
COOOUlBHMR 
OObBAMHBHHOro 

MHCTMTYT8 
RABPHblX 

MccneAOB8HMM 

AYO Ha 

El0-92-352 

A. A. Glasov, I. V. Kisel, E. V. Konotopskaya, 
V. N. Neskoromnyi, G. A. Ososkov 

TRACK RECONSTRUCTION IN DISCRETE 

DETECTORS BY NEURAL NETWORKS 

1992 



1. Introduction 

In recent yea.rs, in the high energy physics the interest increases in the neu
ral networks (1, 2]. The basic a.pplica.tion. of neural networks is the search 
for local (or global) minima of given functions. These functions themselves 
are chosen in such a way tha.t their minima correspond either to some fixed 
patterns (pattern recognition problem) or to optimal value of some variable 
(optimization problem). The efficiency of a network is determined by neuron 
nonlinear response and by strong interconnection between neurons. A neural 
network allows a fast solution of a wide class of problems with the great com
binatorics complexity. Therefore, this gives much hope of solving the pattern 
recognition problem and constructing associative memory. Satisfactory solu
tion of the problem can be reached in time of several iterations of a network. 

In the present paper, on the basis offa.mous approaches of applying neural 
networks to the track finding problem [3] the investigations a.re ma.de according 
to the specific properties of such discrete detectors in high energy physics as 
multiwire proportional chambers. These investigations result in the modifica
tion of the so-called rotor model in a neural network [2]. The energy function 
of a network in this modification contains only one "cost" term without any 
"punishment" terms which a.re determined usually by the constrains of a prob
lem. This speeds up calculations considerably. The reduction of the energy 
function is done by the neuron selection with the help of simple geometrical 
and energetical criteria.. Besides, the cellular automata were applied to pre
liminary selection of data [4] that made it possible to create an initial network 
configuration with the energy closer to its global minimum. Thus, the obtained 
computational algorithm was tested on 104 real three-prong events obtained 
from the ARES-spectrometer [5]. The results are satisfactory including the 
noise robustness and good resolution of nearby going tracks. 

2. Neural networks 

Artificial neural networks came from biology bearing the following features of 
biological neural networks with their ability to solve complicated problems of 
recognition and optimization: 

• An element of the neural network is ca.lled neuron that can be connected 
with any other neurons of the network. All of them work in para.Ile!. 

• The synaptic strength (links) between neurons can vary in time. 
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Figure 1: Neural network struc
ture. 

a~(t) 

a,,.,ml 

Figure 2: A neuron as a ha.sic 
element of the network. 

• The response function of a given neuron depends on its input and has a. 
specific shape independently of the problem solved. 

The information carried by a network is contained in the numerical values 
-of these links. Data processing in such networks is performed in paralJel by a 
great number of elements, which leads to fast calculations and high reliability 
of results. Fig. l shows a neural network as a structure of discrete computa
tional elements - neurons, denoted by circles. In each moment every neuron 
u; (Fig. 2) has an activation level a;(t) which by the f~nction /; can be trans
formed to the output level o;(t). The latter via directed links transmits to 
other neurons with different weights Wij. These weights are the measure of 
the influence between two elements. The updating rule for _the given neuron is 
the following: all inputs of the neutron are summarized and by the application 
of some function F; the new neuron activation is defined. This leads to the 
iterative evolution of the system. 

Let us consider one of the simplest examples of the neural network, namely 
the Hopfield model of statistical mechanics (6]. It consists of N binary neurons, 
described by the discrete variables s; with two possible states (~sually {-1, 1} ). 
Synaptic strength between neurons is defined by symmetrical functions w,j = 
Wji, w;; = 0. In pattern recognition problems, for example, the relation 

M 
w·. ~ ~ ,:~m),:~m) ,, L.J .,, .,, 

m=l 

determines M patterns { e}m)}f:1 stored in our network1• 
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To define the updating rule F it is necessary to assign to i-th ·neuron an 
activation threshold B, s,) that the new value of the variable s; is calculated 
from 

s; = sign (" L W,jSj - n.) . 
i¢j 

When all B; = O, we. have Glauber dynamics at zero temperature, which can 
be reformulated in terms of the local fields 

with the updating rule 

N 

Hi= I: WijSj 

j=l 

s, = sign (H,). 

(l) 

(2) 

As has been shown by Hopfield [6], the final state corresponds to one of the 
local minima of the energy function 

1 
E(s) = -- LW;jS,sj, 

2 .. 
'J 

(3) 

which is equivalent to the energy function for N interacting Izing spins s;. 
The updating rule (1, 2) means that every spin s, is to be oriented along the 
local field H, that decreases the toial energy (3). 

From the point of view of thermodynamics this model is similar to the 
spin-glass model, in which the couplings between spins s, are random. It 
is well-known [7] that the energy function of spin-glass in the configuration 
space has a lot of minima separated by very high and narrow potential barriers. 
This fact makes it difficult to reach the global minimum of the energy function 
E(s), which is very essential for optimization problems. This obstacle can be 
avoided by the invention of some "temperature" Tin the dynamics (1, 2) that 
permits subbarrier configurations and tunnelling to the global minimum. The 
original spins s; are substituted by their thermal averages v; = (s,)T, the latter 
being determined only by the average value of the local field U; = {H;)r. Thus, 
modified dynamics is described by the mean-field-theory (MFT) new updating 
equation: 

v; = ta.nh(U./T) = tanh (t w;;vj/T) . 
J=l 

(4) 

1 Here .s, = o, = a,, f(a;) = 1 . 
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. . 
A nontrivial solution of eq.( 4) is possible only if T < Tc ~ 1 for w;j ~ 1. 

The question arises a.bout the possibility of tunnelling with such low tem
peratures. At the same time, a. sufficiently high temperature ca.n shift the 
position of global minimum, so that it is necessary to lower the temperature. 
Fortunately, the penetration into the potential barrier is proportional to the 
temperature when the latter is low enough, and the width of the barrier has 
the order of N-1 • In the survey (8], the result independence of the tempera.tu re 
in the region T ~ 1 is confirmed by numerical experiments . 

3. Conventional track finding approach 

Another example of neural network applications, more typical nf bigb energy 
physics, is the problem of track finding. The results of measurements in a 
discrete track detector are the set of N points placed on n coordinate planes. 
Our task is to draw the minimum amount of smooth curves which connect 
points on different planes satisfied given restrictions. Let us consider the 2-
dimensional case for the sake of simplicity. The possible restrictions might 
be: all curves converge at· one point, the vertex; there a.re no bifurcations of 
tracks; all tracks must begin on the first plane and finish on the la.'lt one. 

The conventional approaeh (see, e.g. [21) introduces binary neurons Sij• If 
points i and j are connected by a track, than s,; = l, and Sij = 0 otherwise. 
The energy function consists of two terms: 

E = Jf cc•t) + Jf ccrutr) 
1 (5) 

where the first term guarantees the closeness of directions for adjacent seg
ments: 

Jfcc•t) = _.!, L Ojk cosm 0,;l. (6) 
2 ijkl r,; r;c 

The notation for segments r,; and angles 0,jl is clear from Fig. 3, m is odd 
integer. The constraint term in (5) consists of two contributions: 

E(ccrutr) = -~ [1:s,kSk/ + L s,;s;c] +? [1:s,; -Nl 
2 

(7) 
2 'k 'l ., .. • J ,, 

Here, the. first term forbids bifurcating tracks, the second one enforces the 
closeness of N a.nd the number of binary neurons set to 1, a· and P a.re. t.he 
balancing weight multipliers.: · 

. . 
The conventional MFT-dynamics for the energy·function (5) allows one to 

obtain' the steady solution in 40-5.0 iterations. Despite the possibility of the 
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Figure 3: Definition of segment 
lengths r;; and angles 0;jl be
tween segments. 

Figure .4: Rotors s, and line seg
ment vectors r..; [2). 

parallel implementation, the convergence of this scheme is so slow that the 
total number of computer operations is still larger than for the old tedious 
histogra.mming approach [2). 

It was, probably, a. reason for C. Peterson to propose a. new ''rott,r model" 
approach [2]. A rotor s,, i.e. a unit vector, is put at each measured point. As 
it can be seen from Fig,4, one can achieve in some vicinity an a.ccorda.nce of 
a track, its segments (chords) 'rij connecting two adjacent points, and corre
sponding rotors by the following energy function: 

1 ""' l _ _ (l! ""' l (- - )2 E=-2~,-,_,mS,Sj- 2 ~,-.. ,m Sj1'ij , 
ij r,; ij r,; 

Here, the first term forces neighboring rotors to be .close to ea.ch other. 
second term is in charge of the same between rotors and track segments. 

The MFT-dynamics is as follows: 

-. - '11. I1(lll;I/T) v, - ---:;-- ...,.. 1 

IJid lo(IJid/T) 
where, as before, ii; = (Si)T. 

(8) 

The 

(9) 

Strictly speaking, MFT can be applied only .to the long range interacting 
systems [9). Despite that, applying of the MFT allows one to obtain an appro
priate solution for some choice of Tc and a [8], but th~ number of iterations is 
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still large enough. In our opinion, the reason of that is the random choice of 
the initial distribution of rotors ;.. Another disadvantage of this model is its 
tendency to straight tracks even if they have large curvatures. 

4. Modified rotor track finding 

The aim of this pa.per is the application of the neural networks to the track 
reconstruction in such discrete detectors as multiwire proportional chambers 
(MWPC) of experimental setup ARES. Tracks in these MWPCs are the cir
cular a.res (maximum radius is about 60 cm). Explored experimental da.ta 
consist of three-prong events only. Together with these simplifying fea.tures 
there exists enough noise counts which were not considered elsewhere before. 
Moreover, we have no such a parallel computing power as CRAY-computer. 
Therefore, some faster global algorithm is more preferable for us. Carrying out 
this, we have to take into account the following specific features of MWPC. At 
each experimental point there is an information not only a.bout its coordinate, 
but also a.bout the angle with which a particle intersects the chamber. Spec
trometer ARES MWPCs are cylindrical but our approach is valid for both 
cylindrical and parallel chambers. Considering the projections of tracks onto 
the plane perpendicular to the magnetic field we can treat all tracks a.s arcs 
of circles. 

Each chamber can be imaginary splitted into cells surrounding signal wi
res [4, 10). When a charged particle hits the cell, the wire inside produces a 
signal. H the track crosses few adjacent cells in the chamber, then all they 
work. Such a. cell group forms a. cluster. H one knows that the cluster in a 
chamber is on, it means for straight tracks that one can detect a. possible range 
of track slopes for this cluster. Physical constraints on tracks (e.g., it should 
begin in the target and leave the outer plane) also determine the region of the 
plane where the track may lie (Fig. 5). 

This information a.bout the possible track direction can be naturally real
ized in the rotor model. However, it should be modified to surmount its both 
disadvantages previously noted: locality and noise sensitivity due to arbitrary 
initial rotor distribution. 

We propose below a "tensor" model of the spin interaction which is free 
from these disadvantages and can give a. global algorithm. Let us choose the 
two-spin interaction energy in such a. wa.y that the neural network has to place 
vectors v; = (si)T tangentially to track and effectively diminish ii; for all j 
that lie apart from the true trajectory. Let two points A, and A; lie on the 
circle (see Fig. 6). Then, tangential vectors are connected by the expression 
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Figure 5: Schema.tic view of 
MPWC fragment. 
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Pi = -P;, where /3;, /3; are the angles between these vectors and the chord 
r,;. The energy function for the pair (i,j) can be expressed in a much simpler 
form than each component of (5): 

-E,; = -s,s'; I 

where ;, ; is the mirror reflection of s; relative to r,;, has a. minimum for all 
points placed at one track. Analytically, vector ;,; can be obtained by the 
following transformation: 

.. ( cos 2,,,,,. sin 2'P,; ) s"'· - w· -s-· ,. - ..,.. • J - •J ,. 
s 1 - sin 2tp;; - cos 2'P,; (10) 

Here 'Pij is the angle between the chord r,; a.nd the coordinate a.xis Ox. The 
globa.lity of calculating the total energy function is due to the possibility of 
summarizing all pair energies E;; instead of the nearest points only 

1~ ..... 
E = -- LJ s,w,;s; 

2 .. '., 
without any additional constraint terms like in (7, 8). 

(11) 

MFT-dyna.mics appears here more naturally than before because of the 
long ra.nge interaction. The local field Hi introduced in (1) is crea.ted by 
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Figure 6: Spin interaction for circular tracks. 

all other spins. The equation of dynaruics (9) is common for the rotor model 
approach with our energy function (11). This equation minimizes energy func

tion 
E =Es.Iii-. min. U2) 

For the better convergency of the MFT-dynamics due to its global charac
ter, it is necessary to invent the special robust-type restrictions that are not 
present explicitly in the conventional MFT-algorithm. During the calculations 
of mean field H, in the sum (1) neurons lying "too fa.r" were not included. The 
"local" radius of the track R,.j for any pair (i,j) can be.calculated. Then, two 
para.meters were calculated: the average curvature K. and the mean square 
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deviation !lR of R.r Doth parameters were controlled to satisfy the cut-off 
criteria.. In pa.rt~cular, for the ARES setup final !lR should be less than 1 cm. 
An additional restriction was the prohibition for the neurons from the same 
chamber to hav.e the mutual interaction. Neurons from different chambers 
were interacting only one by such one that have maximum contribution to 
minimizing of the energy function ( 11 ). 

Besides the variation of the angle /J we ha.ve one more degree of freedom, 
namely the coordinate of a. spin inside the central cell of the cluster. To 
control this para.meter the simplest dynamics was chosen: MFT-dyna.mics 
with zero temperature2

• According to this dynamics, the coordinate of a spin 
was assigned to the point where the local field H, is maximum (if this point 
will appear outside the central cell, it is moved to its nearest outer border). 

The final algorithm reads as follows: 

m-th iteration: For ea.ch neuron ii, we calculate, from the interaction with 
all other neurons, the niean field JJ!m), the average curvature 1,,(m) and 
flR(m) with all above restrictions to kill "far" neurons. 

(m + 1)-th iteration: Renew the values of ti, according to the rule 

-(m) -(m) 
:!\'.m+l) ll, Ji(IJI, 1/T) 
"• = IHJm.)I Io(IJ/t•>I/T)' 

a.nd the coordinate of a. neuron inside the center cluster cell. 

To define the stopping rule, the explorations were made to calcula.te the 
distribution of the iteration number for our neural network. From Fig. 7 it 
is clear that a.fter 5-th iteration we ha.ve, in fact, the neuron grouping along 
different tracks. So, in our algorithm we stop the general loop for all points 
after the 5-th iteration and continue looping with neurons interacting only 
inside the sa.me track to clean tracks from noisy counts due to c5-electrons 
until !lR < 1 cm. 

5 The results and discussion 

Neural network constructed according to the a.hove algorithm was realized on 
IBM PC/ AT-386 and .tested on the set of 104 .real three-prong events from 

·, ARES;spectrometer. Da.ta. were obtained in experiments· during the search for 

,It is possible due to the small ra.nge of the parameter, therefore only one mini~um can 
exist .. : . . 
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Figure 7: The distribution of the 
number of iterations. 

the forbidden decay µ+---+ e+e+e- (11) and the study of the rare decay ?T+---+ 
e+vee+e- [12). Only 10 chambers were used in this experiments. That means 
that every track contains on the average 10 experimental points (clusters). 

Fig. 8 shows one typical example of initial configurations of the neural 
network, and the final result of its evolution. It is necessary to point out that 
the construction of the proper initial rotor configuration was possible due to 
applying the cellular automaton [4] on the stage of preliminary processing. 
This automaton removed almost all noisy points (denoted by crosses) and 
fulfi.lled grouping of experimental points according to different tracks3

• As one 
can see, in the case of nearby going tracks, our neural network performed.their 

good resolution. 
Fig. 9 shows the distribution of the initial number of points in an event 

(dotted line) and the final distribution after the neural network evolution. 
Since ea.ch track consists of not more than 10 points, it easy to note that after 
the full noise reduction we found one-track events (less than 10 points), two
track (10 - 20 points), three-track (20 - 30) and even four-track (more than 
30 points) events. 

The distribution of the number of points on the track is shown on Fig. 10. 
Dotted line shows the distribution of rejected points in a group recognized as 
a track and filled line shows the number of the remaining points. One can see 
that the average point number per track is 8 - 9 points. 

In conclusion, we can say that the global character of the applied algo-

3However, in this analysis, having a goal to study the reliability of our neural network, 
we did not use these previous results of neuron grouping. 
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Figure 8: An example of the initial and final state of the neural network. 

rithm together with certain robust restrictions made it possible to achieve the 
fa.st convergency of the constructed neural network and good track resolution. 
Moreover, this algorithm can work in the case of many-prong events without 
any special complications. We a.re convinced that our algorithm can also be 
applied to the case of an arbitrary magnetic field configuration. Only expres
sion (10) should be modified to satisfy the equation of the particle motion in 
this field. 
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rna3oe A.A. 11 np. El0-9i:.352 

BoccTaH0BneH11e TpeKOB B tl11CKpeTH~X neTeKTopax 
np11 noMOUjl1 Her,poHHblX ceTer, 

Ha 6a3e np11MeHeH11~ Her,poHH~x ceTer, K pacno3HaBaH11~ TpeKOB npoeetteH 
yYeT cne411¢11K11 TaKl1X tll1CKpeTH~X tteTeKTOPOB, KaK MHoronpoeonoYH~e nponop-
4110HanbH~e KaMep~. np11BOtlRUjl1r, K MOt111¢11Ka41111 TaK Ha3~BaeMor, pOTOpHor, MO
nen11 Her,poHHOr, CeTl1. 3HepreTl14eCKaR ¢YHK411R cef11 B 3Tor, MOt111¢11Ka411~ co
nepffll1T TOnbKO Otll1H CTOl1MOCTHOr, YneH, 4TO 3Ha411TenbHO YCKOpReT B~411CneHl1R.' 
06ecneY11eaeTcR 3TO BBet1eH11eM ceneK41111. Her,poHOB c noMOlllb~ npocT~x reoMeT
p114ecK11x 11 3HepreT11YecK11x Kp11Tep11ee. KpoMe Toro, .np11MeHeH11e KneTOYHoro 
aeToMaTa ttnR npeneap11TenbHoro oT6opa naHH~x no3eon11no C03tlaTb HaYanbHY~ 
KOH¢11rypa411~ cern C 3Heprner,, 6nl13Kor, K,CBOeMy rno6anbHOMY Ml1Hl1MyMy. 
Anropl1TM 6bU1 npoTeCTl1pOBaH Ha 10 T~C. peanbH~X TpeKOB~X co6~T11r,, nony-· 

,) ,4eHH~X Ha cneKTPOMeTpe APEC, 11 noKaJan xopow11e pe3ynbTaT~, B TOM 411Cne 
YCTOr,411BOCTb K wyMaM 11 Hatt~fflHOe paJpeweH11e 6nl13KO nefflalljl1X TpeKOB. 

Pa6oTa B~nonHeHa B fla6opaTop1111 B~411Cn11TenbHor,·TeXHl1Kl1 11._aBTOMaT11Ja41111 
OHRH. . . 

Coo6metttte 06i.eJ1RtteHHoro HHCTHTYTa ·suepttblx HC~1c.1oeatt11il. 1ly6tta 1992 
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tigations result in the modification of the so-called rotor model in a 
neural network. The energy function of a network in this modification 
contains only one "cost" term. This speeds up calculations considerably. 
The reduction of the energy function is do~e by the neuron selection 
with the help of simple geometrical and energetical criteria. Besides, 
the cellular automata were applied to preliminary selection of data that 
made .it possible to create an initial network configuration with the 
energy closer to its global minimum. The·algorithm was tested on 10" real 
three-prong events obtained from the ARES~spectrometer. The results are 
satisfactory including the noise robustness and good resolution of nearby 
going tracks. 
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