


1 Introduction

System of linear algebraic equations (SLAE) is a fundamental math-
ematical object both in linear algebra and numerical mathematics at
large. In linear algebra the SLAE is the basis of the first and second
main problems, in numerical mathematics it is the basic computa-
tional model, to which can be reduced the whole realm of integral,
differential, nonlinear etc. equations, i.e. main analytic tools of
modern mathematics and physics.

On the other hand, it is possible to formulate direct and inverse
SLAE problems, thus introducing a structural subdivision within
the SLAE solution itself. The direct SLAE problem is traditionally
considered to be solvable and stable, .the inverse SLAE problem
is often prone to inherent instabilities due to multiple known and
unknown sources of experimental and computational errors, both
statistical and systematic. : .

Here we will present the outline of the novel approach in solving
the SLAE with arbitrary initial errors. All the crucial points of the

novel approach have been verified via numerous tests with different .

input samples by means of dedicated computer codes.

2 State of~the art ’

-The standard direct problem for the SLAE with noisy input data
and an additive noise (error) model can be formulated. as

= f+n e

where A — the coefficient (apparatus) (m x m) -matrix, ¢t -~ the
true solution column vector, f — the input data column vector and
n — the additive noise (error) column vector. All the vectors can
be considered as (m x 1)-matrices.

On the other hand, the standard inverse problem is v1ewed math-

ematically as
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where A~ is an inverse of the A matrix. Instabilities in the ¢-solution
(2) arise due to errors inherent in both A and f. The essential
qualitative point here concerns relatively small errors in the ”direct”
matrix A which transform into relatively large errors in ‘the inverse
matrix, A~ '
One of the important phenomenological points is the fact that
the direct problem corresponds to integration, while the i inverse one
corresponds to differentiation. In digitized forms, when the digitiza-
tion argument interval becomes to be infinitely small, the numerical
integral converges to a finite value, while the numerlcal deuva,tlve
becomes mﬁmtely la.lge i.e. it dlverges ' '

' The i inverse problem can 'be solved in the orlgmal Fourier ‘space’
by ‘means of different ‘techniques from Gauss Elimination Method
(GEM) to Singular Value Decomposition (SVD) within the float-
ing point -arithmetic (FPA) basis. ‘ An alternative solution can be
obtained in the Fourier image space by using Fast Fourier Trans-.
form (FFT). Unfortunately, the latter is subject to the same kind
of instabilities as the object of solution, i.e. an initial SLAE.

Another crucial point concerns the standard solution techhique
used on computers, i.e. local optimization. In solving the inverse-
problem (2) one usually tries to find out a minimum of the following
objective functjon '

F=-(Az':f)2=n2=nM11v! S (3)‘
N o e -
U (_At__2__)_ MIN! I (4):

n : .

tively. Here the general assumptions are as follows:
1. ‘The-atlditvive'nolse ris‘ltl{e only error source.
2. The matrlx A is known exactly, ie. thhout any errors.

‘3. The ob_]ectlve functxons, j.e. F- and :'U'»are smooth and uni-
modal, i:e. theirlocal:minima coincide with the global ones.

SErats

‘corresponding to statistical weights: W = 1 and W = l/n respec-
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~ Unfortunately, all the above general crucial assumptions con-
cerning statement of the problem, error model and mathematical
properties of the relevant objective functions are improper.to some
or another degree, thus leading to catastrophic instabilities in trying
to solve (2)

3 The novel statement of the i 1nverse SLAE
problems

Our novel approach involves the formula.tlons of two mversc prob-

lems in the all-matrix formulatlon mstead of the smgle standard
one (2) in the mixed matrlx vector form. The first inverse SLAE

problem is formula.ted like ( 2)
T = A(F+N) S )]

while the second inverse SLAE problem looks llke _
_(F+N)T“ . (6)

where T~ is a T — inverse. In case of the mixed matrix-vector
formulation the second inverse problem can be written down as

=(f4m)- ()

However, as opposed to the first inverse problem (2‘) ‘here we deal
with' a Diophantine underdetermined problem. Thus, at the very
beginning, in stating the inverse SLAE problems, we discover that

the coefficient matrix A in the mixed matrix-vector formulation (1)

is nonunique. This leads, in particular, to the noncontrollable be-
haviour of the A~ due to "negligibly small” rounding-off errors in
the A matrix within the FPA basis presentation. - :
Moreover, the underdeterminated nature of the' A matrix allows
~ us to conclude that, in the mixed matrix-vector formulation, even

the direct SLAE problem (1) is stated improperly, i.e. it can be.

solved only, in an unstable (nonunique) way. S
This being true, the relevant first (5) and second (6) inverse

problems must be 1mproper and unstable so to say from the very -

origin.

e

4 Definition of the SLAE solutlon and the
 so- called PTT-regularlzatlon techmque

The standard inverse problem (2) with norsy mput data i is l\nown
to be solved . by the PTT-regularization techmque [1 3] where the
rnmlmlzed ob_]ectlve functlon Is defined as

—”At f||2+a”t”2-R+aN MIN' T (8)

w1tll I 1|? to stand for Euclidean metricsiand norms and’a being

the regularization parameter. However, computational experience

shows this technique to be valid only up to relative errors.e( f) < 1%.
From our point of view, here we deal with a mathematlca.lly im-

proper formulation, when the vector objective function F.= F(R,N)

is improperly transformed into a scalar-like object, F'= R+ aN.; .
The proper formulation must look like

,—HA’I" Fll,=MING ()

" ‘=‘|]T”,, =MINY ; (10)

‘'where p is the index:of any Holder norm able to produce l()bll\l

statlstlcs and robust final results.

5 Local vs global optimization

The objective functions like (7-9) are smooth, monotone and dif-
ferentiable, in short, analytic ones, only in the absence of errors.
The introduction of errors e(f) > 1% results in fractal-like func-
tion patterns specified by multrple drscontmumes i.e. multiple local

minima. Any real objective function becomes multimodal.

The second reason for this implicit unimodal-multimodal trans-
form is the generally noncritical use of the weighted least squares
technique (WLS). The analysis of two-parametric Holder norm pat-
terns with p = 00,2 and 1 shows geometric figures like an outer



square, an inscribed circle and an inner inscribed square,. respec-
t1vely, while the WLS corresponds to an mnermost inscribed ellipse.
A part of this latter is located inside the'p = 1 square, thus corre-

spondmg to p < 1. The objective functions in the form of the Holder'

p < 1 metrics are known to be multlmoda.l by definition.

" Thus, any attempt 'to solve the inverse SLAE problem (2) in the
standard mixed matrix-vector formulation is doomed to failure from
.pure mathematical considerations. . S

The only constructive remedy to this sltuatlon is a transfer to
global optrmrzatron [4 5.

6 Brror models

In solving unstable-inverse SLAE problems‘we do not know a priori
what is the specific error (noise) modél we need. The trivial as-
sumption about this to be an-additive one is convenient only from
the WLS point of view. However, this model is based on the fun-
damental hypothesis about the spectral part (f) and the noise part
(n) to be statistically independent. The discretization process of
the analyzed data sample, however, introduces a very pronounced
correlation between the spectral and noise parts at bin level.

By acting within a'trial-and-error model, here again it is possi-
ble to introduce a few error models instead of the single standard
(additive) one. :

Let us consider the additive error model as the first one. Then
the second error model can be mult1pllcat1ve so that the relevant
objective function will look like

'Fx-HlnAT anu-an' - ay

F2=“InT||—MIN' ' e (12)

The third error model can be formulated as

K= IIexp(AT) —exp(F)||=MIN! .- - . . (13)

Fp = |lexpT|| = MIN! C(14)

c_orresponding‘ to the hypoadditive noise source.

7 Structure of the A-matrix

Let us consider an unst}able‘i'nverse‘SLAE problem for a spectral
reconstruction case, when, e.g. a particle spectrometer is irradiated
by some particle source. The general form of the A- matrlx can be
vrewed as

A=Ai-A-As- Ay B (1)

ST [ R . B . NN o . i f
.where A; — an identification factor, A, — a resolution factor, :

“Aq..— an acceptance (reglstratron efﬁcrency) factor and A, — — a

factor accounting for unknown information about the whole system
composed of a particle source and a partrcle spectrometer

In most practlca.l cases presently is used the trivial version cor-
responding to A = A, and A4; _.,A = A, = I, where ] is the
dlagona.l identity matrix. This standard oversrmphﬁcatlon results
in a distorted structure of both direct and inverse matrices. .7 ..

8 Error-free solutions

Let us consider the all-matrix SLAE form

AT=F+N - . . .(16)

with all the previously noted mathematical defects eliminated. In
computing the relevant unstable inverse problem within the FPA
basrs the only remalnmg destabxhzmg factor w1ll be the computer



rounding-off error. Its catastrophic action is easily identified qualita-
tively in analyzing the process of the A > A” transform supported
by practical computations.

The known palliative measures like the sophlstlcated control of
singular value spectrum in SVD technique, the FFT with the subse-
quent intricate separation of spectral and noise components etc are
followed only by a partial success.

The drastic change in solution stabrllty is due to theé transfer
into integer modular arithmetic (IMA) basrs or mteger nonmodular
arrthmetrc (INA) basrs [6] :

8.1 IMA'basis

The transfer from the infinite real number field @ to a finite (modu-
lar) integer number field GF(m) can be performed in an easy-to-do
way. .However, even for relatively small m x m -matrices A with
m. > 3 inverted on IBM computers in the smgle precision mode
of operation one is soon lrmrted by the 1nsurmountable problem of
overﬂow An 1ncrease m the precrsron of numbers does not lead to

any substantral progress
~ The only remedy seems to be the transfer to a factorlzed modulus

m= mymgm (17)
and the use of the Chmese Remarnder Theorem at the reconstructlon

step.”
Here' again arises a fundamental disadvantage of the IMA ba-

sis due to the implicit improper reduction process for some partial
moduli m;. The search for a proper set of m; transforms into an
iteration process with a priori unknown outcome.

. Thus, we need an integer basis devoid of above intrinsic disad-

vanta’ges.

8. 2 INA baSlS

ThlS can be done by using the well- known Hermite and Smith Nor-
mal Forms, HNF and SNF; respectively.

The computation with the HNF and ‘SNF algorithms can’be
arranged in such a way as to minimize the overflow problem'in prin-
ciple. On the' other hand, the final SNF is usually obtained in a
diagonal form with automatic multrple computatrons of the most
important matrix parameter, i.e. the matrix rank R(A~). This’
latter cannot be computed exactly within the FPA basis even by
means of such a sophisticated and-intricate technique as SVD and ‘
its modifications. -

The principal point here concerns the transfer from the 1nﬁn1te )
real number field Q to the finite integer number ring R, with,accom-
panying division problems. However, the thorough analysis demon-
strates the absence of division operations in the course of matrix
inversion within R. "In:solving the SLAE problem the final step of
matrix multiplication can be easily performed within the final. FPA
(rational) basis.

Such a solution technology avoids both the IMA defects and the
complications inherent in p-adic versions. The slightly increased
computation time in the INA basis as compared to the FPA one is
favorably compensated by the overall stability of solution process
with arbitrary input errors. ‘

9 Statlstlcal vs systematlc errors

Our 1nterest is solvmg the unstable inverse problems have been pro-
voked by specific experimental problems, in particular, those en-
countered in the EMC-NA4 studies of deep inelastic<muon!scatter-:
ing [7). Here the involved magnetic spectrometers have been located
one after another in a high energy muon beam. The ﬁnal results
gained with both spectrometers have pertained to the same object
— the so-called structure functions. However, with statistical errors

e(f) = 1%, the systematic ones reach s(f) = 10 — 50%. This situ-
ation is quite typical, as can be seen from the summary data plots

published in {7]. »
On the other hand, there are no publrshed data on the apparatus

‘matrix A not only for the above EMVC NA4 twin spectrometers, but



for any other either. The above indicated nonuniqueness of A-matrix
makes these da.ta to be useless w1thm .the standard: mixed matrix-
vector formulatlon of both direct and inverse SLAE problems.

We will not consider here particular problems of vector-matrix
tra,nsform essential for the transfer from the old mixed matrix- vector
form to the novel all-matrix one to be pubhshed elsewhere [8]..

10 Conclusmn

-

The hlghly traditional theme of solvmg SLAE could not be cutlcally‘
reconsidered without the implicit support provoked by the'works of

such mathematicians as F. Klein and C. Lanczos. Multiple discus-

sions with staff members of the-JINR: ngh Energy Lab and otllu.

JINR departments are highly appreciated. -
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CraHpapTHbIi NOAXOA OnpeaeseT npofneMy s CHCTeM IMHeMHbIX alrefpanieckHx ypasHe-
uuit (CJIAY) B paMxax cMemaHHON MaTPHUHO-BEXTOPHON (OPMYaMPOBKM M JAEHCTBUTENILHOIO
apudmeTnueckoro Gasuca xax At = (f+n), e A — mX m-matppua u t, f, n — cron6uonue
BEKTOPb! HCTMHHOIO PEMIEHMs, BXOMHBIX JAHHBIX M OMGOK BXOAHDBIX JAHHBIX COOTBETCTBEHHO.
O6parnas CJIAY-npo6nema, xotopas OGbIUHO SBISETCS HEeyCTOMUMBOH, POPMYNHpYETCS KakK
t= A (f+n), rae A~ asnsercs ofparnoi MaTpuueit ans A. HanGonee cymecTBeHHb BoIYHCIH-
TEJIBHBI TAPAMETP, @ MMEHHO paur R(A ™), anech He MoxeT GbITh BRIUMCIEH B npuuiune. Hopblit
Ge30mMGoUHbIT T0IXOR HCNIOMB3YET NOMHOMATPHIHYIO GOPMYIHPORKY M LEOUHCIEHHBI (MOKTy-
JISPHBLI MM HEMORYSIPHBIF) Gasuc and pemenus npsaMoit npobaempr AT = F+ N, a TakKe nepsoit
ofparHoit npofnembt T = A~ (F + N) u sropoit o6parHoit npo6nemsl, A = (F + N)T™, npu aroM
COOTBETCTBYIOIIME PAHIM MATPHL| BHIYMCIISIOTCS TOUHO B TEYEHHE BCENO NPOLECCA BHIUMCIIEHMIA.

Pa6ora BBUIOMIHEHA B JlaGopaTopys BLICOKMX IHEPIHIT OHSIH

Ipenpuut O6beAMHEHHONO MHCTUTYTA SREPHBIX MCCIEROBAHHIL. dybua, 1993
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The Novel Approach to Solving Systems of Linear

Algebraic Equations (SLAE)

The standard approach specifies the direct problem for systems of linear algebraic equations
(SLAE) within the mixed matrix-vector formulation and a real arithmetic basis as At = (f+n), where
A — m X m-matrix and ¢, f, n — column vectors of a true solution, input data and input data error,
respectively. The inverse SLAE problem (generally unstable) is formulated as t = A~ (f+n), where
A" isaninverse of A. The crucial computational parameter, i.e. the rank R(A ™), cannot be computed
here. The novel error-free approach uses the all-matrix formulation and integer (modular and
nonmodular) arithmetic bases to solve the direct.-problem AT = F + N as well as the first,

T = A”(F + N) and second, A = (F + N)T , inverse problems, with the continuous rank crosscheck
during the whole computation process.
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