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1 Introduction 

System of linear algebraic equations (SLAE) is a fundamental math­
ematical object both in linear algebra and numerical mathematics at 
large. In linear algebra the SLAE is the basis of the first and second 
main problems, in numerical mathematics it is the basic computa­
tional model, to which can be reduced the whole realm of integral, 
differential, nonlinear etc. equations, i.e. main analytic tools of 
modern mathematics and physics. 

On the other hand, it .is possible to formulate direct and inverse 
SLAE problems, thus introducing a structural subdivision within 
the SLAE solution itself. The direct SLAE problem is traditionally 
considered to be solvable and stable, .the inverse SLAE problem 
is often prone to inherent instabilities due to multiple known and 
unknown sources of experimental and computational errors, both 
statistical and systematic. 

Here we will present the outline of the novel approach in solving 
the SLAE with arbitrary initial errors. All the crucial points of the 
novel approach have been verified via numerous te::;ts with differeut 
input samples by means of dedicated computer codes. 
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2 State of the art 

The standard direct problem for the SLAE with noisy input data 
and an additive noise (error) model can be formulated. as 

At= f + n (1) 

where A - the coefficient (apparatus) (m x m) -matrix, t --- the 
true solution column vector, f - the input data column vector and 
n - the additive noise (error) column vector. All the vectors can 
be considered as ( m x 1 )-matrices. 

On the other hand, the standard inverse problem is viewed math­
ematically as 

t=A-(f+n) ' (2) 
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where A- is an inverse of the A matrix. Instabilities in the t-solution 
(2) arise due to errors inherent in both A and J. The essential 
qualitative point here concerns relatively small errors in the "direct" 
matrix A which transform into relatively large errors in the inverse 
matrix, A-. 

One of the important phenomenological points is the fact that 
the direct problem corresponds to integration, while the inverse one 
corresponds to differenti~tion. In digitized forms, ~hen the digitiza-. 
tion argument interval becomes to be infinitely small, the numerical 
integral converges to a finite value, while the numerical derivative 
be~ome~' infinitely large, i.e. it diverges. . . 

. The inverse· problem can 'b'e: solved in the original Fourier·space 
by means of .differ~nt techniq\ies .·froril. Gauss Elimination Method 
(GEM) to Singular Value Decomposition (SYD) within the float­
ing point arithmetic (FPA) basis. : An alternative solution can be 
obtained in the Fourier image space by using Fast Fourier Trans­
form (FFT). Unfortunately, the _latter is subject to the same kind 
of instabilities as the object of solution, i.e. an initial SLAE. 

Another crucial point concerns the standard solution tech'nique 
used on computers, i.e. local optimization. In solving the inverse 
problem (2) one usually tries to find out a minimum of the following 
objective function 

F = (At·- /)2 = n2 = MIN! (3) 

or 
(At - /)

2 
== MIN! U= n2 
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(4) 

corresponding to statistical weights W = I and W = 1/n2 , respec- , 
tively. Here the general assumptions are as follows: 

. ' ,'' ' 

1 .. The additive noise is. the only error source. 

2. 

3. 

The matrix A ·i!i known exactly, i.e. without any errors. 

The objective functions, i.e. F and -U are smooth and uni­
modal, Le. theidocal -minima coincide with the global ones. 
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Unfortunately, all the above general crucial assumptions con­
cerning statement of the problem, error model and mathematical 
properties of the relevant objective functions are improper. to some 
or another degree, thus leading to catastrophic instabilities in trying 
to solve (2). 

3 · The novel statement of the inverse SLAE 
. prol;>lems 

Our novel approach involves the formulations of two inverse prob­
lems in the all-rr.iatrix ,formulation: inf?tead of the single stari.'dard 
one (2) in the mixed matrix-ve~for form. The first inver~e SLAE 
problem is formulated like (2) ' · 

T=A-.(F+N) 

while the second inverse SLAE problem looks like 

A= (F+ N)T-

(5) 

(6) 

where r- is a T - invers·e. In case of the mixed matrix-vector 
formulation the second inverse problem can be written down as 

A= (J + n)t- (7) 

However, as opposed to the first inverse problem (2) here we deal 
with' a Diophantine underdetermined p~oblem. •Thus, at the very 
beginning, in stating the inverse SLAE problems, we discover that 
the coefficient matrix A in the mixed matrix-vector formulation (1) 
is nonunique. This leads, in particular, to the noncontrollable be­
haviour of the A- due to "negligibly small" rounding-off errors in 
the A matrix within the FPA basis presentation. -

Moreover, the underdeterminated nature of the A matrix allows 
us to conclude that, in the mixed matrix-vector formulation, even 
the direct SLAE problem (1) is stated improperly, i.e. it can be 
solved only. in an unstable ( non unique) way. . 

This being true, the relevant first ( 5) and ·second ( 6) in verse 
problems must he improper and unstable so to say from the. very 
origin. 
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4 Definition of the SLAE solution and the 
so-c~lied PTT~~~gula~ization technique 

The standard inverse problem (2) with ~~isy input data is kn~~n 
to be solved :by the PTT-regula~ization technique [1-3] where the 
minimized objective functj~µ i~;l~efin~d as ' ' . 

. 
F = IIAt.:... !11 2 + alltll 2 = R + aN = MIN! ; (8) 

with II 112 to stand for Euclidean metrics and norms a1id' O' being 
the regularization parameter. However, computational experience 
shows this technique to be valid only up to relat.iye errors e(f) ~ 1 %. 

From our point of view, here we deal with a matl1ematically im­
proper formulation, when the. v~dor objective fonction F = F( R, N) 
is improperly transformed into .<l: scalar-like o.bject, F = R + aN.,:,. 

The proper formulation must lo.ok like 

F, = IIAT-:- Fllp = 1H IN! (9) 

}"'z•'.,==IITllp =MIN! ( 10) 

where p is the index, of any Holder norm able· to produce robust 
statistics and robust final results. 

5 Local vs global optimization 

The objective Junctions like (7-9) are smooth, monotone and dif­
ferentiable, in short, analytic ones, only in the absence of errors. 
The introduction of errors ,e(f) 2: 1 % results in fractal-like func­
tion patterns specified by multipi~' disco~tinuities, i.e. multiple local 
minima. Any real objective function becomes multimodal. 

The second reason for thisimplicit unimodal-multimodal trans­
form is the generally noncritical use of the weighted least squares 
technique (WLS). The analysis of.two-parametric Holder norm pat­
terns with p = oo, 2 and 1 shows geometric figures like an outer 
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square, an in.scribed .circle and an inner in.scribed ·square,. respec­
tively, while the WLS. c~rresponds to an innermost.inscribed ellipse. 
A part of this latter 1s located inside the,'p = 1 square, thuscorre­
sp·onding top < 1. The objective functions in the form of the Holder 
p < 1 metrics are known to be multimodal by definition.. , 

· Thus, any attempt'to :solve the inverse SLAE problem (2) in the 
standard mixed matrix-vector formulation is doomed to failure from 

. pure mathematical considerations. 
·. The _only constructive remedy to this situation is a transfer to 

global optimization [4-5]. 

6 Error models ' • ~ l 

In solving unstable inverse SLAE problems 'we do not know a priori 
what is the specific error (noise)' model we need. The trivial as­
sumption about this to be an additive one is convenient only from 
the WLS point of view. , However, this ,model is based on the fun­
d~mental hypothesis about the" spectral part (f) and the noise part 
( n) to be statistically independent. The discretization process of 
the analyzed data sc1.mple, however, introduces a very pronounced 
correlation between the spectral and noise parts at bin level. 

By acting within a trial-and-error model, here again it is possi­
ble to introduce a few error models instead of the single standard 
(additive) one. 

Let us consider the additive error model as the first one. Then 
the second error mod~! can be m~ltiplicative, so that the relevant 
objective function will look like 

Ji'1 = lllnAT-; lnFII =;:4,M IN! (11) 

·F2 = lllnTII = MIN! (12) 

The third error model can be formulated as 
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F1 = llexp(AT)- exp(F)II = MIN! (13) 

F2 = llexpTII = MIN! 
. , , . 

'(14) 

corresponding to the hypoadditive noise source. 

7 Structure of the A:.matrix 

Let us c~n~ider an unstable foverse. SLAE pr~bJem for a spectral 
reconstruction case, when, e.g. a particle spectrometer is irradiated 
by some particle source. The general form of the A-matrix can be 
viewed as · · · ,. ·. 

A = Ai . Ar . Aa . Au (15) 
.'(; . . . . . . . . . 
. where Ai - an identification factor, Ar, - a. resolutior1factor, 

Aa - an acceptance ( registration effici~ncy) factor and A~ .:___ a 
factor accounting for ~nknowninformation about' the whole system 
composed of a particle 1,ource and ,a particle's'pkctrometer: 

·1n most practi~al cas~s pr~sently is. used the trivial versidn cor­
responding to A = Ar and Ai = Aa = Au.= I, where I is the 
diagonal identity matrix. T.his st~nda:rd oversimplification results 
in a distorted structure•of both direct and inverse matrices. 

' !' .' f-'; • 

8 Error-free sohit1ons 

. Let us ·consider the all-matrix SLAE form 

AT= F+N. · ( 16) 

with all the previously noted mathematical defects eliminated. In 
computing the relevant unstable inverse problem ,within the FJ> A 
basis the only remaining destabilizing factor will be the computer 
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rounding-off errot Its catastrophic action is easily identified qualita­
tively in analyzing the process of the A -+ A- transform supported 
by. practical computations. 

The known palliative measures like the sophisticated control of 
singular value spectrum in SVD technique, the FFT with. the subse­
quent intricate separation of spectral and noise comp~n~nts ~t'~ a1'e 
followed only by a partial success. ~ 

The drastic change in solution stability is due to the transfer 
into integer modular arithmetic (IMA) basis or integer nonmodular 
a~ithmetic (INA) basis [6]. 

s·. 1 . IMA basis 

The transfer from the infinite real numbe~ field Q to a finite (modu­
lar) integer number field GF(m) can be performed in an easy-to-do 
way .. However, even for relatively small m x m -matrices .4 with 
m. > 3 inverted on IBM computers in the ~ingle precision mode 
of operadonon~ is soon limited by the insurrr1ou11table problein of 
overflow. An increa."se i.ri the precisioi1 of 'ii'umbers does ·not lead to 
any s'ubstantial prbg~~ss. . .,, . . 

The only remedy seems to be the tranifer'to .ii factorized modulus 
1f,, ,:, f,( , . 

m = m1 · m2 • ... • mi (17) 
·,l' 1 ~ 

and the use of the Chinese Remainder Theorem at the reconstruct.ion I • 

step.· 
Here· again arises a fundamental disadvantage of the IMA ba­

sis due to the implicit improper reducti~n process for some partial 
moduli mi. The search for a proper set of m; transforms into an 
iteration process with a priori unknown outcome. 

· Thus, we need an integer basis .devoid of above intrinsic disad-
vantages. 

8.2 IN A basis .. 

This can be done by using the well-kno~n Hermite and Smith Nor­
mal Forms, HNF and SN1''; respectively. 

·B 

The computation with the HNF and SNF algorithms can be 
arranged in such a way asto minimize the overflow problem'fo prin~ 
ciple. On the· other hand, the final SNF · is usually obtained in a 
diagonal' form with automatic multiple computations of the· most 
important matrix parameter, i.e. the matrix- rank R( A-). This' 
latter cannot be computed exactly within the FPA basis even by 
means of such a sophisticated and ·intricate technique as SVD and 
its modifications. 

The principal point here concerns the transfer from the infinite . 
real number field Q to the finite integer number ring R, with.accom­
panying division problems. However, the thorough analysis demon­
strates the a~sence of division operations in the course of matrix 
inversion within R. In;s_olving the SLAE ·problem the finahtep of 
matrix multiplication can be easily performed within the final. FPA 
(rational) basis. 

Sui::h a solution technology avoids both the IMA defects and .the 
complications inherent in p-adic versions. The slightly increased 
computation time in the INA basis as compared to the FPA ~ne is. 
favorably compensated by the overall stability of solution process 
with arbitrary input errors. 

9 Statistical vs· systematic er~ors 
. . 

Our interest is solving the unstable inverse problems have _been pro-
voked by specific experimental problems, in particular, those en­
countered in the EMC-NA4 studies of deep inelastic•muoui scatter­
ing [7]. Here the involved magnetic spectrometers have been located 
one after anothe~ in a high energy muhn beam. The final results 
gained with both spectrometers have pertained to the same object 
- the so-called structure functions. However, wi.th statistical errors 
e(f) ~ 1 %, the systematic ones reach s(f) ~ 10 - 50%. This situ­
ation is quite typical, as can be seeri from the summary data plots 
published in [7]. 

On the other hand, there are no published data on the apparatus 
matrix A not only for the above EMC-NA4 twin spectrometers, but 
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for any other eit~er. The above indicated nonuniqueness of A-matrix 
makes th~se dat~ to be usel;ss within th~ standard mixed matrix-···;._ ' . ' 

vector formulation of both direct and inverse SLAE proble_ms. 
We will not consider here particular problems of vector-matrix 

transform essential for the transfer tram the old mixed ~~trix-vector 
form to the_ novel all-matrix one to b~ published elsewhere [8]. 

10 Conclusion 

The highlytraditional theme of solving SLAE could not be critically 
reconsidered without the implicit support provoked by the·works of 
such mathematicians as F. Klein and C. Lanczos. Multiple discus­
sions with staff members of the JINR · High Eriergy La.b and other 
JINR departments are highly appreciated.· 
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Rnww;eHKO B.II. 
HOBblH nowco,11 K pewem1w CHCTeM JlHHeHHblX 
aJire6paH11ecKHX ypaeHeHHH (CJIAY) 

EI0-93-403 

CTaH,11apmb1it nowco,11 onpe,11eJl5IeT npooJieMY AJill cHCTeM JIHHeHHbIX aJire6paH11ecKHX ypaeHe­
HHH (CJIAY) B paMKIDC CMewaHHOH MaYpH'IHO-BeKTOpHOH <l>OPMYJIHpOBKH H ,11eHCTBHTeJibHOIO 
apH4>Mern11ecKoro 6aaHca KaK At= (j+n), rne A - m x m-MaYpHu,a H t, f, n - CTOJ16u,oeb1e 
BeKTOpbl HCTHHHOl'O peweHHll, BXO,llHblX ,11aHHblX H OWH0OK BXO,llHblX ,11aHHblX COOTBeTCTBeHHO. 
O6pamall CJIAY-npo6JieMa, KOTOpall O0bl'IHO llWilleTCll HeyCTOH'IHBOH, <l>OPMYJIHPYeTCll KaK 
t = A-(j+n), rne A- llWilleTCll oopamoit MaYpHu,eit AJill A. Han60Jiee cyw;eCTBeHHbIH ub111nCJIH­

TeJibHbIH napaMeYp, a nMeHHO paHr R(A-), a,11ech He MOJKeT 0b!Tb BbI'IHCJieH e npnmi.nne. Houi.1it 
6eao111n6011HbIH nowco,11 ncnoJib3yeT nOJIHOMaYpH'IHYW <l>OPMYJIHPOBKY n u,eJI011nCJieHHhIH (MOJIY­
JillpHbIH HJIH HeMOJIYJlllPHbIH) 6aanc AJill pe111eHHll npllMOH npo6JieMbI AT- F + N, a TaKJKe nepuoit 

o6pamoit npo6JieMbI T = A-(F + N) H BTopoit o6pamoit npo6JieMhI, A = (F + N)T-, npn 3TOM 
COOTBeTCTByWw;He paHrn MaTpHU, Bbl'IHCJlll!OTCll TO'IHO B Te'leHHe BCero npou.ecca Bbl'IHCJieHHH. 

Pa6oTa BbinOJIHeHa u Jla6opaTOpHH Bb!COKHX :meprnit OIUill. 

IlpenpHHT Ofu.e,11nHeHHOl'O HHCTHyYTa ll,llepHblX HCCJie,110BaHHH. )zy6Ha, 1993 
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The standard approach specifies the direct problem for systems of linear algebraic equations 
(SLAE) within the mixed matrix-vector form~lation and a real arithmetic basis as At= (j+n), where 
A - m x m-matrix and t, f, n - column vectors of_ a true solution, input data and input data error, 

respectively. The inverse SLAE problem (generally unstable) is formulated as t = A-(j+n), where 

A- is an inverse of A. The crucial computational parameter, i.e. the rankR(A-), cannot be computed 
here. The novel error-free approach uses the all-matrix formulation and integer (modular and 
nonmodular) arithmetic bases to solve the direct -problem AT - F + N as well as the first, 

T = A-(F + N) and second,A = (F + N)T-, inverse problems, with the continuous rank crosscheck 
during the whole computation process. 

The investigation has been performed at the Laboratory of High Energies, JINR. 
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