


1. Introduction

In recent years, in the high energy physics the intercst increases in the neu-
ral networks {1, 2]. The basic application. of neural networks is the search
for local (or global) minima of given functions. These functions themselves
are chosen in such a way that their minima correspond either to some fixed
patterns (pattern recognition problem) or to optimal value of some variable
(optimization problem). The efficiency of a network is determined by newron
nonlinear response and by sirong interconnection between neurons. A neural
network allows a fast solution of a wide class of problems with the great com-
binatorics complexity. Therefore, this gives much hope of solving the pattern
recognition problem and constructing associative memory. Satisfactory solu-
tion of the problem can be reached in time of several iterations of a network.

In the present paper, on the basis of famous approaches of applying neural
networks to the track finding problem [3] the investigations are made according
to the specific properties of such discrete detectors in high energy physics as
multiwire proportional chambers. These investigations result in the modifica-
tion of the so-called rotor model in a neural network [2]. The energy function
of a network in this modification contains only one “cost” term without any
“punishment” terms which are determined usually by the constirains of a prob-
lem. This speeds up calculations considerably. The reduction of the energy
function is done by the neuron selection with the help of simple geometrical
and energetical criteria. Besides, the cellular automata were applied to pre-
liminary selection of data [4] that made it possible to create an initial network
configuration with the energy closer to its global minimum. Thus, the obtained
computational algorithm was tested on 10* real three-prong events obtained
from the ARES-spectrometer [5]. The results are satisfactory including the
noise robustness and good resolution of nearby going tracks.

2. Neural networks

Artificial neural networks came from biology bearing the following features of
biological neural networks with their ability to solve complicated problems of
recognition and optimization:

o An element of the neural network is called neuzron that can be connected
with any other neurons of the network. All of them work in parallel.

o The synaptic strength (links) between neurons can vary in time.
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Figure 1: Neural network struc- Figure 2: A neuron as a basic
ture. element of the network.

e The response function of a given neuron depends on its input and has-a
specific shape independently of the problem solved. :

The information carried by a network is contained in the numerical values
-of these links. Data processing in such networks is performed in parallel by a
great number of elements, which leads to fast calculations and high reliability
of results. Fig. 1 shows a neural network as a structure of discrete computa-
tional elements — neurons, denoted by circles. In each moment every neuron
u; (Fig. 2) has an activation level a;(t) which by the Tunction f; can be trans-
formed to the output level o(t). The latter via directed links transmits to
other neurons with different weights w;;. These weights are the measure of
the influence between two clements. The updating rule for the given neuron is
the following: all inputs of the neutron are summarized and by the application
of some function F; the new neuron activation is defined. This lcads to the
~ iterative evolution of the system. i
" Let us consider one of the simplest examples of the neural network, namely
the Hopfield model of statistical mechanics [6]. It consists of N binary neurons,
described by the discrete variables s; with two possible states (ilsually {-1,1}).
Synaptic strength between neurons is defined by symmetrical functions wi; =
wji, wii = 0. In pattern recognition problems, for example, the relation

‘ M
Wwij ~ Z é.("‘)é,(-",‘)‘
m=1

determivnes M patterns {é"(m)}fil stored in our network?.
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To define the updating rale F it is necessary to assign to i-th neuron an
activation threshold B, so that the new value of the vaniable s; is ca.]cub_lated
from

3; = sign E wy;S; — B
i#]

When all B; = 0, we have Glauber dynamics at zeT0 temperature, which can

-~ be reformulated in terms of the local fields

N
H; = Zw;jsj T (1)
J=1
with the llp(.]a,tillg rule :
$¢ = sign (H‘) : (2)

As has been shown by Hopfield [6], the final state corresponds to one of the
local minima of the energy function '

1
E(s)= —-EZw;]’s;sJ-, 3)
iy

which is equivalent to the energy function for N interacting Izing spins s;.
The updating rule (1, 2) means that every spin s; is to be oriented along the
local field H; that decreases the toial energy (3).

From the point of view of thermodynamics this model is similar to the
spin-glass model, in which the couplings between spins s; are random. It
is well-known [7] that the energy function of spin-glass in the configuration
space has a lot of minima separated by very high and narrow potential barriers.
This fact makes it difficult to reach the global minimum of the energy function
E(s), which is very essential for optimization problems. This obstacle can be
avoided by the invention of some “temperature” T in the dynamics (1, 2) that
permits subbarrier configurations and tunnelling to the global minimum. The
original spins s; are substituted by their thermal averages v; = (s;)r, the latter

- being determined only by the average value of the local field U; = (H;)r. Thus,

modified dynamics is described by the mean-field-theory (MFT) new updating
equation:

N .
v; = tanh(U;/T) = tanh Zw;juj/T . (4)
Jj=1 :

'Here s; = 0; =ai, f(a:)=1.
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A nontrivial solution of eq.(4) is possible only if T < T, = 1 for w;; ~ 1.
The question arises about the possibility of tunnelling with such low tem-
peratures. At the same time, a sufficiently high temperature can shift the
position of global minimum, so that it is necessary to lower the temperature.
Fortunately, the penetration into the potential barrier is proportional to the
temperature when the latter is low enough, and the width of the barrier has
the order of N1, In the survey [8], the result independence of the temperature
in the region T ~ 1 is confirmed by numerical experiments.

3. Conventional track finding approach

Another example of neunral network applications, more typical of high energy
physics, is the problem of track finding. The results of measurcments in a
discrete track detector are the set of N points placed on n coordinate planes.
Our task is to draw the minimum amount of smooth curves which connect
points on different planes satisfied given restrictions. Let us consider the 2-
dimensional case for the sake of simplicity. The possible restrictions might
be: all curves converge at-one point, the vertex; there are no bifurcations of
tracks; all tracks mnst begin on the first plane and finish on the last one.
. The conventional approach (see, e.g. [2]) introduces binary neurons s;;. H
points ¢ and j are connected by a track, than s;; = 1, and 5;; = 0 otherwise.
The energy function consists of two terms:

E= E»(coat) + E(wn:tr)’ ‘ (5)

where the first term guarantees the closeness of directions for adjacent seg-
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The notation for segments r;; and angles 6;j; is clear from Fig. 3, m is odd
integer. The constraint term in (5) consists of two contributions:
2
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Here, the first term forbids bifurcating tracks, the second one enforces the

closeness of N and the number of bmary neurons set-to 1, d and ﬂ are. the__ -

bala.ncmg welght multipliers.:

The conventional MFT-dynamics for the energy functlon (5) allows one to

obtain the steady solution in 40-50 1tera.t10ns Despite the possibility of the

Figure 3: Definition of ségment
lengths r;; and -angles 6;;; be-
tween segments.

Figure 4: Rotors 5; and line seg-
ment vectors 7i; [2],

parallel implementation, the convergence of this scheme is so slow that the
total number of computer operations is still larger than for the old tedious
histogramming approach [2]. ,

It was, probably, a reason for C. Peterson to propose a new “rotor model”
approach [2]. A rotor 5, i.e. a unit vector, is put at each measured point. As
it can be seen from Fig.4, one can achieve in some vicinity an accordance of
a track, its segments (chords) 7;; connecting two adjacent points, and corre-
spondmg rotors by the following energy function: ‘

Pr. S
E‘“"_Zh- T Z[-' lm (57'1 (8)

Here, the first term forces nelghbonng rotors to be close to cach other. The
second term is in charge of the same between rotors and track segments
The MFT-dynamics is as follows:
_ M n(#yT) ©)
v , || L(|H/T)’

where, as before, 7; = {5;)r.
. Strictly speaking, MFT can be applied only to the long ra.nge mtemctmg
systems [9). Despite that, applying of the MFT allows one to obtain an appro-
priate solution for some choice of T:. and « [8], but the number of iterations is



still large enough. In our opinion, the reason of that is the random choice of
the initial distnbution of rotors 5;. Another disadvantage of this model is ifs
tendency to straight tracks even if they have large curvatures.

4. Modified rotor track finding

The aim of this paper is the application of the neural networks to the track
reconstruction in such discrete detectors as multiwire proportional chambers
(MWPC) of experimental setup ARES. Tracks in these MWPCs are the cir-
cular arcs (maximum radius is about 60 cm). Explored experimental data
consist of three-prong events only. Together with these simplifying features
there exists enough noise counts which were not considered elsewhere before.
Moreover, we have no such a parallel computing power as CRAY-computer.
Therefore, some faster global algorithm is more preferable for us. Carrying out
this, we have to take into account the following specific features of MWPC. At
each experimental point there is an information not only about its coordinate,
but also about the angle with which a particle intersects the chamber. Spec-
trometer ARES MWPCs are cylindrical but our approach is valid for both
cylindrical and parallel chambers. Considering the projections of tracks onto
the plane perpendicular to the magnetic field we can treat all tracks as arcs
of circles. ‘

Each chamber can be imaginary splitted into cells surrounding signal wi-
res [4, 10]. When a charged particle hits the cell, the wire inside produces a
signal. If the track crosses few adjacent cells in the chamber, then all they
work. Such a cell group forms a cluster. If one knows that.the cluster in a
chamber is on, it means for straight tracks that one can detect a possible range
of track slopes for this cluster. Physical constraints on tracks (e.g., it should
begin in the target and leave the outer plane) also determine the region of the
plane where the track may lie (Fig. 5).

This information about the possible track direction can be naturally real-
ized in the rotor model. However, it should be modified to surmount its both
disadvantages previously noted: locality and noise sensitivity due to arbitrary
initial rotor distribution.

We propose below a “tensor” model of the spin interaction which is free
from these disadvantages and can give a global algorithm. Let us choose the
two-spin interaction energy in such a way that the neural network has to place
vectors ¥; = (s;)7 tangentially to track and effectively diminish 7; for all 5
that lie apart from the true trajectory. Let two points A; and A; lie on the

circle (see Fig. 6). Then{taﬁngenﬁal vectors aré connected by the expression
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Bi = —P;, where f;, f; are the angles between these vectors and the chord
rij. The energy function for the pair (i, j) can be expressed in a much simpler
form than each component of (5):

R
Eyj = —sis'4,
-
where s'; is the mirror reflection of §; relative to r;;, has a minimum for ail

points placed at one track. Analytically, vector s-;j can be obtained by the
following transformation:

5. [ cos2py  sin2¢i5 \ o _ o
3, (sinzw e ) 5 = wisd. (10)

Here p;; is the angle between the chord r;; and the coordinate axis Oz. The
globality of calculating the total energy function is due to the possibility of
summarizing all pair energies F;; instead of the nearest points only

1 - -
E = -3 %: Fiw;i;8; (11)

without any additional constraint terms like in (7, 8).
MFT-dynamics appears here more na_t;umlly than before because of the
long range interaction. The local field H; introduced in (1) is created by
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Figure 6: Spin interaction for circular tracks.

all other spins. The equation of dynamics (9) is common for the rotor model
approach with our energy function (11). This equation minimizes encrgy func-
tion - . L ‘
E= Z 5',;]_1“' — min. o ‘ 112)
1

. For the better convergency of the MFT-dynamics due to its global charac-
ter, it is necessary to invent the special robust-type restrictions that are not
present explicitly in the conventional MFT-algorithm. During the calculations
of mean field H; in the sum (1) neurons lying-“too far” were not included. The
“Jocal” radius of the track R;; for any pair (,7) can be.calculated. Then, two
parameters were calculated:  the average curvature x and. the mean square

deviation AR of R;;. Both parameters were controlled to satisfy the cat-off
criteria. In particular, for the ARES sctup final AR should be less than 1 cm.
An additional restriction was the prohibition for the neurons from the same
chamber to have the mutual interaction. Neurons from different chambers
were interacting only one by such one that have maximum contribution to
minimizing of the energy function (11).

Besides the variation of the angle § we have one more degree of freedom,
namely the coordinate of a spin inside the central cell of the cluster. To
control this parameter the simplest dynamics was chosen: MFT-dynamics
with zero temperature?. According to this dynamics, the coordinate of a spin
was assigned to the point where the local field H; is maximum (if this point
will appear ountside the central cell, it is moved to iis nearest outer border).

The final algorithm reads as follows:

m-th iteration: For each neuron 7; we calculate, from the interaction with

 all other neurons, the niean field Hfm), the average curvature (™) and
AR™) with all above restrictions to kill “far” neurons.

(m + 1)-th iteration: Renew the values of #; according to the rule

Lmary _ AT LQA™)YT)
' ™| LY T)

and the coordinate of a neuron inside the center cluster cell.

To define the stopping rule, the explorations were made to calculate the
distribution of the iteration number for our neural network. From Fig. 7 it
is clear that after 5-th iteration we have, in fact, the neuron grouping along
different tracks. So, in our algorithm we stop the general loop for all points
after the 5-th iteration and continue looping with neurons interacting only
inside the same track to clean tracks from noisy counts due to $-electrons
until AR < 1cm.

5 The results and discussion

Neural network constructed according to the above algorithm was realized on
IBM PC/AT-386 and tested on the set of 10* real three-prong events from

* ARES-spectrometer. Data were obtained in experiments during the search for

1t is possible due to the small ra.ngé of the'pua.meter, therefore only one minimum can

exist. .|~
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the forbidden decay p* — etete™ [11] and the study of the rare decay =+ —
etr.ete™ [12). Only 10 chambers were used in this experiments. That means
that every track contains on the average 10 experimental points (clusters).

Fig. 8 shows one typical example of initial configurations of the neural
network, and the final result of its evolution. It is necessary to point out that
the construction of the proper initial rotor configuration was possible due to
applying the cellular antomaton {4] on the stage of preliminary processing.
This automaton removed almost all noisy points (denotéd by crosses) and
fulfilled grouping of experimental points according to different tracks®. As one
can see, in the case of nearby going tracks, our neural network performed.their
good resolution. ,

Fig. 9 shows the distnibution of the initial number of points in an event
(dotted line) and the final distribution after the neural network evolution.
Since each track consists of not more than 10 points, it easy to note that after
the full noise reduction we found one-track events (less than 10 points), two-
track (10 — 20 points), three-track (20 ~ 30) and even four-track (more than
30 points) events. ’

The distribution of the number of points on the track is shown on Fig. 10.
Dotted line shows the distribution of rejected points in a group recognized as
a track and filled line shows the number of the remaining points. One can see
that the average point number per track is 8 — 9 points. :

In conclusion, we can say that the global character of the applied algo-

3However, in this analysis, having a goal Lo study the reliability of our neural netwaork,
we did not use these previous results of neuron grouping.
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Figure 8: An example of the initial and final state of the neural network.

rithm together with certain robust restrictions made it possible to achieve the
fast convergency of the constructed neural network and good track resolution.
Moreover, this algorithm can work in the case of many-prong events without
any special complications. We are convinced that our algorithm can also be
applied to the case of an arbitrary magnetic field configuration. Only expres-

sion (10) should be modified to satisfy the equation of the particle motion in
this field. :
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_BOCCTaHOBneHMe Tpexos B AMCerTHHX AETEKTOan

NpU_ MOMOWN  HeMPOHHLIX CeTedl

Ha 633& anMeHeHMR HeMpOHHHX CeTeM K paCﬂOJHaBaHHw TpeKOB npoBegeH

.. YYeT cNeunduii Takux ANCKPeTHbIX ‘AETEKTOPOB, Kak MHOIOMpPOBOMOMHLE Nponop-

UMOHarnbHbie  KaMeph!, NPUBOAAWMA K MOANGMKAUWW TaK. HA3HBAeMOW POTOPHON Mo=
Aenu HelipoHHOW ceTwn. 3HepreTuveckan GyHKUMA CeTv B 3ToiA Moavdukaiwu co-

ACPHAT TONBKO OAMH CTOUMOCTHOW YNeH, YTO 3HAUMTENbLHO 'YCKOPAET. BHYUCTeHWA.
- 0BecneunBaeTCs 370 BBEAEHUEM CeNeKUUN HelpOHOB C - NOMOWbLK NPOCTHX FeoMeT--
pVYeCKUX U 3HepreTUdecKUX KpuTepues. KpoMe TOro, NPUMEHEHWe KNeTOYHOIo

aBTOMaTa ANA NPeABapUTenbHOro 0TEOpA AaHHMLIX NO3BONWNO CO3AaTh. HauanbHyw -

KoHdUrypauwo cetu ¢ aHeprved, Gnuakod K csoemy rnobanbHOMy MUHVMYMY .

AnropuTM Gun NpoTecTWpoBaH Ha 10 ThiC. peanbHux TpeKosbix cobuiTnid, nony-: -
(MEHHBIX Ha - ‘cnekTpomeTpe:APEC, n nokasan Xopowwue pesyanaTu, B TOM uucne .

yCTOMHMBOCTb K wyMaM N HajemHoe paapemeHMe GHMSKO nemamux TPEKOB

onan.
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