


1 Introductlon .
',"'fv-‘The least: square fit (LSF ) is the tradltlonal ‘methiod to ﬁt a partlcle
'.tra_]ectory to’ pomts measured in'such detectors as bubble and streamer'
"4"?;"chambers The 'LSF appllcatlon in these experlments is' based on the

- independence and normal distribution of errors of measurements.” But' 1

_this is no longer valid for electronic experiments with discrete detectors -
: ‘,“’hl\e multiwire proportlonal chambers or strip detectors. They consist of
© " a discrete set.of detecting wires or strips in fixed posrtlons which are hit
S (produce s1gnals) whenever a particle track comes close to them. Here
. the errors of measurements are in fact correlated and their. distribution -
~is not normal but umform with the wrdth d speaﬁed by the wire or strip
': spacmg ' ! : ‘ ' e
- This situation was dlscussed in [1 2 3] It is known that the accuracyk, :
~ - of track reconstruction in such detectors depends severely on the mutual
v,y;‘idlsposmon of wires (chambers). For different dispositions the mean ac-
"”f‘curacy may vary from d (in the worst case) to'd/N ‘(in* the best one)
~ ‘where N is the number of chambers i.e. the number of measurements -
/. Compare to the canonical accuracy d/ \/N of the LSF in detectors with
- the Gaussian- dlstrlbutlon of errors! But one cannot expect’ \/_ N timesim-
~ provement re_]ectmg the LSF because our error dlstrlbutlon is not Gaus-
. sian. Besides, non- -LSF- procedures of track reconstruction explortmg the
" discrete nature of detectors are. comphcated and time-consuming. So,
7‘ - the LSF is still vndely used in' these experlments desplte it bemg in no

1way _]ustlﬁed : o : ~ e
: 0 We compared numerlcally the accuracy of track reconstructlon by the
L LSF and. by ‘specific ‘discrete’ methods in a setup correspondmg to the.
. ARES experimental facility in JINR, Dubna [4]. Surprlsmgly, we found
gj'really const - /N times 1mprovement comparing, to the LSF! Besrdes,
o we describe here a simple procedure of track reconstruction in discrete
- detectors which i is very easy to 1mplement and rather fast. Our algonthm
s apphcable to straight line tracks as well as; in more 1mportant cases
4. to c1rcular ones.. Some related problems are also dlscussed e
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2 | Basic notation and problem formulating'

| We consider detectors cons1st1ng of several parallel chambers (¢ coordlnate .
rplanes) ‘Each chamber i is performed as'a row of identical rectangular-
-~ cells. Each cell contains a wire which is trlggered (hrt) whenever a particle |

‘,track crosses the cell. Denote (see ﬁg 1)
N — the number of chambers ;o o .
d — the cell w1dth (along the chamber)
h — the cell helght
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Figure 1Bas1c notat1on -
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o A particle'track triggers one or more adjacent wires ‘in each: chamber.
Our problem is to find a track- candldate crossmg all the cells w1th w1re, ;

hits and .missing all other ones:

- This problem admits a reformulation, wh1ch is mathemat1cally sim-

‘»‘pler When several adjacent cells in a chamber contain signals we con-
clude that the. track crosses the left side of the lower cell and the right

 side of the upper one or vice versa (fig. 2). Otherwise it would either not '
‘ have crossed all the hit cells or have touched one of missirig ones. This

"+ is‘obvious for straight tracks and ‘almost’ true for curved ones with suf- )
-_:ﬁc1ently small curvature ‘We neglect poss1ble errors hke the one shown
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Flgure 2: Replacement of a Figure 3 A possrble error»
‘wire clustéer by two' vertical  in- replacement 1llustrated in
 segments. o ﬁg 2. ‘ 8

in fig. 3. Besldes the choice between two above possrbllltles can be eas-' ,
ily made by rough approxrrnat1on of the track direction, say, compar1ng

~the pos1t10ns of wire hits in the leftmost and r1ghtmost chambers (for

. straight tracks). We also neglect possible errors in such a ch01ce Then
. we replace each group (‘cluster’) of ad]acent hits by only two segments -
_ (the corresponding sides of two utmost cells in this cluster). Our prob-
* lem is now to find a track crossing all these segments. Note that we do’ -

not need to check whether our track touches other (mlssmg) cells or not.
Then we can digress from our chambers, cells and work only with a set
of parallel segments each of length d. A

3 Probabilistic and geometrvical considerations 4

- Usually the estimation of unknown track parameters is based on' prob-
 abilistic models and statistical methods, e.g. the maximum likelihood
. estimates. In our case the probabilistic model (at least in its idealized
versron) is very poor (see also [2]). Really, every track—candldate crossing

- all our segments has the hkehhood 1 while any other track- candldate has
-the likelihood 0. The maximum llkellhood method gives then a contin- -
‘uum famrly of tracks wrth the same hkellhood 1. Nobody can dlStngUlSh' ,



‘most probable tracks among them We call all these tracks admissible
' fand the correspondlng region in the track parameter space the admissible
- region. ~

* hits and deflections of tracks -from modelled traJectorles
. proach is discussed’ below in sect 8. Now we focus only on. the idealized
model. : <

then estimate the accuracy of track recomstruction. First we consider
lrectlhnear tracks y = az + b (the coordinate system is shown in fig. 1).

~ The admissible region in the parameter space (a,b) is bounded by ad-

missible tracks containing one or more endpoints of our segments. So, 1f _

/ (z ,y' )i 1s an endp01nt of a g1ven segment then the equatlon

az +b—y =0

,’ a stra1ght line in the space: (a,b), so our admissible' region is always:a
* convex polygon Its projections to the coordinate axes give two segments

b ‘,WhICh we denote by [amm,amaz] and [bmins bmaz) respectlvely Now itis ,3

o reasonable to take ey

|
& —(amm + amaz)
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. as parameter estimates and the.values

L e — amin)s b= =(bmas— b
5 (‘amaz amm), . Ab 5 (bm

.min)

Aa=

. as maximal parameter errors. The estimates (2). obv1ously prov1de the’
minimal values of maximal errors (3) The convexity of the adm1ss1ble

regxon 1mplles that the point (a b) always belongs to it..

Mean accuracy of the parameter estlmates AR

Only a rough sketch for solvmg th1s problem is outllned further. Taklng ‘
all the poss1ble endpomts (z',y") of our segments (1 e. all the corner points

of our cells in the detector) we obta1n through the equation (1) a set of -
Here K. stands forl'

9K, straight lines in the parameter space (a,b).

4

The situation can change if we admit malfunctlon of our wires, noisy
Such an ap- -

Let us descrlbe adm1ss1ble reglons in the track parameter space and '

‘(1.)., |

determmes a part of the boundary of the admissible region. It is then

(2); |

|
!
!
|

l

¥
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‘the number of cells.
convex pol) gons. Now we are able to estimate roughly the typical errors

" errors Aa
“model. "

These lines split the parameter space into many’

Aa,Abin (3). Suppose we are 1nterested in a region of size ~ 1 in the
parameter space (for instance, 0 < b <1,—-1 € a <1). Let the length
of each’ chamber be equal to 1, then the number of cells is K, = N/d.

So we have 2K, = 2N/d lines wh1ch partition our parameter reg10n into
polygons. Suppose the typical size of a polygon is €, so its typical area =
is £2. Then the number of (typical) polygons is M = 1/e2. So the total
perimeter length of all the polygons is approximately M -¢ =~ 1/e. On

- the other hand, counting the number of lines forming these polygons

we estimate the perimeter length as ~ 2K, = 2N/d. Hence, ¢ ~ d/N.
Remember now that ¢ is the typ1cal polvgon size, i.e. it is exactly the
same as Aa and Abin (3). S6 we obtain the ty plcal accuracies Ag, Abin
track reconstruction as d/N as was already ment1oned in Introduction.
To illustrate this, let us consider a simple detector facility corlslstmg

of N chambers of the length 1, situated along the section of X-axis of
the length 1 (i.e. 0 <'z < 1) In the parameter space (a,b) the region
0<b<1,0<a+b<1is considered, which is formed by the tracks

- crossing all our chambers. Its area equals 1 and it is partitioned by 2N/d

lines, the total length of ‘which is 2N /d. Therefore the lower bound of - |

parameter errors is d/2N < Aa,Ab. Moreover, we can really attain

this accuracy (up to ‘a factor) by the following trick. Situating N/3
leftmost chambers in such a manner, that the1r relative y- d1splacements '

are, correspondingly, 3zd/N (:=1,2,...,N/3), we guarantee that Ab <
-3d/N. In the same way, by dlsplacxng N / 3 r1ghtmost chambers we obtain
- Aa < 3d/N, hence the accuracy of’ parameter estimates as const - d/N
is really attained. We have’ only to estimate the factor const. Note that
w1thout any mutual chamber d1spos1t10n along the y-axis the maximal '

Ab would be ~ »d,'i.e. worse ;than"for LSF With the‘Gauss

‘The above considerations are only rough estimation of the marzmal
“admissible accuracy of parameter estimates. In’ real experiments it de-
pends severely on the region in the parameter space we are interested
in and on the structure of the polygons in this parameter region. For -
instance, let these polygons be very different: there are a number of

: large and a lot of little ones with a small total area. Then the typical

parameter errors would be specxﬁed by the sizes of large polvgons which




could be much bigger than d /N (up to d, see also about the necessxty to

stagger chamber dispositions uniformly [1}). :

. "Thus a requirement to the detector design comes out. The chamber
"constructlon and disposition should provide polygon sizes in the param-
eter space as small as possible. -

have as much homogeneous sizes as possible.. The optlmal disposition

‘of chambers can be found by numerlcal analysis through mrmmlzmg the

mean values of Aa,Abin (3).

The influence of the chamber height & should also be taken into ac- "

count.’ Apparently, if h < d, the accuracy should get worse, since the
left and rlght corner pomts of a cell would give almost the same lme in

the parameter space If h = d, the accuracy should be good and then -

it would not improve with the h i increasing — see also our sect 7. We

guess that if the typical angle o of the track slope is small (i-e. tracks gov ‘

mostly horrzontally) then h has to be chosen as > d /a.
“ R 5 o NUmerical algorithkm Of "the track reconStruction o

Let all’ our segments be numbered from left to rlght l 2
o any two segments ] (w1th 1 < ]) and consider the stralght line y =
calz 4 b jomlng the upper endpomt of the segment ¢ and the lower one

of the other segment J. It is easy to check that @mi = maxv,<]{a } and

: bma,_. = mmv,q{b} Analogously, con51der1ng all the lines y ='a"z + %8 ;
Jomlng the left endpomt of the segment ¢ and the rlght one of the segment 7
JG< 7) we find apmar = mlnv,<]{a '} and bmin = maxv,<]{b }. Further,

. we evaluate the values &,b, Aa, Ab through (2 ) (3). Note that in this
algorlthm we do not need to.check whether. our lines cross all the segments

cor not. The correspondlng FORTRAN routine contains only 20 — 30 lines -
and runs rather fast. Further optlmlzatlon is also possrble if one makes
use of the same length d of all the segments and the fixed positions of '
all the chambers (for instance, all possible slopes a’,a” of the above lines

can be computed in advance and tabulated).
. 6 . Circular -tracks- :

difficulties. The circle equation. (z — a) + (yy -b)?2=

If their number is fixed, they should

’2N 'lTakye

Ce R

s The extensron of all our results to cucular tracks presents no new actual' |
= R? can be written -

s

£ m—

. in the form

L polyhedrons
~cal procedure for parameter estimation is possible. ‘Let (yL mm,yL ma,,),f
: (yRmm,yRmar) and (Kmm,h'.maz) be the prOJectlons “of the ‘admissible.

" ables yr,yr, & inside the admissible region. A
‘sonable ‘to take Jr yL = 2(yr, min + YL, ma:c) etc w1th the max1mal errors""

- Ayr ='2(Yrmaz —

m +y —2ax+26y+7 . S (4)

"w1th a new parameter v=R*—a®*~-b. Fora ﬁxed pomt (z,y) the equa-

tion (4) determines a plane in the 3-parameter space (a, b, 7) Therefore:
our admissible regions become convex polyhedrons in the space (a,b,7).

- However, the natural circle parameters a,b, R (as well as a, b, v) are
inconvenient for tracks with small curvature since a, b, R grow to infinity. -

~'All we really need to know of a track is where it enters our device (i.e.

the first chamber), where it exits from the last chamber and finally its
curvature. So we take three new parameters yr,yr and & (— +1 /R) :

- shown in fig. 4 to describe circular tracks. The curvature & is supplied

with the sign ‘+’ for convex arcs and ‘~—’ for concave ones..Now the
: 'parameter reglon (yL, yR, h:) must be strongly bounded
k>;o"
L ' k<o
1 k=1/R"|. Yo
: ;/ PR R Lo Figure 4: Basrc notatlon for R
R : : c1rcular tracks LT
XL Xp X >

The admissible reglons in our parameter space (yz, yR, k) are far from B
They are not even convex.

These are the range “of our three vari-

region to the coordmate axes.
" As in''sect. 4, it is rea:

yL, 'rnm) etc.

However, a ‘simple’ numerl—‘ L



'Let, as in sect.‘}5, our segments be numbered from left _to~right:

'1,2,...,2N. Take any three segments ¢, j,k (: < j < k) and draw a circle

through the lower endpoints of the segments ¢, k and the upper one of the
middle segment j. Compute the parameters yJ, yk, &’ of the circle. Now
- it is easy to check that yr min. = maxvicj<k{yL}; YRmin = Maxvicj<k{yp}

and Kmaz = minvi<;<x{&’}. Analogously, we find YL smaz, YRmaz a0d Kmin
idrawing circles through the upper endpoints of the segments i, k and the
lower one of. the segment j. Note again that we do not need to check

whether our circles cross-all other segments or not. To speedup-.the

procedure some improvements as in sect.-5 are also available.
7. Numerical experiment

We choose for numerical study an analogue of the experimental facility

ARES in JINR, Dubna [4]. It contains N = 10 chambers with d =

2 mm, h = 4 mm. The distance between neighboring chambers is about
25 mm. The displacement of each charnber along the y-axis was simulated
randomly from 0 to d. R

We simulated several thousands of st1a1ght ‘tracks ernanatmg from
random points of-the middle cell of the first chamber and with a random’
~ slope from 0° to 60°. Each track triggered a set of wires and then we o
obtained a set of vertical segments via the method of sect. 2. No malfunc-
tion, no noisy hits and no deviations from ‘rectilinear trajectories were -

admitted. We reconstructed the tracks by LSF in two ways. Firstly, we
“applied LSF to the centers of the groups of adjacent wire hits (‘clusters’)

in all the chambers. Secondly, the LSF was applied to the centers of all -
. the above vertlcal segments. The results of these two fits were almost - -

identical (both are marked by the same line in fig. 5).

- We also performed a ‘discrete’ fit described in sect. 5. Fig. 5 shows .

~ that the root mean square (RMS) deviation of the reconstructed tracks

frorn the modelled ones is about 1.5 tlmes srnaller for our ‘dlscrete tracks :

than for the least- square ones.

Fig. 5 also shows the. dependence of RMS errors on the cell he1ght h
As we have predlcted in sect. 4, the RMS deviation decreases with the h-
increasing but it reaches a plateau (for h = d) and does not improve any -

further o : -

We also made the same exper1ment but w1th a constant angle of thev

‘(minimax) metric:
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Figure 5: The RMS deviations - Figure 6: The same as in fig: 5
“of the reconstructed tracks  but with a fixed track slope .
~ from the modelled ones for the = (= 100) o
“discrete’ algorithm (+) and
. for the LSF (X) :

-track slope (= 10°). For eachi value of h we simulated its own displace-

ment of the chambers along the y-axis. Note the RMS values for the
LSF-tracks are much more sensitive to the chamher d1spos1t10n ~ see
ﬁg 6 Interpretatlon of th1s phenomenon can be found in [1]

Dev1at10ns from the idealized model

| Comlng back to sect. 3 we admit now malfunction of the wires, IlOlsy :

hits and deflection of tracks from modelled trajectories (for instance, as a

_result of multiple scattering). In these cases the existence of an admissible -

track ‘crossing. all our segrnents is no longer guaranteed So we have
to choose ‘the most probable’ track-candidate which, however, misses
some of our segments. To this end we use (see also [‘7]) the Cheb3 shev

._Ev(a,b)znliax{d,-}——rlnf, e (5)



o where d; denotes the dlsta.nce of the track y=az+b to the i-th segment ‘_
. (z =1,2,. 2N)

0, “if the track crosses the segment,

di=\ lyizazi-b otherwise. ‘ (6) - ‘f

\/a2+1

Here (x,, y:) means the nearest endpoint of the segment. v

~ The function £(a,b) is obviously continuous and piecewise smooth
_In general, it has two kinds of fractures (i-e. points of derivatives ‘discon-
t1nu1ty)

Fractures of the first kind: a jump from one segment at Wthh the
max1mum in (5) is attamed to another one; :

Fractures of the second klnd ajump from 0 to |y.—ax, bl/\/ a2 +

in the expressmn (6).

Due to our assumption £(a, b) # 0 (otherwise one can n find an admissible

track and solve the problem as in sect. 5). Therefore the fractures of the
second kind must be eliminated. '

Cyeaxth

‘Figure 7: A treck equidistant Figure 8: How the algorithm .
from two segments. . - - works.

The fractures of the first kind occurred when a track y=az+b ivs"f
“equidistant from some two of our segments, i.e. it crosses the middle point'

10

_between them: (ﬁg 7) If ( ,y’) are the coordlnates of the mlddle pomt .
~ then the equation az’ + b — y’ = 0 gives a straight line in the parameter

space separatlng different regions of the £(a, b) smoothness. Hence we

- obtain, as in sect: 4, a partition of the plane (a b) mto convex polygons
: where our functlon L is smooth. :

‘ gFlgure 9: Three p0551b111t1es for tracks equldlstant from three or more'
' segments gy e , e e o :

Although the functlon ,C(a b) is not p1ecew1se llnear 1ts minimum is

‘ ‘5always attained at a vertex of the above polygons.: ThlS can be. checked
by elementary geometrlc considerations and we omit the details.: Vertices:
- of our polygons correspond to-tracks equldlstant from three or. more of

; ‘our segments. All possible situations are shown in fig. 9. Notice that in~
~all the cases the track runs parallel toa llne _]omlng some two ends of our .
- segments : ‘ SR e : : ‘

Con51der the set of the upper endpomts of our segments and construct i

‘1ts convex hull. Denote Uty oy Up. the upper endpoints in the loyver part
. of the hull (from left to rlght) as in fig. 8. Analogously let ll,

denote the lower endpoints of our segments constltutmg the upper part

~of the convex hull of all the lower endpoints.

- The follow1ng algorlthm for the functlon E m1n1m1zat10n comes out

1 Draw the line through any. two nelghborlng pomts u,, ui41 and. look;k :
for a point /; which is the most dlstant from’ thls lme Denote the -
correspondlng dlstance by p : : EEEE

1




2 Transfer our llne to ha]f a dlstance closer to the lower endpomt

found at stepl T S ERR LI RIS TES R | Yepros H.M. u gp: = S . EI0-91-361

T . i | BOCCTaHOBHeHHe TpeKOB B nucxperumx

3 Repeat steps 1 2 for all pairs. u,, u,+1 and then repeat steps 1 9 once e AeTexTopax G
again but for the oppos1te endpomts tal\e lower endpomts l,,l,+1, I | B pasore npoBe,D.eH BepOH’I‘HOCTHbIH H reomerpuqecxuu aHa-
look for an ‘upper one uJ and so on. o CL o § | M3 panmEPX, nonyYaeMbx Ha SKCMepPHMeHTANbHBIX yCTaHOBKax
o o | TaKux, KAaK MHOTONDPOBOJIOYHbIE NPONOPUHOHAIIbHbIE KaMepbl HIIH-
The tracl\-candldate for whlch the minimal value p is attamed glves the I | crpunosble merexTopsl. TeopeTHueCKHe HCCIEOBAHHA MOKA3aJH,|
solutlon of our problem (5). L : , : © | | urto yuer sbdexra HMCKPETHOCTH AaeT yilydlleHHE TOYHOCTH .

“Thé above procedure. admlts anextension to c1rcular tracks. The | | OueHKH napamerTpos. TPeKOB B VN pas no: cpasuenmo c Tpamu- |

. ’ PIOHHblM MeTO oM’ HaHMeHbUIHX KBa aTOB N - YHCIIO HsMepe—
,correspondmg algorlthm is very similar to the abO\e one and we will not . 1 A AP (

‘ T ‘ CHUMH) . Hnﬁ nneannsupoeanﬁou ‘MopesH npnmonuﬂeuﬂmx TPEKOB -
-go into detalls e T , AR TEY

npeiioxeH - MpoCcTOoH, ynoﬁﬂmn H 6ucrpmu aHFOpHTM HX BOCCTa-
1Honneunﬂ, o6o6meHHmu TAKke Ha cnyyaii nyronmx Tpexos. Yuc-—
| nenHpI ananus Ha-OCHOBE HaDaMETpOB yCTaHOBKH APE( non-
a:1Bepnnn TeopETquCKHe ouequ. Hpennomeﬂo pacmupeﬂue -an-~
© ropHUTMa’ OMif ydyeTa Taxnx maxropon peanbﬂmx usmepeﬂuu,;»axﬂ
'MHoroxpaTHoe pacceﬂnue o e '

9 Conc‘lusion o

“ Our studyshowed the striking results of ‘taking into account the discrete - -
nature of electronlc detectors and the art of their staggering 1n experl- FEE | : : : .;
; e e Paﬁora anonHeHa B Ha6opaTopHu quucnurenbﬂou TeXHMxH,

. dmental setup. - N : 1l
-~ However it is necessary to keep in. mind the 1deahzed character of theyf : W onTomaTHaaumn OUAN.
' smgle track models considered. Therefore at the next stage of our study -

~ we are going to consider most 1mportant practical circumstances, like

7

Coosmame OGBE}!HHEHHO]‘O chnny'ra ﬂneprmx ucene.uoaanuu JIyGHa 199 1 .

o anieen

imperfect detection efficiency, noisy points and random cluster size due’ .
“to track crossing, multiple scattering etc. All these factors may decrease
our. algorlthm contribution. The special careful e\(ploratlon is needed to ‘

‘ optlmlze algorlthms and. obtaln quantltatlve estlmatlons ’

~Chernov NI etial, of ot i e o E10-91-361- |
sl Track Reconstructlon in Dlscrete DetectorSv~ ‘ crmr e

The prObablllStlc and geometrlcal ana1y51s is' g1venp~p

portional chambers or strip detectors. The theoretical 4
“study showed that taklng into account the discrete nature
of data gives us the accuracy of track reconstructlon /N
- better as compared with conventional least square fitting
“(here N is the number of measurements) For an idealized
straight track -model a 51mp1e, “handy and fast algorithm
. is proposed for. track reconstruction. It is modified to ,
- the case of.circular tracks. Numerical analysis on the bat
11" sis of the parameters of the ARES facility confirms the
:Y:‘above theoretical estlmates. The algorithm’ exten51on iso
| proposed to take into account such factors of real obser-
ti¥vat10n as. multlple scatterlng A :
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