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1 Introduction 

The vertex search is a common and important problem in the analysis 
of experimental data obtained in high energy physics. the difficulty of 
this problem increases when the region of the vertex is distant from the 
detector, for example in the target. The fact of the vertix p_resence may 
be a criterion for rejecting accidental' events. In these cases it is desirable 
to use a fast algorithm. The vertex search in plane is the simplest initi~l 
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approximation. · ·· 
Usually the least-square method (LSQ) is applied f9r this 'purpose. 

But in the case of arc tracks the problem beconies non-linear and for 
•I 

its solution it is necessary to use cumbersome iterati1nal algorithms, 
like the Gauss-Newton method, This in turn leads to 1great computer 
time expenditure and a necessity of a good initial appr9ximation arises 
especially for a big target. As a result, the search procedure becomes ,too 
difficult, which does not correspond to the simplicity of tqe problem. And 
very often, the rejection of the event is decided. It majkes expenditure 
completely senseless. This situation appears,. for exarrtple, during. the 
search for rare or forbidden decays, when events are ac~i~ental in most 
cases. 

, ·• . , I , .• • , 

In this article the fast vertex search method is suggested for plane 
geometry. Its essence is using the functional different from the LSQ. The 
search for the vertex reduces to comparison of values of ~he functional in 
a few easy-to-find points. This method also provides.a simple pro_cedure 
for 'pulling' the vertex to the target. The method was ex~mined on t.hree~ 
track events, obtained in the experiment on the search for the forbidden 
decayµ -+ 3e on the ARE.S f~.cility in JINR, Dubna [1, p, 3]. 

I 

2 Problem formulation 

I 
The problem of the vertex search consists in minimizing ~ome functional. 
The LSQ functional is applied for the detectors with Gau~sian distributed 
errors of measurements, like bubble or streamer chambeiis. It has a sense 
of a mean-square _distance from a point to the tracks. For arc tracks the 



I 

I 
LSQ functional has a form : 
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S2(x,y) = I) J(x - ai)2 + (y - bi)2 - Ri) 2 -+ min, (1) 
i==l 

here ( ai, b;) are coordinates of centers, Ri - radii of the tracks. 
But many detectors, like multiwire proportional chambers, have a i 

discrete structure and here the errors of measurements are not Gaussian , (\ 
distributed. In this case there is no reason for using the LSQ func~ 1 j 
tional [4]. The more suitable functional is the one equal to the longest ~ 
distance from a point to the tracks: 

.C(x,y) = m:ixlJ(x - a;)2 + (y-b;)2-R;1. (2) 

Functional .C is better to express the discrete structure of the ddector 
and to take into account the effect of multiple scattering . 

Thus, the vertex search problem is formulated as follows: 

.C(x, y) = mfx I J(x - a;)2 + (y - bi)2 - R;I -+min. (3) 

3 Solution of the problem 

As a consequence of this choice of the functional the vertex search be­
comes a simple and clear geometric problem. Let's take three random 
circles on a plane and any point with coordinates (x,y) (fig. 1). Denote: 
01, 02, 03 - centers of these circles, /1, /2, /3 - distances from point A 
to the corresponding circle. 

Later on, according to the form of the functional, we will look for the 
longest distance. Let's /3 > l2 and /3 > l1 . Then moving point A along 
the straight iine (A03 ) to point 0 3 , one can decrease [3 until it becomes 
equal-to the distance to any other circle, for example, /2 • 

If [3 = l2 > l1, then moving along the curve, given by f'quation: 

/3 = l2, 

one can further decrease .C. The minimum is achieved if: 

either 

or 

[3 = l2 = 1nin, 

l1 = l2 = h. 

2 

[3, l2 > l1, 

(4) 

(.5) 
(6) 

Figure 1: Basic notation. 

Equation ( 4) defines a set of points that have the same distances from 
two circles. Its solutions ar~: 1 

1. A braiich of a hyperbola for separate (fig. 2a) or crossing (fig. 2b) 
circles. · · -

2. An ellipsis for crossing ( fig. 2b) or enclosed ( fig. 2c) circles. 

3. A segment and a ray for touching circles. 

4. A straight line for equal. but not coinciding circles. 

5. Any point for coinciding circles. 

Consider the first condition of the minimum of the functional .C -
equation (5). If the circles _cross (fig. 2b), then the minimum is achieved 
at the cross points. In this case 12 = 13 = 0 but 11 > 12 , [3, i.e. condition (5) 
is not fulfilled. Therefore, it is sufficient to examine the pairs of non­
crossing circle_s (fig. 2a, 2c). For them the minimum lies in the center of 
the segment [MN]. 

Let's proceed to equation (6). This case of the minimum of the func­
tional .C is a part of Apollonius problem [5, 6], which is formulated as 
follows: given three circles, find all circles touching them. To solve our 
problem it is necessary to find the roots of the following system of the 
equations: 

{ 
l1 = 12, 
/1 = /:3. 

1 Cases 3-5 are not. int.t>resting for practice. 

:{ 

(7) 
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a) b) c) 

· Figure 2: Curves lying at the same distances from two circles. 

i.e. to find points, that have the same distance from all the circles. But 
in general this problem reduces to an equation of forth power. Following 
reasoning allows one to simplify it significantly. 

Let's the tracks have a common vertex. Then it lies near each circle 
and it is possible to write: 

J( x - ai) 2 + (y - bi)2 - Ri 

(x - ai) 2 + (y - bi)2 
- R; 

J(x - ai)2 + (y - bi)2 + ~ 
~ (.r - a;) 2 + (y - bi) 2 

- R; 
2R; 

Using this approximation, we can write the equation ( 4) as: 

I 

(x - a2)
2 + (y - b2)

2 
- R2

2 
I = I (x - a3)2 + (y - b3)

2 
- R3

2
1 (S) 

2R2 2R3 

After some transformation and reduction to the canonical form one can 
obtain: 

( 
R2a3 ± R3a. 2) 

2 
( R2bJ ± R3b2) 

2 
X - _R_2_±_R_3_ + 1J - _R_2_±_R_3 -

(9) 

R2R3 2 2 ( )2) ± (R
2 
± R

3
)2 [(R2 ± R3) - (a2 - a3) - b2 - b3 

Sign '-' corresponds to the inside and outside regions for both circles of 
the tracks, '+' - to the inside region for one and the outside region for 
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the other circle. Thus, the solution of the system (7) c~nsists in finding 
the cross points of the circles (9). 1 

An example of possible points of minimum of the functional £ is 
shown in fig. 3. The points X 1 , X 2 , X3 are centers of the corresponding 
segments [M, N], and point X 4 is the solution of the Apollonius problem. 

4 Effect of the target 

i 

Figure 3: Exampl~ of the pos-
sible points of the minimum of 
the functional £. 

Previous reasonings allow us to find the-point minimizing£ in the whole 
plane. But this point may lie out of the target, which is impossible 
because of physics restrictions. So the minimization problem (3) should 
have an additional condition: 

Jx2+y2 ~ Rt, (10) 

here Rt - radius of the target . 
Obviously, new possible points of the minimum of the functional£ 

lie on the target surface. Repeat reasonings of chapter 3~ but now point 
A will be fixed on the target border. Let's have /3 > 12 , /3 > 11, as before. 
Consider two cases: 

1. Some tracks cross the target (fig. 4a). Then moving point A to the 
nearest cross point of the circle with the target surface one can de­
crease h until it becomes equal to another distance,Jor example 12 • 

5 
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Figure 4: Additional points of the possible minimum of the functional £. 

Thus the new points are given by the following system: 

{ 

/3 = 12, 
x2 + y2 = R;, 
[3, 12 > 11, 

(11) 

2. Some.of the tracks do not cross the target (fig. 4b). Suppose now 
, that point A.lies on the segment [O, 0 3], which connects the target 

center with the center of the circle. Then any shift of point A 
along the target surface will. _increase /3 • Therefore, besides the 
previously found points of the possible minimum of the functional 
£ new points will appear. They satisfy the following conditions: 

5 Algorithm 

{ 

/3 > /2, 11, 
x2 + y2 = R;, 
(x,y) E [0,03), 

(12) 

The algorithm of the fast vertex search consists of the following steps: 

1. For non-~rossing circles, calculate ~he values of the functional £, at 
the points, given by equation (5). 
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2. Using approximate equation (9), find the solutions of Apollonius-

3. 

4. 

problem. 

Among these points chose the one with the minimal value Lmin• 
If Lmin > Lcut, the event is foterpreted as accidental.· Otherwise 
check that this point is inside the target. · 

If the event is not accidental but the point of the minimum of the 
functional £, lies outside the target, then calculate the values of£, 
at the points given by equations (11) and ( 12). Among all points 
obtained inside the target, chose the one at which the functional 
has the minimal value £;,in· If £,~in > Lcut, then the event is 
accidental. Otherwise the point found is the vertex, and the error 
of the vertex is u =·£;.in• 

6 Numerical results 

The program of the fast vertex search was realized in Turbo Pascal. The 
data obtained in the experiment on the search for the decay Jl - 3e on 
the ARES facility [1, 2, 3] were used to examine the method. In this 
experiment Rt = 5 cm, radii of tracks lie in the region from 15 cm to 
70 cm, the mean radius is ~ 20 cm. 
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Figure 5: The error of the ver­
tex for simulated events. 
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Figure 6: The error of the ver­
tex for real events. 



The distribution of the errors of the reconstructed vertex for simulated 
µ -+ 3e events is shown in fig. 5. It is clear that the restriction 5 mm 
preserve practically all true events. 

In fig. 6 the vertex error distribution is shown f~r real events obtained 
in the experiment on the search. for the forbidden I' -+ 3e_ decay. These 
events have already undergone some selection. Most of them are acci­
dental. At this stage of data processing we can reject a.bout a third of 
them with error u > 5 mm. 

7 Conclusion 

Defining the vertex as a point minimizing the maximal of the distances 
from it to the tracks, makes the search procedure simple, handy and 
fast. These properties are extremely important for processing the data, 
obtained in experiments on the search for rare. and forbidden decays, 
when registered events are accidental in most cases. If necessary, the 
vertex found by, this method may be used as an initial approximation for 
the LSQ, which is important for experiments with a big target. 
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rna30B·A.A. II p;p. EI0-91-,374 
Bb!CTPb!H noHCK Be~umHbl (B nnoCKOCTH) 

- B pa6oTe. npep;naraeTCH 6bICTPblH MeTop; noHCKa sepllJHHbl 

B ·· nnocKocTH ~ IloHcK . sep1IJHHb1 · csop;HTCH K cpasttenmo 3Hatiemi11 
qiyHK~HoHana B ·uecKonbKHX·nerKo Haxop;HMblX TOtIKax. 3TOT Me 

Top; n03BOnHeT TaKl!Ce nerKo peanH3OBaTh npo~ep;ypy 11npHTH­

rHBaHHH11 sepllJHHbl K MHllleHH. 3TH CBOi:'JcTBa HBnHIOTC'H qpe3Bbl-
' - . 

qaiiHo Bal!CHblMH npu o6pa6oTKe p;aHHb!X, nonyqeHHblX B 3KcnepH 

MeHTaX no noHCKY pep;KHX H 3anpe~eHHbIX pacnap;oB, Korp;a. 3a 
' . , ,-,, , 

perHCTpnpoBaHHbie, CO6bITHH B_ OCHOBHOM HBnmoTCH, cnyqaiiHb!M~. 
IlpHHeo6xop;HMOCTH sepllJIIHa,· Haiip;eHHaH 3THM MeTop;oM, MO)!(eT 

6b!Th HCnonh30BaHa K.aK HatianhHoe nPH6nHl!CE!HHe B. MeTop;e 
HanMeHblllHX KBap;paToB, ,qTo. Bal!CHO B .3KcnepHMeHTaX C . 60JihllJO_v 

MHIIJeHblO ~ ,[(aHHblH Me Top; 6bJJI anpo6HpOBaH Ha TpexTpeKOBblX 

CO6bITHH_ X, nonyqeHHblX B 3KcnepHMeHTe no noHCKY: 3anpe~eIIHO 
ro pacnap;a µ ➔~3~ Ha ycTa~o~Ke APEC. .. . . 

Pa6oTa BbinOJIHeHa B .rya6opaTopllll Hp;epHb!X npo6JieM OlliII1. 

Coo6mei-me 061,e.11mtemior~ mtCTff'._I'YTa R.IlepHLix nccne.11oeaHnft. Ily6Ha 1991 : 
'· , . . . 
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. Glazov_A~A. ~t al. El0"'.91-374. 
Fast Vertex Search' (in Plane) 

In this. artic:l~. the fast vertex search method is sug:.. 
gested for plane· geometry.· The search for the ve·rtex re­
duces to comparison of valu-es of -the function.al in a . few 
easy.:..to-find points. This method also provides a simple· 
procedure for "pulling" the vertex to the target. These· 
properties are extremely important for.• processing the da-

· ta, obtained in experiments·on the search for rare-and. 
forbidden decays; when registered ev,ents are accidental 
:i,n most cases. If necessary, the vertex found by this.me­
thc,,d may be us.ed as an initial appro?{imation for the 
-least square method, which is important for experiments 
with a big ta_rget. .The .method was examined on three-trac 
events, obtainea·· in the experiment on· the search for the 
forbidden decay µ ➔ 3e ~n the ARES facility. · 

The investiga.tion has been. performed~at the Laborc1tor 
of Nuclear Problems, JINR~. . . ·,· .- · .·. . ·· · · . 
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