
o/l- 9 C

0 ti b e A M H e H H bl M
MHCTMTYT
RAB PH bl X

MCCfl8AOBaHMM

S. A. Zaporozhets*, E. V. Chernykh*

THE USE OF PROLOG FOR REAL-TIME

SOFTWARE DESIGN

AYtiHa

E10-92-96

Submitted to 11 II International Workshop on Software
Engineering, Artificial Intelligence and Expert
Systems for High Energy and Nuclear Physics

11
,

January 13-18, 1992, La Londe, France

*E-mail:shimanskiy@lhe03.jinr.dubna.su

1992

3anopo>t<eu C.A., 4epHblX E.B.

np1-1MeHeH1-1e A3b1Ka nPQJlQr

AilA C03AaHl-1A nporpaMM peanbHoro speMeHl-1

El0-92-96

Q6cy>t<AaeTCA OnblT np1-1MeHeHl-1A A3b1Ka nPOJlQr AilA pa3pa60TKl-1 KOM·
n1-1nATOpa A3b1Ka BblCOKOro YPOBHA. KoMnl-1IlATOp npeAHa3Ha'leH AilA npor
paMMl-1pOBaHl-1A MOAYillM Ha OCHOBe rpaHCnbtoTepOB B Cl-1CTeMe c6opa AaHHblX.
OAHl-1M 1-13 AOCTOl-1HCTB A3b1Ka nPQJlQr ABJlAeTCA YA06CTBO Cl-1HTe3a 1-1 npeo-
6pa3oBaHl-1A AaHHblX, 1-1MelOIJ.ll-1X crpyKrypy Aepesa. K 3TOH KaTerop1-11-1 OTHO
CATCA on1-1caHl-1A A3b1KOB nporpaMMl-1POBaHl-1A no cpopMe D3Kyca-Haypa 1-1

TeKCTbl nporpaMM Ha A3b1Kax BblCOKOro ypOBHA. YKa3aHHOe CBOHCTBO A3bl
Ka nPQJlQr l-1CnOilb30BaHO aBTOpaMl-1 AilA pa3pa60TKl-1 nporpaMMbl-pa360p
lJ.ll-1Ka, ABilAIOIJ.leHCA 11aCTblO KOMnl-1IlATOpa C nOAMHO>t<ecTBa A3b1Ka nacKallb C
pacw1-1peH1-1eM AnA JaAa'I peanbHOro speMeH1-1. n porpaMMa-pa36op1J.1i-1K reHe
p1-1posanacb nporpaMMOH KOHBepc1-11-1 1-1cnonbJyeMoro A3b1Ka nporpaMMl-1po
saHl-1A HenocpeACTBeHHO no cpopMe o3Kyca-Haypa. reHeparop KOAa rpaHc
nbtorepa, 3arpy3'11-1K 1-1 l-1HTepcpeHC Ha OCHOBe MeHto pa3pa6aTblBaJll-1Cb rpaAl-1-
Ul-10HHblM cnoco6oM. PaCCMOTpeH np1-1Mep np1-1MeHeHl-1A KOMnl-1IlATOpa B Cl-1C
reMe peanbHOro speMeHl-1.

Pa6ora BbtnOnHeHa B Jla6oparop1-11-1 BblCOKl-1X 3HeprnH Olllfl 111.

llpenp11HT Q6,,e;:i11HeHHoro 11HCTl1T)'Ta 11;:iepHblX HCCJ1e,1oeaHl1H . Jly6Ha 1992

Zaporozhets S.A., Chernykh E. V. El0-92-96
The Use of Prolog for Real-Time Software Design

Experience of Prolog application in designing of a high-level language com
piler is discussed. The compiler is intended to program a transputer module
included in a data acquisition system. One of the Prolog language advantages is
the convenience of synthesis and conversion of tree-like data structures. Such
structures as BNF-definitions of programming languages and texts of high level
language programs belong to this category. We used this Prolog feature for the
synthesis of a parsing program to design a Pascal-subset language compiler
with extension for real -time applicaiton. The parser was generated by a BNF
converter program directly from the BN F-specifications of the language. A
transputer code generator, a loader and a menu-interface were designed in the
conventional way. An example of the compiler application in a real-time sys
tem is described.

The investigation has been performed at the Laboratory of High Energies,
JINR.

Preprin1 of the Joint Institute for ~udear Research . Dubna 1992

1.Introduction

A program code of real~time system software has to. be of high
efficiency in spite of the fact that this software is difficult to
debug and there is a lack of clearance of program source ; code
because of its dependence on hardware configuration.

BNF CONVERTER ~
BNF SPECIFICATION oF]I/
HIGH-LEVEL LANGUAGE I-

I

HIGH-
LEVEL
LANGUAGE
SUBSET
PROGRAM

Fig.1. The compiler structure.

PARSER

; -ASSEMBLER-CODE
GENERATOR

-TRANSPUTER-CODE
DATABASE

MENU-:-DRIVEN
INTEGRATED.
ENVIRONMENT

-EDITOR

-DEBUGGER

-LOADER

I•

MACHINE
CODE.
PROGRAM.

/

~conventional programming languages have no tools for effective
data acquisition system programming. An assembler is usually used to
describe the software interface to reach an efficiency and the
assembler routines are mixed with some conventional
language (Basic,Fortran,Pascal). But this way. does not lead to a
readable source code and a program code efficiency. . .

· To solve these problems we have. designed the problem-oriented
compiler,for the Pascal-subset. language. with extensions. taking
into account characteristic ·properties of system hardware (Fig.1).

We discuss th~ compiler itself and describe an example of
compiler application for a real-time data acquisition system.
System hardware comprises a transputer module as a base element
of the system, a parallel CAMAC branch and a personal computer
connected to the transputer via a transputer link.

lil.Cil,ilfUn'°'Sl 11KC'iKTJT '
u~,-JWI IICt :11~1e11ud

SW.sn~iOTE:HA _........., ~-

2. Scheme of compiler designing

To describe the syntax of the programming language; we used the
following meta-symbols:

::= means 'is',
XYZ (uppercase) means 'reserved word XYZ',
abc (lowercase) means 'syntactical variable abc',
: means 'or',
{·} means 'list of elements•.

To reach more readability of specifications we usen the
uppercase for terminal symbols instead of usual braclrnts. Fig.2 shows.
a part of Pascal language syntax definition.

program::=program_heading block.
program_heading::=

PROGRAM program_identifier file_identifier list
block::=decl_part stat_part

decl_part: :={decl_sect}
decl sect::=

lab_decl_part I cons_def_part : type_def __ part
var_decl_part : proc_and_func_decl __ part

stat_part::= comp_stat
comp_stat::=BEGIN stat{;stat} END

stat::= struc stat : simp stat
simp_stat: :;; goto_stat-1 assig_stat I proc __ stat I

inline stat : empty stat
struc stat::= rep stat-: comp stat I cond stat

- with_stat - -

Fig;2 Part of Pascal language syntax definition.

The notation of this type is known as Bacus normal form (BNF / 11 •
One needn approximately 80 BNP-formulae to describe the ALGOL syntax
and 150 ones for the PASCAL syntax. Another well-lmown form · to
define programming language syntax is syntax graphs, but; the
advantage of BNP-definition consists in that it has a structure very
similar to Prolog121 clauses. ·

The appropriate Prolog clause for the definition of the program
heading is shown in Fig.J, where P1 and P2 are the parameters·to be
find, Si and So are· input and rest strings of the pr-ogram text to
be parsing, fronttoken.is reserved word recognizing predicate, S2 and
SJ are temporary var-iables.

is_program_heading(program_heading1 (P1 ,P2) ,Si,So): -
fronttoken(Si,"PROGRAM",S2)

, is_pr•ogram_identifier (P,1 ,S2 ,SJ)
,is~file_identifier_list(P2,SJ,So).

Fig.3 Prolog clause for definition of program heading.

The BNP-converter developed transforms a·syntax speeifioation file
of the BNP-definition to the form similar Fig.J. Each alternative in
BNP gives one Prolog ·clause; (For_ parser--developing pm·pose in

2 ~-l
~, ., '

I

·1-
1
I,
\

_i

I'

iJt
;If
',\. ..

/ some realisitions of- Prolog there are . implemented . a ,\ so:...called
Definite Clause Gr~ar mechanisms121 .)

In this-way we convert 150-BNF-formulae into the parsing program
and use it to build a compiler of a Pascal-like language. Other
parts of the compiler are assembler code generator, a transputer,
code database, and a menu-driven integrated , environment
including a text-editor, debugging tools and a loader(Fig.1) ~ .

Fig~4 shows a simple program and a tree-like_ structure generated
from it. The syntax tree of the program is input data ·for the
assembler code ge?eratqr.

')

PROGRAM xxx(a,b,c);
VAR,x,y:integer;
BEGIN
x:=3+1; y:=9

END.

program1(program_heading1 (progr~_identifier1 ("x
xx"), file· identifier list2 (file identifier1 ("a")
, [file identifier1 ("b") ,file identifier1 ("c") J))

·,block1(decl_part1 ([decl_sect4(var_decl_part1 (va
r decl 1 (iden list1 ("x", ["Y")), type1 (simple type3
. (type_iden1 ("integer")))), [J))]) ;stat~art1 (comp
· stat1 (stat2(simp stat2(assig stat1 (var1 (entire
var1 (var iden1 ("x"))),expr1 (s1mple expr1 (term1(c

, ompl_factor1 (signed_factor1 (factor1(unsig_cons1 (
unsig numb2 (unsig_int1 (digi t_sequence1 (.' 3', [)))J,

)))),[J),[adding_operterm(adding_oper1,term1 (com
pl_factor1 (signed_factor1'(factor1 (unsig~cons1 (un

, .sig numb2 (unsig_int1 (digi t_sequence1 ('1 ', [l)))))
)),T]))J),[J)))),[stat2(simp_stat2(assig_stat1 (v
ar1 (entire var1 (var iden1 ("y"))),'expr1 (simple ex

pr1 (term1 (compl_factor1 (signed_factor1 (factor1(u
nsig_cons1 (unsig__numb2 (unsig_int1 (digi t_sequence

1('9',[l))))))),ll),[l),lJ))))l)))) _,

Fig.4. Simple program and its internal ,.representation
compiler after parsing.

,'

3. Hardware dependent language extension

on the

Now it' is possible to extend the' description of a language with
dedicated features of a data acquisition system and a transputer to.
reach a more efficiency of on-line programs and their readability as
well. A .transputer ·is ari extremely suitable chip for
reaF-

1
time application because of submic:r:osecond, interrupt latency,

real:._time kernel and high-speed communication facilities131 . The
system .. of. the transputer . machine c~de / 41 includes special
instructions to create, run, suspend or stop tasks and supports'·.
time-sharing between the taslrn. These features make it possible to
distribute system processes in accordance with their . latency

. and to provide a fast response to external events. Fig.5 shows.

0

3

.,.,/

task prioritization-and ·scheduling in the transputer.
Tasks in two lists differ in priorities: high and low_ones~ There

is no limitation on the number of tasks in.a list. Processor time is
shared between the tasks in the low priority list by the· 'time
quantization with a maximum quanta value equal to 1 millisecond.
We define the task in a similar way as a procedure with
following formula:

· program: : =: PROGRAM
· declaration section

TASK task {-;TASK task
statement section.

task : := block

TASK1 (PRI)
(EXECUTED)

HIGH PRIORITY LIST

TASK2(PRI) TASKJ(PRI)

}

TASK1
(INTERRUPTED)

LOW PRIORITY LIST
(TIMFSLICING_1 MS)

TASK2

. Fig.5. Hardware implemented multit~sldng in a transputer

Calling. a tasl<, we activate the scheduler and add the task vector
in the appropriate list of tasks.waiting· to get control.

The described method gives us an opportunity to
the description of the language such. features of
architecture as a special type of memory.that represents
cells of. CAMAC de_vices in the data acquisition system.

To read out data we define the following variable:
VAR.TDC :INTEGER CAMAC C=1 N=1 A=O F=O;

ADC :INTEGER CAMAC C=1 N=2 A=O F=O;
and place the code in the procedural part of the program:

EVENT[1 J :=TDC;
EVENT[2]:=ADC;

include· in
transputer

in this case
(

We find this way of programming more readable than,conventional:
CAMAC(C,N,A,F,D24,D16,Q)
CAMAC(C,N,A,F,D24,D16,Q)

Communication facilities are presented as a special type of device
or a file, so -the calling ·

. READ(LINKO,ARO);
. WRITE(LINK1 ,AR1) ;

means that the array of data ARO will be read via transputer link O
and the array AR1 will be written via transputer link 1.

0

-- 4

\

.j

l

\!

,i

~~I ·,
·:\ J

4. Example of application

We discuss the program development for a simple data··
acquisition system usi~ the described tools. The system151 consists
of a transputer module, IBM PC, a CAMAC parallel bra.IJ.ch and
intended to control a spectrometer during a -nuclear physics
experiment. The system must accept· data on primary and·
secondary beam parameters from different other data acquisition
computers and data from a polarized target control subsystem.
During the·experiment PC accepts data from , transducers · through
CAMAC and writes them into PC RAM. Then the transputer and PC
perform preliminary_data processing; PC transmits the· information
to a TV monitor and writes it on a magnetic tape unit. A number· of
tasks must be executed in the system, .we list only some. of them•:·

- to accept data· from an accelerator control system and· from
a beam transport control system ·

- to read data from.CAMAC modules of the experimental setup
.- to build an event-record and send it to the host computer
- to display periodically the data for an operator.

We describe each task as a task in transputer communicating via
links with external systems and via a shared memory with others.·
The task distribution for the system under consideration is shown
in Fig:6 .

EVENT READOUT(PRI)
(EXECUTED)

HIGH PRIORITY LIST

BEAM'CONTROL(PRI)
.. (WAITING)

PROCFSS_DATA(PRI)
(WAITING)

DISPLAY DATA

[

I (INTERRUPTED)

LOW PRIORITY LIST

I KEYBOARD_CONTROL
(WAITING)

Fig.6. Data acquisition system under multitask control.

The corresponding program structure
distribution is shown in fig.7.

5. Conclusion

implementing this task .

. ,,
We used Prolog to design system software for a data

acquisition system containing a transputer module, PC and a CAMAC
parallel branch. We used the hardware operation system kernel in a
transputer to provide effective process execution in the real-time
data acquisition system of the spectrometer.

The application of PROLOG gives an opportunity to add
purpose-designed operators to.standard high-level languages defined
in the BNF form •.

-.The described approach can afford us a possibility in
particular to program real-time systems in terms of a high level
conventional. language\ with no losses.-in system efficiency.

5

{-,--- Simple data acquisition program -}
program DAQ;

•·{---,Readout ·the CAMAC devices. ---},

{--

{--

task Event ; . ·
. var TDC integer CAMAC C=1 · N=1 A=O F=O

var EVENT array• [1 •. 10] of integer;
begin

EVENT[1) :=TDC; .·

end;
Communication with a remote beam control system--}
· , task Beam<control; . , · ·

' 'var BeainData :integer ABSOLUTE $1000;
'begin·'.

read (LINK1 , BeamDa ta) ·
e·nd· - ·

· task Pro;ess Data;
. begin - end;
task Display~Data;

begin .·end
task Kearbord Control

begin - end

. \

Start -- }
·begin

Event (pri); Beam_ Control (pri);
. Display Data; Kearbord Control

Process_Data(pri)

end: - ··· -

Fig.7. Program skeleton for the data.acquisition system.

References

1 J.J.Donovan, System Programming, McGraw-Hill,1972.
2 J.Malpas~ Prolog:A Relational Language and Its Applications.
· Prentice-Hall Inc., 1987. . -

. 3. T. Woeniger. Ah Introduction • to Transputers. DESY 90-024 ,March .
1990.

4 J.D.Nicoud,A.M.T,urell. The Transputer '11414 Instruction Set.
. IEEE MICRO, june 1 989. . .

5 E.V.Chernykh and S.A.Zaporozhets.JINR Preprint, P10-90-216
_(in russian).

. ~
Received by Publishing Department

on March s. 1992.

6

>·

/.,

:"_. .

