 + 2 + 4+ 8) + a 1(2+ 8) + a 2(4 + 8) + a 3 
• 8 

X5 = a 0 (1 +3+4+5+8+9+c)+a1(2+4+6+9+a+c)+a2 (2+4+6+9+a+c) 

X6 = a 0(1 + 3 +4+ 9+ c) + a 1(3+ 4+ 5 + 6 + 9+ a+c) + a 2(2 + 3+4+ 5 + a)+ 

a 3(2+4+8+a+c) 

X 7 = a 0 (1 + 2 + 3 + 4 + 7 +a+ b + e) + a 1(2 + 3 + 5 +a+ c + d + e)+ 

a 2(3 + 5 + 6 + 8 +a+ b) + a 3 (2 + 4 + 8 + 9 +a+ c + e) 

X8 = a 0(1 + 2) + a 1(4 + 8) + a 2 
· 2 + a 3 

· 8 

X 9 = a 0 (1 +3+6+8+a+c )+a1 (2+3+5+6+8+9)+a2 (3+5+8+c )+a3 (2+4+8+a+c) 

X10 = a 0 (1+2+3+5+6+8+a)+a1(2+4+6+9+a+c)+a2 (2+4+6+9+a+c) 

X11 = a 0(1 + 4 + 5 + 7 + b + c + d) + a 1(2 + 3 + 4 + 5 + 6 + 9 + b + c + e)+ 

a 2 (2 + 3 + 5 +a+ c + d + e) + a 3(2 + 4 + 8 + 9 +a+ c + e) 

X 12 = a 0 (1 +2+ 5+9+ a+ c) + a 1(2+ 3+4+ 5+a) + a 2(2 + 3+ 5+6+ 8+9)+ 

a 3 (2 + 4 + 8 +a+ c) 

X13 = a 0 (1 + 2 + 3 + 6 +7 + 9 + d + e) + a 1 (3 + 4 + 5 + 8 + 9 + d)+ 

a 2 (2 + 3 + 4 + 5 + 6 + 9 + b + c + e) + a 3 (2 + 4 + 8 + 9 +a+ c + e) 

X14 = a 0 (1 + 2 + 4 + 5 + 6 + 7 + 8 + e) + a 1(3 + 5 + 6 + 8 +a+ b)+ 

a 2(3 + 4 + 5 + 8 + 9 + d) + a 3(2 + 4 + 8 + 9 +a+ c + e) 

X 15 = a 0 (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 +a+ b + c + d + e + f) 
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Compression form 6f recording the polinom's terms is used. The co­
efficients of (i are represented in binary-position form: in hex num­
bers positions they show which ai is in the term, for example, number 
5 = 010116 = aoa2, and d = 110116 = aoa2a3. 

APPENDIX 2. 
Expressions of multiplication of coefficients G by degrees of X 

in the Galois field GF(24
) with X 4 = X + 1 

GX = a 0 (1 • 1 + 2 • 8 + 4 • 4 + 8 • 2) + a 1(1 • 2 + 2(1 + 8) + 4(4 + 8) + 8(2 + 4))+ 

a 2(1 • 4 + 2 • 2 + 4(1 + 8) + 8(4 + 8)) + o?(l • 8 + 2 • 4 + 4 • 2 + 8(1 + 8)) 

GX 2 = a 0(1(1 + 4) + 2 · 8 + 4(2 + 8) + 8 · 4) + a 1(1 · 4 + 2(1 + 4 + 8) + 4 · 2+ 

8( 4+2+8)) +a-2 
( 1(2+8)+ 2-4+4( 1 +4+8)+8 ;2)+o3 (1 ·8+2(2+8)+4·4+8( 1 +4+8)) 

GX3 = a 0 (1(1+ 5 + 6 +a)+ 2(2 + 4 + 8 +a+ c) + 4(3 + 4 + 5 + 6 + 9 +a+ c)+ 

8(3 + 5+ 8 + c)) + a 1(1(3 + 5 + 8 + c) + 2(1 + 5+ 6 + 2 + 4 + 8 + c)+ 

4(3 + 5 + 6 + 9 + 2 + 8) + 8(8 + 4 + 6 + 9 +a)+ a2(1(3 + 4 + 5 + 6 + 9 +a+ c)+ 

2(3 + 5 + 8 + c) + 4(1 + 5 + 6 + 2 + 4 + 8 + c) + 8(3 + 5 + 6 + 9 + 2 + 8))+ 

a 3(1(2+4+8+a+c)+2(3+4+5+6+9+a+c)+4(3+5+8+c)+8(1+5+6+2+4+8+c)) 

GX4 = a 0 (1(1 +2+4+ 8)+2 · 8+4(4+8) +8(2+8)) +a1(1(2+8) +2(1 +2+4)+ 

4 • 4 + 8(2 + 4) + a 2(1(4 + 8) + 2(2 + 8) + 4(1 + 2 + 4) + 8 • 4)+ 

a 3(1. 8 + 2(4 + 8) + 4(2 + 8) + 8(1 + 2 + 4)) 

GX5 = a 0 (1(1+3+4+5+8+9+c)+4(2+4+6+9+a+c)+8(2+4+6+9+a+c))+ 

a 1(1(2 +4 + 6 +9 + a+ c) + 2(1 + 3 +4 +5 + 8+ 9+ c) + 4(2+ 4+ 6 + 9 +a+ c))+ 

a 2(1(2+ 4+6 + 9 + a+ c) + (2(2+4+ 6+9+ a+ c) + 4(1 + 3 +4 + 5 + 8 + 9 + c)+ 

8(2 + 4 + 6 + 9 +a+ c))+ 

a 3 (2(2+ 4+ 6+ 9+ a+ c) +4(2+4+6 +9 + a+ c) + 8(1 + 3 +4 + 5 + 8 + 9+c)) 

G X 6 = a 0 
( 1( 1 +3+4+9+c )+ 2(2+4+8+a+c )+4(2+3+4+5+a )+8(3+4+5+6+9+a+ 

c)) + o-1(1(3 +4 + 5 + 6 + 9 +a+ c) + 2(1 + 3 + 9 + 2 + 8 +a)+ 4(3 + 5 + 8 + c)+ 

8(6+9+c+2))+ 

a 2{1{2 + 3 + 4 + 5 +a)+ 2(3 + 4 + 5 + 6 + 9 +a+ c) + 4(1 + 3 + 9 + 2 + 8 + a)+ 

8(3 + 5 + 8 + c))+ 

03(1(2 + 4 + 8 +a+ c) + 2(2 + 3 + 4 + 5 +a)+ 4(3 + 4 + 5 + 6 + 9 +a+ c)+ 
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8(1 + 3 + 9 + 2,+ 8 + a)) 

GX7 = 0°(1(1 + 2 + 3 + 4 + 7 +a+ b + e) + 2(2 + 4 + 8 + 9 +a+ c + e)+ 

4(3 :f- 5 + 6 + 8 + a + b) + 8(2 + 3 + 5 + a + c + d + e ))+ 

0 1(1(2 + 3 + 5 +a+ c + d + e)+ 

2(1+3+7+b+8+9+c)+4(3+5+6+b+2+4+9+c+e)+8(2+c+d+e+6+8+b))+ 

o 2(1(3+5+6+8+a+b) +2(2+3+ 5+a~c+d+e) +4(1 +3+7 +b+8+9+ c)+ 

8(3 + 5 + 6 + b + 2 + 4 + 9 + c + e)) + 03 (1(2 + 4 + 8 + 9 +a+ c + e)+ 

2(3 + 5 + 6+ 8+ a+b) + 4(2+ 3 + 5 + a +c+ d+ e) + 8(1 + 3 + 7 + b+ 8+ 9 +c)) 

GX8 = 0°(1(1 + 2) + 2 • 8 + 4. 2 + 8(4 + 8) + 0 1(1(4 + 8) + 2(1 + 2 + 8)+ 

4(2 + 8) + 8(4 + 8 + 2) + 02(1 · 2 + 2(4 + 8) + 4(1 + 2 + 8) + 8(2 + 8)+ 

o3 (1 · 8 +_2 · 2 + 4(4 + 8) + 8(1 + 2 + 8)) 

G X 9 = o 0 
( 1 ( 1 +3+6+8+a+c )+ 2(2+4+8+a+c )+4(3+5+8+c )+8(2+3+5+6+8+9)) 

+o1 (1(2+3+5+6+8+9) + 2(1 +3+6 + 2+4) +4(3+5+ 2+4 +a) +8(2+6+9+c)) 

+o2(1(3+5+8+c)+2(2+3+5+6+8+9)+4(1+3+6+2+4)+8(3+5+2+4+a))+ 

o- 3(1(2 +4 + 8 +a+ c) + 2(3+ 5 + 8+ c) +4(2 + 3+ 5 + 6+ 8 + 9) + 8(1 + 3+6 +2+4)) 

GX 10 = o 0(1(1+2+3+5+6+8+a)+4(2+4+6+9+a+c)+8,(2+4+6+9+a+c))+ 

a 1(1(2 +4 +6 +9 +a +c) + 2(1 +2 + 3 +5 +6+ 8+ a) +4(2 +4+ 6+ 9+ a+ c)+ 

0 2(1(2 +4 +6 +9+a +c) + 2(2+4 +6 +9+a +c) +4(1 + 2+3 +5 +6+8+ a)+ 

8(2 + 4 + 6 + 9 +a+ c))+ 

03(2(2 +4 + 6 + 9 + a+ c) +4(2 +4+ 6+ 9 + a +c) + 8(1 + 2 + 3 + 5+ 6+ 8+a)) 

GX 11 = o 0(1(1+4+5+7+b+c+d)+2(2+4+8+9+a+c+e)+4(2+3+5+a+c+d+e)+ 

8(2 + 3 + 4 + 5 + 6 + 9 + b + c + e)) + 0 1(1(2 + 3 + 4 + 5 + 6 + 9 + b + c + e)+ 

2(1+5+7+b+d+2+8+9+a+e)+4(3+5+d+4+8+9)+8(4+6+9+b+a+d))+ 

02(1(2 + 3 + 5 + a '.·c + d + e) + 2(2 + 3 + 4 + 5 + 6 + 9 + b + c + e)+ 

4(1 +4+ 5+7 +.b+ c+d+ 2+4+8 +9+ a+ c+e) +8(3 +5+d+4+8 +9))+ 

03(1(2 + 4 + 8 + 9 + a+ c+ e) + 2(2+3+ 5+a + c+ d+ e)+ 

4(2 + 3 + 4 + 5 + 6 + 9 + b + c + e) + 8(1 + 5 + 7 + b + d + 2 + 8 + 9 +a+ e)) 

GX12 = o0(1{1+2+5+9+a+c)+2(2+4+8+a+c)+4(2+3+5+6+8+9)+8{2+3+4+5 

+a))+ o 1{1{2 + 3 + 4 + 5 +a)+ 2(1 + 5 + 9 + 4 + 8) + 4(2 + 3 + 5 + 6 + 8 + 9+ 

4 +a+ c) + 8(4 +a+ 6 + 8 + 9))+ 
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a 2(1(2 + 3 + 5 + 6"+ 8 + 9) + 2(2 + 3 + 4 + ~) + 4(1 + 5 + 9 + 4 + 8)+ 

8 • (3 + 5 + 6 + 9 + 4 +a+ c))+ 

a 3 (1(2 + 4 + 8 +a+ c) + 2(2 + 3 + 5 + 6 + 8 + 9) + 4(2 + 3 + 4 + 5 + a)+ 

8(1 + 5 + 9 + 4 + 8)) 

GX13 = a 0(1(1 + 2 + 3 + 6 + 7 + 9 + d + e) + 2(2 + 4 + 8 + 9 +a+ c + e )+ 

4(2 + 3 + 4 + 5 + 6 + 9 + b + c + e )+ 

8(3 + 4 + 5 + 8 + 9 + d)) + a 1(1(3 + 4 + 5 + 8 + 9 + d)+ 

2(1 + 3 + 6 + 7 + d + 4 + 8 +a+ c)+ 

4(2+3+4+5+6+9+b+c+e+2+4+8+9+a+c+e)+8(8+d+2+6+b+c+e))+ 

a 2(1(2 + 3 + 4 + 5 + 6 + 9 + b + c + e) + 2(3 + 4 + 5 + 8 + 9 + d)+ 

4(1 + 3 + 6 + 7 + d + 4 + 8 +a+ c)+ 

8(3 + 5 + 6 + b + 8 +a))+ a 3(1(2 + 4 + 8 + 9 +a+ c + e)+ 

2~+3+4+5+6+9+b+c+~+ 

4(3 + 4 + 5 + 8 + 9 + d) + 8(1 + 3 + 6 + 7 + d + 4 + 8 +a+ c)) 

GX14 = a 0(1(1+2+4+5+6+7+8+e)+2(2+4+8+9+a+c+e)+ 

4(3 + 4 + 5 + 8 + 9 + d)+ 

8(3+ 5+ ·6 +8 +a+ b) + a 1(1(3 + 5+ 6+8+ a+ b) +2(1 +5 + 6+ 7 + 9+ a+ c)+ 

4(3+ 5 + d+ 2+ a+ c+ e) + 8(6+a+ b+4+ 9+ d) +a2(1(3+4+5+ 8+ 9+ d)+ 

2(3 + 5+ 6+8 +a+ b) +4(1 +5+ 6+ 7 + 9+ a+ c) + 8(3+5+d+ 2+ a+c+ e)+ 

a 3(1(2 + 4+ 8+ 9+a+ c+ e) + 2(3+4+5-t-8+ 9 +d)+4(3+ 5+ 6+ 8+ a +b)+ 

8(1 + 5+ 6 + 7 + 9 +a+ c)) 
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A.neKca~poB M.H., KoTOB B.M., HHKHTIOK H.M. 
HeKOTOphle BOilpochI npHMeHeHIDI 
nepeKJIIO'laTeJibHhIX <PYHKD;HH B IlOJHIX ra.nya GF(2m) 

El0-93-412 

PaCCMOTpeHa B03MOXCHOCTb npHMeHeHIDI IlOJIHHOMHMbHhIX <POPM nocrpo­
eHH5l nepeKJI1011aTe.nhHhIX <PYHKIJ;Hii B noJI5lX ranya GF(2m), noKa3aHa nep­
cneKTHBHOCTb HX HCil0Jlb30BaHIDI npH CHHTe3e YHHBepcaJibHhIX AHHaMH'leCKH 
nporpaMMHpyeMhIX JIOrH'leCKHX MO]l;yJieii. PaccMOTpeHhI BapHaHTbl. CHHTe3a 
cxeM KaK AJI51 noJIHOCThIO, TaK H He noJIHOCTbIO onpe]I;e.neHHhIX <PYHKD;HH. IlpH­
Be]l;eH npHMep YHHBepCMbHOro AHHaMH'leCKH nporpaMMHpyeMoro MOAYJl5l 4-x 
nepeMeHHhIX. 

Pa6oTa BhlnOJIHeHa B Jla6opaTopHH BhICOKHX ::mepraii OM5IM. 

IIpenpHHT Ooo.e,llHHeHHOl'O HHCTmyra ll,llepHblX HCCJle,llOBaHHi't. ){y6Ha, 1993 

Aleksandrov I.N., Kotov V.M., Nikityuk N.M. 
Some Questions of an Application 
of Galois Fields GF(2m) Switching Functions 

El0-93-412 

Possibility of an application of polynomial forms of constructing Galois 
fields GF (2m) switching functions is considered, the perspectiVity of their using 
for synthesis of universal dynamically programmable logic modules (UDPLM) 
is shown. Modes of layouts synthesis both for completely and incompletely 
defined functions are presented. An example of the universal dynamically 
programmable logic module of 4 variables is given. 

The investigation has been performed at the Laboratory of High Energies, 
JINR. 
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