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1 • Introduction 

· The least square fit (LSF) is the traditional '.method to fit a particle 
. trajectory to points measured 'in such detectors as. bubble and streamer 

· cham.bers. The LSF applicati6n in th~se experiments is based· ~n the 
· independence and normal distribution of errors 'of measurements.· But 
this is no longer valid for electronic experim,ents with discrete cletectqrs 

· like multiwire pr'oportional chambers or strip detectors. They consist ~f 
. a discrete set: of detecting wires or strips in. fixed positions which are hit 

(produce signals) whenever a particle trackcomes close to them. Here 
the errors of measurements are in fact correlated an'd thei~ .distribution 

· is not normal but uniform with the width d sp~cified by the wire or strip 
spacmg. 

This situation was discussed in [1, 2, 3): It is known that the accuracy 
of track reconstruction in such detectors depends severely .on th~ mutual 
disposition of wires (chambers). Fo.r different dispositions the mea~ ac
curacy may vary from d (in the worst case) to d/N :(in the best .one), 
where N is the number of chambers, i.e. the number of measurements . 

. Compare to the canonical accuracy d/../N of the LSF.in det~ctors with 
the Gaussian distribution of errors! But one canriot expect JN ti~es im
provement rejecting the LSF·b~cause our error distribution is not Gaus~ 
sian. Besides, non-LSF procedures of track recori~truction exploiting the 

. discrete .nature of detectors are complicated and time-consuming. So, 
· , the LSF is still widely used in these experiments despite it being in no 

way justified. . . 
· We compared numerically the accuracy of track reconstruction by the 

. LSF and by specific 'discrete'· methods in a setup corresponding to the 
ARES experimental.facility in 'JINR, Dubna [4]. Surprisingly, we found 
really const · ·.JN times improvement comparing to. the LSF! Besides, 
we describe here a simple procedure of track reconstruction in discrete 
detectors which is very easy to implement and rather fasL Our algorithm 

. is applicable to· straight' line tracks. as. well as; in more important cases 
'J. to circular.ones. Some related problems are also discussed: 



2 Basic notation and problem formulating 

We consider detectors.consisting of several parallelchambers ('coordinate 
plane~'). 'Each chamber .is performed as a row of identical rectangular 
cells. Each cell contains _a wire which is triggered (hit)" whenever a particle 
t,rack crosses the cell. Denote ( see fig. 1): 

N - the number of c?ambers, · 
' ' , . . . ,' .· 

d - the cell width (alorig the chamber),· 

h - the cell height. 

y 

.. Figure 1: Basic notation. 

·x 

A particle track triggers one or more adjacent wires in each chamber. 
Our problem;is to find a.track-candidate crossing all the cells with wire 
hits and missing all other ones; 

.. This problem admits ia reformulation, which is mathematically sim
pler., When _several adjacent cells in a chamber contain signals we con- , 
elude that the track crosses the left side of theJower cell and the right 
side or' the upper one or vice versa (fig. 2). Otherwise it would either· not 
have crossed all the hit cells or have touched one of missing ones. · This 
is 'obvious for straight tracks and 'almost' true for curved ones with suf-

. . 
ficiently small curvature. We neglect possible errors like the one shown 
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Figure 2: Replacement. of a 
wire cluster by two vertical 
segments. 
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Figure 3: A possible . error 
in replacement illustrated in 
fig. 2. 

in fig. 3. Besides, the choice between two above possibilities can be eas
ily made by rough approximation of the track direction, say, comparing 
the positions of wire hits in the leftmost arid rightmost chambers (for 
straight tracks). We also neglect possible errors in such a choi~e. Then 
we replace each group ('cluster') of adjacent hits by only two segments 
(the corresponding sides of.two utmost ·cells in this cluster). Our prob
lem is now to find a track crossing all these segments. Note that we do 
riot need to check whether our track touches other (missing) cells, or not. 
Then we can digress from our chambers, cells and work only with a set 
of parallel segments, each of length d. 

3 Probabilistic and geometrical considerations 

Usually the estimation of unknown track parameters is based on· prob
abilistic models and statistical methods, e.g. the maximum likelihood 
estimates. In our case the probabilistic model ( at least i_n its idealized 

> version) is very poor (see also [2}). Really, every track-candidate crossing 
all our segments has the likelihood 1 while any other track-c~ndidate has . , 

the· likelihood 0. The maximum likelihood method gives then a contin-
uum family of tracks with the same likelihood 1. Nobody ca{i distinguish 
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'most probable' tracks among them. We call all these tracks admissible 
and the. corresponding region in the track parameter space the admissible 
region. 

The situation ca~ change if we admit malfunction of our wires, noisy · 
hits and deflections of tracks .from modelled trajectories. Such an ap
proach is discussed.'below in'sect. 8. Now we focus only on.the idealized 
modeL · 

Let us describe admissible regions in the track parameter space and 
then estimate the accuracy of track reconstruction. First we consider 
rectilinear tracks y = ax+ b (the coordinate system is shown in fig. 1). 
The admissible region in the parameter space ( a, b) is bounded by ad
m1ssible tracks containing one or. more endpoints of our. segments. So, if 
( x', y')' is an endpoint of a given segment, then the equation· 

, '' ' .: 

ax'+ b-y' = 0 (1) 

determines a part of the boundary of the ad111issible region. It is then 
... a straight line in the space (a, b), so our admissible·region is always 1a 
convex polygon. Its projections to the coordinate axes give two segments 
_which we denote by. [amin, amax] and [bmin, bmax] respectively. Now it is 
reasonabl~ · to take · 

. . 1 ' " . a= -(amin + am.ax), 2 . 
• A 1 
b = 

2
(bmin + bmax) (2) 

.as parameter estimates and the values 
,, . ·,;· . . ' .. ' 

. '. 1 ' 
.D.a = 2(amax - amin), 

1 ·. 
.D.b = 

2
(bmax - bmin) (3) 

as maximal parameter errors. The estimates (2) obviously provide the 
minimal values ofmaxim~l errors (3). The convexity of the admissible 
region implies that the point (a, b) always belongs to it. 

4 Mean accuracy of the parameter estimates 

Only a rough sketch for solving this problem is outlined further. Taking 
I • • • • 

all the possible endpoints ( x', y') o~ our segments (i.e. all the corner points 
of our cells in the detector) we obtain through. the equation ( 1) a set. of 
2Kc straight lines· in the parameter space (a, b). Here Kc stands for, 
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the num'.ber of cells. These lines split the parameter space into many' 
convex polygons. Now we are able to estimate roughly the typical error~ 
.D.a, .D.b in (3). Suppose we are interested in a region of size ~ 1 in the 
parameter space ( for instance, 0 ::; b ::; 1, -1 ::; a ::; 1). Let the length 
of each chamber be equal to 1; then the number of cells is Kc = N / d. 
So we have 2/{c = 2N / d lines which partition our parameter region into 
polygons. Suppose the typical size of a polygon is c, so its typical area 
is c2• Then the number of (typical) polygons is AJ ~ 1/t:2 • So the total 
perimeter length of all the polygons is approximately M • c ~ 1/c .. Ori 
the other hand, counting the number of lines forming these polygons 
we estimate the perimeter length as~ 2/(c = 2N/d. Hence, c ~ d/N . 
Remember now that c is the typical polygon size, i.e. it is exactly the 
sa~e as .D.a and .D.b in (3). So we obtain the typical accuracies .D.a, .D.b in 
track reconstruction as d/N, as was already mentioned in Introduction. 

To illustrate this, let us consider a simple detector facility consisting 
of N chambers of the length 1, situated along the section of X-axis of 
the length 1 (i.e. 0 ::; x ::; 1). In the parameter space (a, b) the region 
0 ::; b ::; 1, 0 ::; a + b ::; 1 is considered, which is formed by the tracks 
crossing all our chambers. Its area equals 1 and it is partitioned by 2N/d 
lines, the total length of which is 2N / d. Therefore the lower bound of 
parameter errors is d/2N ::; .D.a, .D.b. , Moreover, we can really attain 
this accuracy (up to a factor) by the following trick. Situating N/3 
leftmost chambers in such a· manner, that their relative y-displacements · 
are, correspondingly, 3id/N (i = 1, 2, ... , N/3), we guarantee that .D.b::; 
3d/N. In the same way, by displacing N/3 rightmost chambers we obtain 
.D.a ::; 3d / N, hence the' accuracy of parameter estimates ~s con st · d / N 
is really attained. We have only to es~imate the factoi: const. Note that 
wi~hout any mutual chamber disposition along the y-axis the maximal 1 

. : errors .D.a; 'b.b would be ~ d, i.e. ,vorse than for LSF with the Gauss 
model.· 

The above considerations are only rough estimation of the maximal 
, admissible accuracy of param.etei:- estimates. In real experiments it de
: pends severely on the region in the parameter space we are interested· 
\in and on the structure of the polygons in this parameter region. For 
'instance, let these polygons be very different: there are a number of 
large and a lot of little ones ,vith a small total area. Then the typical 
parameter errors would be specified by the sizes of large polygons which 
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could be much bigger than d/N (up to d, see also about the necessit}'. to 
stagger chamber dispositions uniformly [l]). 

Thus a: requirement to the detector design comes out. Thechamber 
construction and disposition should provide polygon sizes in the param
eter space as small as possible. If their number is fixed, they should 
have as much homogeneous sizes as possible. The optimal disposition 
of chambers can be found by numerical analysis through minimizing the 
mean values of b.a, b.b in (3). . . . 

The influence of the chamber height h should also be taken into ac
count.· Apparently, if h ~ d, the accuracy should get worse, since .the 
left and right corner p~ints of a cell would give almost the ;ame line in 
the parameter space. If h ~ d, the accuracy shoul.d be good and then 
it would not improve with the· h increasing-:-- see also our sect. 7. We 
guess that if the typical angle a of the track slope is small (i.e. tracks go 
mostly horizontally), then h has to _be chosen as 2: d/ a. · 

5 · Numerical algorithm of the track reconstruction 

· Let all our segments be numbered from left to right: 1, 2, ... , 2N. Take 
any two segments i,j (with i < j) and consider' .the straight line y = 

. a'x +b' joining the upper endpoint of the segment i and the lower one 
of the other segment j. 1t' is easy to check that amin '=. maX'v'i<j{ a'} and 
bmax = minvi<j{b'f Analogously, considering all the lines y = 'a"x + .b" 
joining the left endpoint of the segment i and the right one of the segment 
j (i < j) we find amax = minvi<j{a"} and,bmin = maxvi<j{V'}. Further, 

. we ~valuate the values a,, b, b.a, b.b through (2), (3) .. Note that in this 
algorithm we do not .need t?,check whether our lines cross all the segments 

, or not. The corresponding FORTRAN.routine contains only 20 - 30 lines 
and runs rather fast. Further ·optimization is also possible. if one makes 
use of the sa~e length d of all the segments and the fixed positions of 
all the chambers ( for instance, aH possible slopes. a', a" of the above lines 
can be computed in advance and tabulated). 

6 Circular tracks 

The extension of all our results to circular. tracks presents no new actual 
difficulties. The circle equation ( x - a)2 + (y - b )2. = R2 can be written 
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in the form 
x 2 + y2 = 2ax + 2by +, (4) 

with a new parameter , = R2 -,· a2 - b2• For a fixed point ( x, y). the equa
tion (4) determines a plane in the.3-parameter space (a,b, 1 ). Therefore 
our admissible regions become convex polyhedrons in the space ( a, b, 1 ). 

How~ver, the natural circle parameters a, b, R ( as well as a, b, 1 ) are 
inconvenient for tracks with small curvature since a, b, Rgrow to infinity. 
All we really need to .know of a track is where it enters our device (i.e. 
the first chamber), where it exits from the last chamber and finally its 
curvature. So we take three new parameters YL, YR and K ( = ±1/ Rf 
shown in fig. 4 to describe circular tracks. The curvature K is supplied 
with the sign '+' for convex arcs and '-' :for concave ones ... Now the 
·parameter region (YL, YR, K) must be strongly bounded. 
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Figure 4: Basic notation for 
circular tracks. 

The admissible regions in our para.meter space (YL, YR, K,) are far from . 
polyhedrons. They are not even convex: However, a simple numeri
cal procedure for parameter estimation is possible. Let (YL,min, YL,max), 

' (YR,min, YR,max) and (Kmin, Km~x) be the projections of the admissible. 
region to the coordinate axes. These are the range of our three vari
ables YL, YR, K inside· the admissible region. As in sect. 4, it is rea~ · 

· sonable to take fii = ½(YL,min + YL,max) etc. with the maximal errors 
..6.'!f L =' ½(YL,max - YL,min) etc. ' · 
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Let, as in sect. 5, our segments be numbered from left to• right: 
1, 2, ... , 2N. Take any three segments i, j, k ( i < j < k) and dra~v a circle 
through the lower endpoints of the segments i, k and the upper one of the 
middle segment j .. Compute the parameters Yr,, YR, t,,1 of the circle. Now 
it is easy to checkthat YL,min = maX'v'i<i<k{YD, YR,min. = max'v'i<j<k{Y.n} 
and "-max = min'v'i<i<d K-

1
}. Analogously, we find YL,max, YR,ma~ and K.min 

, drawing circles through the. upper endpoints of the segments i, k and the 
lower one of the segment j. Note again that we do not need to check 
whetper our circles cross all other segments or not. To speed up the 
procedure some improvements as in sect. 5 are also available. · 

7 Numerical experiment 

We choose for numerical study an analogue of the experimental facility 
ARES in JINR, Dubna [4]. It contains N = 10 chambers with d = 
2 mm, h ~ 4 mm. The distance between neighboring chambers is about 
25 mm. The displacement of each chamber along the y-axis was simulated 
randomly from O to d. 

We simuiated several thousands of straight · tracks emanating from 
random points of-the middle cell of the first chamb~r and with a random 
slope from 0° to 60°. Each track triggered a set of wires and then we . 
obtained a set of vertical segments via the method of sect. 2. No malfunc
tion, no noisy hits and no deviations from :rectilinear trajectories were 
admitted. We reconstructed the tracks by LSF in two ways. Firstly, we 
applied LSF to the centers of the groups of adjacent wire hits ('clusters') 
in all the chambers. Secondly, the LSF was applied to the centers of all 
the above vertical segments. The results of these two fits were almost 
identical (both are marked by the same line in fig. 5). 

We also performed a 'discrete' fit described in sect. 5. Fig. 5 shows 
that the ro~t mean square (RMS) _deviation of the reconstructed tracks 
from the modelled ones is about 1.5 times smaller for our 'disc;ete'. tracks. 

. ' 

than for the least~square ones. 
Fig. 5 also shows the. dependence of RMS errors on the cell height h. 

As we have predi~ted in sect. 4, the RMS deviation decreases with the. h 
in~rea~ing'.but ifreaches a plateau (for h ~ d) and does not improve any . 
further. ·· · · · ·· · · 

We also made the same experiment but with a co11.stant angle of the 
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Figure 5: The RMS deviat.ions 
of the reconstructed tracks 

· from the modelled ones for the 
'discrete' algorithm ( +) and 
for .the LSF ( x ). 
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Figure 6: The same as in fig; 5 
but with a fixed track slope 
(= 100). 

· track slope (= 10°). For each value of h we simulated its own displace
ment of the chambers along the y-axis. Note the RMS values for the 
LSF-tracks are much more sensitive to the chamber disposition - see 
fig. 6. Interpretation of this phenomenon can be found in [1]. 

8 Deviations from the idealized model 

Coming back to sect. 3, we admit now malfunction of the wires, noisy 
hits and deflection of tracks from modelled trajectories (for instance, as a 

. result of multiple scattering). In these cases the existence of an admissible 
track crossing. all our segments is no longer guaranteed. · So we have 
to choose 'the most probable' track-candidate which, however, misses 
some of our segments. To this end we use ( see also [2]) the Chebyshev 
(minimax) metric: 

C(a,b) = mfLx{d;} -t inf, 
. ' 

(5) 

g· 



where di denotes the distance of the track y = ax+ b to the i-th segment 
(i = 1, 2, ... , 2N): 

{ 1' . _ axi - bj · di = y, v'a2+T 
· if the track crosses the segment, 

otherwise. 

Here (xi, y;) means the nearest endpoint of the segment. 

(6) 

· The function .C(a, b) is obviously continuous and piecewise smooth. 
. In general, it has two kinds of fractures (i.e. points. of derivatives 'discon

tinuity): 

Fractures of the first kind: a jump from one segment at which the 
maximum in (5) is attained to another one; 

Fractures of the second kind: a jump from Oto IYi___:axi-bl/Ja2 + 1 
in the expression (6). 

Due to our assumption .C(a, b) -=f. 0 (otherwise one can find an admissible 
track and solve the problem as in sect. 5). Therefore the fractures of the 
second kind must be eliminated. 

y=ax+b 

l 
r 

Figure 7: A track equidistant 
from two segments. 

II, 1 .., 1~--- t3 

' A 

/ ' 
I; ', j]: (>, f -1.,---

Figure 8: How the algorithm 
works. 

The fractures of the first kind occurred when a track y = ax+ b is 
equidistant from some two of our segments, i.e. it crosses the middle point 
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between them (fig. 7). ·u (x',y') are the coordinates of the middle point,·· 
then the equation ax' + b - y' = 0 gives a straight line in the parameter 
space separating different regions of the .C( a, b) smoothness. Hence we 
obtain; as in secf. 4, a partition of the plane ( a, b) into_ convex polygons 
where our fun'ction .C is smooth. . . • . 

i) 1 
~- J 
ff 

ii) 

•.• J ~.,_' 

(.f 

iii) I 
, I\ J 

~

/\. 

--
( ---+- - .I 

1 l · 

. Figure 9: · Three possibilities for. tracks_ equidistant from three or more 
segments. 

Although the function .C( a, b) is not piecewise linear, its minimum is 
· ah~ays attained at a vertex of the above polygons. This can be ,checked 
by elementary geometric considerations and we omitthe details., Vertices· 
of our polygons correspond to· tracks equidistarit from three· or, more of 
our segments. All possible situations are shown in fig. 9. Notice that in 
all the cases the track runs parallel to a line joining some two ends of our 
segments: ·· · 

Consider the set of the upper endpoints of our segments and constrhct 
its convex hull. Denote U1, ••• , Up. the upper endpoi~ts in the lo~ver part 
of the hull (from left to right) as in fig. 8. Analogously let Ii, ... , Uq 

denote· the lower endpoints of our segments constituting the upper part 
ofthe convex hull of all the lower endpoints: 

The following algorithm for the function D minimization comes out: 

1. Draw the line through any two neighboring points ui, Ui+i and look 
for a point Ii which is the most dista~t from this line. Denot~ the 
corresponding· distance by -p; 
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2. Transfer our line to half a distance closer to the lower endpoint 
found at step 1. 

3. Repe~t steps 1~2for all pairs Ui, Ui+i and then repeat'. steps 1-2 once 
again b~t for the opposite endpoirits,: t~ke lower endp~ints Ii, li+l, 
look for an upper: one Uj and so on. · 

-The track-candidate for which the minimal value p is attained gives the 
solution _of our problem (5). . 

.The above proc~dure admits an· extension _to circular tracks. The 
corresponding algorithm is very similar to the above one and we will not . . ,, ' ' 

-go into d~tails. 

9 Conclusion 

Our study showed the striking r~sults of taking into account the discrete · 
nature of electronic detectors and the a,rt of their staggering iri experi-
mental setup. · 

However it is necessary to keep in mind the idealized character of .the 
single t~ack models considered. Therefore at the next stage of our study · 
we are going to consider most important practical circumstances, like 
imperfect detection efficiency, noisy points and random cluster size due· 
to track crossing, multiple scattering etc: All these factors inay decrease 
our.algorithm contribution. The special careful exploration is needed to 
optimize algorithms and obtain quantitative estimations. 
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80CCTa~oBneHHe TpeKOB B gHCKpeTHWX 

geTeKTopax 

E 10_-91-361 

B pa6oTe npoBegeH BepoHTHOCTHWH.H reoMeTpttqeCKHH aHa

nH3 gaHHbIX, nonyqaeMbIX Ha 3KCnepHMeHTanbHblX ycTaHOBKaX 

TaKHX, K8K MHororipoBonoqHbie nponopll;HOH_anbHbie KaMePb! HnH 

CTPHDOBble geTeKTOpbl. TeopeTHQeCKHe Hccne)],oBaHHH noKa3a_nH, •· 

QTO yqeT 3cpcpeKTa ,l];Hci<peTHOCTH gaeT ynyqrne1rne TOQHOCTH . 

ou;eHKH naPaMeTpOB TpeKOB B vN pa3 no cpaBHeHHID C TpagH-. . . 

ll;HOHHblM MeTO,l];OM HaHMeHbIIIHX, KBagpaTOB (N - QHcno H3Mepe

HHH) • )lnH' HgeanH3HPOBa.HHOH MogenH npHMOnHHeHHbIX TpeKOB 

npegno)KeH npocTOH, ygo6HblH H 6bICTpblH anropHTM HX BOCCTa

HOBneHHH, b6o6~eHHWH T~K)Ke Ha cnyqaH gyroBWX TpeKOB. qHc

neHHb!H aHanH3 Ha ocHoBe napaMeTpoB YcTaHoBKH APEC: nog

TBep.nttn TeopeTHQecKHe ou;eHKH. IIpegno)KeHo pacrnttpeHHe an
ropHTMa ,nnH yqeTa T8KHX cpaKTOPOB peanbHWX H3Me~eHHH, KaK 

MHoroKpaTnoe pacceHHHe. 

, Pa6oTa· BblDOnHeHa B Jia6opa_TOpHH BblQHcnHTenbHOH TeXHHKH 

H OBTOM8Tl!38ll;HH 'omn-1. 
Coo6merne 061,enHHeHHoro HHCTHryTa
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Chernov N.I. et al. El0-91-361 
Track Reconstruction in'Discrete Detectors 

The probabilistic and geometrical analysis is given 
for data from experimental facilities like multiwirepro
portional chambers or strip detectors. The theoretical 
study showed that taking into account the discrete nature 
of data gives us the accu_racy of.track.reconstruction IN 
b_etter as compared with conventional· least square fitting 
(here N is the number of measurements). For an idealized 
straight track-model a simple, 'handy and fast algorithm 
is proposed for track reconstruction. It .is modified to 
the case of,circular tracks .. Numerical analysis on the ba 
sis of. the parameters of the ARES facility confirms the · 
above theoretical estimates. The algorithm'extension is 
proposed to take into account such factors of reai obs~r-
vation as multiple scattering. 

The investigation has been performed at the Laboratory 
of Computtng Techniques and Automation, JINR. • 
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