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Phe digitized energy spectrum, registered by multichannel analy-
zer, is the sum of 3 components:
n
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where x - channel, Aipi(x) - i-th peak, B(x) - background, 4(x)-sta-

tistical error. There it is assumed, that d(x) in each channel x has
Gaussian distribution with expectation equal to zcro and varisnce
D(x)} d(xl) and d(xz) are statistically independent in each xq# ¥,3
the background is formed by slowly changing details of the sgﬁntrum,
which do not contain the useful information., The msin problem of
spectTs processing is to obtain the estimates of such quantities ~g
peak areas Si, peak positions Ni and the width v (fwhm). The common-
1y used method tn solve this problem consists in following: /1 =5/
the spectrum is divided into sections, which contain th~ isolated
peaks or groups of unresolved peaks; as mndel is takon the function

n
f(x,/\l,...,An,Nl,...,Nn,w)= N Ait'f71._(x,bf.,4,‘.'l)+]3(x) , (2)
€21
where q/i and B(x) are functions modelling peak and backgroand, rves-
pectively; q?i and B(x) are differentisble with respect to parameters;
after that the parameters Ai,Hi,W are estimated by the least squares

method (LSM); the area value is obtained from
+0Q
8y = Aif A 1(x,N1,W)dx 3)
-0

One can note the following difficulties in using this method.



1) If the peak and background models are exactly corresponding to
rezl peak end background, the parameter estimates are unbiased and
ti ir errors depend only on estimate variances. However, usually
Gauss or Lorentz functions, which represent the real peaks, as a
rule, only approximately are taken as models; the background models
ignore usually local fluctustions of the real background. The result
is that the estimates hsve a bias, the value of which is not deter-
mined by the method. Meanwhile , the uncontrolled systematic error
is to be avoided while processing spectra with large statistic,
tecause it can overbalance the statistio error manytimes.

The bias can decrease if some complementary varying parameters
are introduced; however, this leads to the increase of estimate va-
riances; this means that the problem of reduction of estimate uncer-
tainties (variance plus bias) can not be solved merely by increasing
amount of varyi:g parameters,

One can, of course, determine somne parameters previously and fix
them varying only a small set of parameters. However, such a compli-
cation of parametric scheme requires a great caution, for if the
guantities of interest: area, position and width are composite
functions of nonphysical parameters and are not estimated immediate-
1y, their estimates can be inefficient (in statistical sense /@/)-

2) Another difficulty is connected with stability of the estimates.
First of all, one must take into account that the absolutely exact
peak and background shapes are unknown. Moreover, some disagreement
may nccur between the suggested and real conditions of the problem.
Hence, the estimates should be stable with respect to small changes
of the problem conditions: a small variation of the conditions (for

example, af the model) should lead to the sma2ll estimate variation.

The method, described below, enables to decr=ase the total error
of the estimates (variance plus bias) and to control their stability.
It is based on some ideas of pattern recognition theory/7/ and assu-
mes that there exists the pattern of a peak, which represents the
shape of this peak whatever sophistioated 1t may be.An experimental-
1y measured isolated peak with large statistic (previously smoothed
and with the extracted background), or a combination of analytical
functions, which fit this experimental peak, or an analytical func-
tion, whioh desoribes the peak shape according to theoretical consi-
derations oan be taken as suoh a pattern. Therefore, the real peaks
are obtained from this pattern by some transformationse.

The problem of recognition and description of these peaks can be
very succesfully solved when these transformations are relatively
simple and do not distort the shape very strongly /7/. One can admit
such transformations as a shift, broadening and amplification (group
of linear transformations in terms of ref./7/). In this case,1f the
real peak has the amplitude A, position N and width W, its function
may be denoted as £(x,A,NyW) 2and it is connected with the pattern
qﬂ(x) very simply:
2(x, 4,8, %) = A p( . D)

We can normalyze q?(x), so that it has a center equal to zero, width
and amplitude (or area) equal to unity. Then, (4) shows that the
real peak is obtained from g)(x) by shifting by N channels, broade-
ning by W and amplification with the similarity coefficient A.

In fact, the other characteristics of the peak shape such as
asymmetry, for example, can change along the spectrum. However, it

is not to be regarded as a gerious obstacle , because one can always



divide the spectrum into sections, in which all characteristics,
except for 3 above mentioned, are approximately constant, and pro-
cess thege sections correcting the shape model before transition
from one section to another.

Purthermore, we can estimate unlmown quantities A,N,W by ISM -fit-
ting. The relation (4) enables a simple caloulation of the partial
derivatives with respect to the parameters A,N,W, which are required

by LSM. In fact:

g%ﬂf’(z)i %=_HZ(Z); %=-‘%—Z-P;(z); (5)

’?2_—,0- azf __:_‘p" ,azf=_z¢’2“. azf___ A “ . 6
=0 Rw=- i son - T F w2 T wefes (6
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If qa(x) is given analytically, it is sufficient to lmow only gf
and g_}’: . If (P(x) is given by a table, then the values fO(X) in x,
situated between the points of the table can be calculated by an
interpolating formula and the derivatives by the difference formulas.

We can note the following advantages of this method:

1) ¢‘(x) can describe the peak shape with any exactitude and at the
same time the amount of parameters is minimal; furthermore, they are
of interest; thus, they are statistically efficlent;

2) the method is universal and allows one to process the spectra of
different kinds,without program transformation,merely by the substi-
tution of the corresponding model table;

3) it is easy to prove whether the estimates are stable with

respect to small model variations,because the appropriate model va-

riations can be performed using, if necessary, visual control means.
Now let us consider some statistical aspects of the method. On

the basis of the relation (4) a set of models can be considered:
Cwn({l(x;-—ﬂ,where -~—c0<{n< +00 * (8)

Practically, there are often used such Gaussizn models as

2 2
s . - (x=X cexp(- (X=N)

They are the particular cases of (8) with n = -1 and n=0, respecti-
vély. We wish to consider each of models (8) in order to determine
the most efficient way of parameter estimation. Let us construct for
each model its Fisher matrix /6/. In our case we assume that the
errors of the spectrum have the normal distribution so that the mat-

rix desired will coincide with that of LSM-procedure. The minimized

functional in LSM-procedure is

zg:-ﬁr%j (S(X)'f(xrﬁ))z , where €))

>
T is the abbreviation for parameters to be estimated.

The element of its matrix is written

d #(x) J £(x
byt ) 5 SR (10)

x
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where a4, =ZD—%—£)¢2(2); a13=Z%G)¢(z)y;(z)z H

I e SR N2
B22 -ZD(X) (y)z) ’ 33_25&(2502) *
X X

We neglect the elements b12, b21, b23, b32, because they are compara-

1)

tively small (if the asymmetry of QJ(x) is at a reasonable level).

[N

The determinant of the matrix is
- 6n-4 2
Det = c'w ayy(ayqa35 = a13) .
The area of model (8) will be
+ 0O
o1 x-=N n+1l
S = fcw ?(—w—)dx = o™t a2)
provided that the area of y>(x) is equal to unity. Then we find:
2n~6 2
Det = 5" Cay,(agy2;3 - 813) (t3)

i.e. if the area is fixed,the determinant is greater for the greater
n. On the other hand, if we put n. = 313/311 , we make matrix almost
diagonal, i.e. the estimates C,W,N will be uncorrelated.

The reciprocal of the matrix is:

I 1 I I

Infayy - 2033+ %33 1 _ I._ Bay) - &5 1

I wang % 1 9 lca I /,
I T 1 I

I I L I I 1

- I n—2 -

I I o5 2, I 1

I I 1

I z 3 1

I majy = 213 1 _ % a1y I

7wl I I w2y 1

I i 1 I

where 4 = a,.a - a2

11233 ~ 213 °
8

Let us evaluate the variance of the area estimate. We can use

the formula for variance of the function of random quantities

f(l'll,...,'lk): A
£ 92 oov
Dt =Z§9&‘ Wj (Qis rzj)
t,j4

2
DS = % (2-11+ 2313 + 8.33 ) ’ (ll")

We obtain

i.e. the area variance does not depend on ne. One should notice that
if the width W is varied, then (in the case 6f usually suggested
Poisson distribution) the area variance differs from its expecta-
tion (otherwise, if W kmown and, therefore, fixed then the variance
and the éxpeotation should be equal)e.

Purther, the position and width variances are, respectively:

1 a
IN = =iy 3 DW= e b— . (15),(16)
cw " %a,, ’ cewen—2q ’

For a peak with the area 3, taking into account (12), we haves

4 aq Wt
DN = _37"‘1;“ H DW = %l an
£ 22 35 a

£

The relations (14),(15),(16) are available if the background has
been previously gubtracted. In the general case, we should estimate
the peak and background parameters simultaneously.Then the accuracy
of peak parameters estimates will depend on the amount of informa-
tion about background. Commonly is assumed that the shape is known
(polynomial, for instance) and only the amplitude is to be estima-
ted. Then we can take -the spectrum model in the form:

f(x):Al’bl(x) + Azbz(x) + eee + Apbp(x) + C‘-1n¢ (3‘-‘1)
where bi(x) - the background functions, A; — their amplitudes.



Further, we can construct Fisher matrix and seq, that none of Ai

influences the variances of peak parameter estimates. Thus, we can
conclude in this case, that the accuracy of peak parameters depends
on the shape of background and does not depend on its level (the in-
direct dependence mzy be if, for example, the variance of the spect-
rum depends on its level: the case of Poisson distribution of the

counts).
While processing the section with many peaks the parameters of

one peak do not influence those of another if the peaks are not over—
lapped. Otherwise, the correlations between the parameters of the
overlapped peaks arise. In this case the quality of estimates will
depend on the parametrisation way. Let us consider the doublet,which

can be described by two different models:

Y1 =C1¢1+ Cof0s Po=G-8p; + 4+B)P,

We have fixed here the position and the width.
The deferminants of 1SM - matrices are

det) = a® -~ b2 5 dety = 4(2°% - v2) ,

2
» =2 5y #109%) 50545
X X

The second matrix will be approximately diagonal.

where
b= Z 5'(31(_)‘/71(") (=) .

X

The variances are

a 1 1
DCi= DC,= 52— ; DA = i DB = . 1s)
17 7727 g2p2 2(a+b) 2(a=b)

The second model gives the more effioient estimates. By analogy to

that let us consider the optimal parametrisation of the position

(the amplitudes and the width are fixed).Let us take two models:
Y= Al(p(x—Nl) + A2(p(x-N2); Vo= Alw(x—N+S) + Azp(x—N-S) . Q19)

. e ..4

The determinants are
2,2,.2 42+ . 2,2, 2 .2
det,= A1A2(a ~b°) ; det,= 4A1A2(a -b°) .

The varlances are

2 a
DN, = ; DN, =
1 Ag(aé—bz)’ 2 Ag(az-b!)
(20)
2 2
_ (A] + AS)a = 2A44,b 2 2
DN = B2 2(:3—‘2> 2 i DS = (Al + Az)a + 2A4A50 .
142 2,2,.0 .2
4A1A2(a -b°)

The second model gives here more efficient estimates tco. Thus, it
is more appropriate to describe the doublet by such characteristics:
1) the center of gravity K ;

2) the deviation from center of gravity 3 ;

3) the mean amplitude A ;

4) the deviation from the mean zmplitude B .

This parametrisation is more suitable when the decompositicn of the
doublet is not necessarye.

The full matrix for simultaneously estimated parameters of seve—-
ral peaks and background has, of course, the more complicated struc-
ture and its consideration in the general case does not give the pos-
sibility to obtain the analytical formulas for estimate variances,
but if we neglect some unessential details and small quantities, we
reduce the consideration of full matrix to above given considerations
of separate blocks of this matrix.

We must point out one more source of estimate errors, namely,
the computational one. Us;ally, if the ISM - matrix is well condi-
tioned (its determinant is great) and minimisation process is cor-

rectly performed, the computational error, compared with statistical



one and error due to uncertainty of models, 1is negiectibly small.
However, when the determinant is close tb zero, the computational
error becomes great. It is difficult to evaluate 1t, thus one can
only recommerd to use the models with well conditioned matrix.

The premature interruption of the iterational procees can increa-
se the computational error too: the estimates are not in this case
least squares estimates and have a bias and non-minimal variance. It
occurs usually while using the minimisation methods with slow and
non-monotonous convergency: gradient, stochastic and so on. In order
to avoid thls error, the following minimisation procedure is the
most desirable:

1) at first, the method with great radius of convergency should be
employed (gradient, Gauss—Newton or some others);

2) at last, the method with great rate of convergency, €.8. Newtonj
the Newton's method has also the advantage: its matrix is the
2-nd derivative of the functional and if it is positively de-
fined, then we are at minimum point.

Taking into account (11),(14),(15),(16),(18),(20), we can conclu-
de: if the models are in agreement with the real objects and the com—
putation is correctly performed, the orrors -of estimates depend only
on following factors:

1) the variance of the spectrum D(x) (an unfavourable factor);

2) the statistic S'(a favourable one);

3) the width W (an unfavourable one);

4) the shape of background (an unfavourable one).

Thus, the accuracy of the estimates is defined by these factors and

in order to improve it, the improvement of the factors is required.

It was assumed above, that the amount of peaks in the spectrum

is ¥nown. However, the situation often occurs when it is unknown zand
the experimentator can only construct some hypotheses about it.
Further, he tests these hypotheses in order to accespt those of signi-
ficance. Recently a set of methods was proposed to construct these
hypotheses automatically/e’g/. Omitting the znalysis of details of
these methods we consider only the final stage of testing the hypo-
theses. There are difficulties in two following situations:
1) if the spectrum contains the overlapped peaks;
2) if the spectrum contains the weak peaks.
Let us consider both cases. Suppose that the real spectrum has
m peaks and there are two hypotheses:
Hm ~ the speotrum has m peaks;
Hn - the spectrum has n peaks.
We can put for simplicity m=2, n=1. Let us use the most powerful cri-
terion of likelyhood ratioflo/. If the spectrum s(x) has sufficient-
1y large statistic in each channel (s(x)) 5-10), then it has approxi-
mately Gaussian distribution, so that the ratio of likelyhoods is:

WE)  exp(-) L ae) - ap D)

2
L(h)  exp(-) frmy( sGa) - Y B¢ G
X J=1

where A,N,Wl and Bl’ Bys Nl’ N2, W, are ISM — estimates of parameters

for the hypotheses Hl and H2, respectively. It may be written:

2 2
c,- exP(-Zs%a(Ang'(;Bj RL 2s(x)(A(p—JZ\Bj PN - (22)

only one of hypotheses is acceptable, but we can surely reject the
other hypothesis only when C1 differs essentially from 1. Otherwise,

they will be simultaneously significant and we can not draw safe in-

13



ference about amount of peaks. However, if Nl is elose to N2, N is
situated with gzreat probability within the range (NI’N2) and expan-
ding }E<qu§ in the Taylor's power series in (Nj-N) we can show that
if Hg‘Nl tends to zero, then Bl+ 32 tends to A and Wy to Wl s whence
Cq tends to unity. Thus, a minimally admissible limit for the diffe-—
rence N2-N1 should be put, in order to guarantece the unique signifi-
cance. Denote it R (resolution). In the case m=l, n=2 we come to the
same conclusion.

The analogous consideration of the 2-nd situation (weak peaks)
enables to conclude: a minimally admissible limit for the amplitude
of peak should be put, in order to have only one hypothesis from all
significant. Denote it S (sensibility).

These limits remove not unlque significance of the hypotheses as
well as prevent the degeneration of the LSM-matrix. It follows from
(22), that they depend on the same factors as the accuracy of esti-
mates: the variance D(x), the statistic Spand the width W.

Certainly the shape of background influences the safety of the infe-
rence too. Moreover, the lccal background fluctuatlon, which looks
as a peak, 2nd the real peak can not be distinguished by statistical
means, if the complementary physical 1nformgtion is not used. This
emphasizes the necesslty of development of such methods of automatic
peak finding, which imply also the physical analysis of the spect-
rum (e.g. the prediction of the lines belonging to known isotopes in
x or x ray spectra, using the available tables, or the calculation
of the resonance erergies in neutron diffraction spectr~ and so cn).
The computer program UPEAK as the implementation of the method
described is written in FORTRAN-IV and was used, most succes—

fully when the decomposition of lines with nor-Gaussian asymmetry

14

and excess was required. The peak models are given by tables and
can vary along the spectrum; two different models are admissible for
simultaneously analysed peaks (e.g. photo and escape peaks inJﬁspeo—
trum). The resolution R and sensibility 5 can be given or taken from
statistical conditions. The initial values for the positions and
width are required. Each parameter may be fixed or restricted by
lower and upper limits.
The memory capacity needed for the program is less than 32K for the
4096 ~ channel spectra analysis. An average time is about 1-2s per
analysed peak ( CDC=6200 ).
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