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~he digitized energy spectrum, registered by multichannel analy­

zer, is the sum of 3 components: 
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s(x) "' .[ Aipi (x) + B(x) + d(x), (1) 

•=1 
where x- channel, Aipi(x)- i-th peak, B(x)- background, d(x)-stn-

tistical error. There it is assumed, th~t d(x) i~ c~ch ch~nnel x hHs 

Gaussian distribution with expectation equal to zc~o and vari,>.nce 

D(x); d(Y
1

) 'tnd d(x2 ) are st:;~.tistic~lly independent in each x1! :r:;:>; 

the background is formed by slowly changl.ne; dct~>.ils of the sp_entrulll 1 

which do not contain the use~tl information. ThP rna~~ problem of 

spectrA. processing is to obtHin the estimntes of such ')U<Jllti ties :o.o 

peak are,q,s Si 1 peak positions Hi and thP. width V! (fwhm). The "ommon­

ly used method to solve this problem consists in following: /l - ~/ 
the spectrum is divided into sections, which contain th" isolated 

penl-.:s or eroups of unresolved pe~ks; as modf· 1 1" tr;l'~n thP !'!motion 
r'l 

f(x,A
1

, ••• ,A 1 N1 , ••• 1 N 1W) = ~L_ A. V.' 1 {Y:,N,,W) + B(x) (2) n n l r " . 
t=.:. 

where If i nnd B(x) «re functio"ls mod()) ling peHk 'md k~cJr3ro•mc1 1 res-

pectively; rpi and B(x) are differentiable vlith respect to parameters; 

after that the parameters Ai,n1 ,w nre estin:ated by the least s1uares 

method (LSM); the are::t. value is obtained fron: 
-t CXl 

Si = Ai J 'f i (x 1 Ni 1W)dx 

-00 

One can note the following difficulties in using this method. 
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1) If the peak and l'acke;round models are exactly corresponding to 

re<1l pe<J.l' ;ond background, the parameter estimates are unbiased and 

t!.• L r errors depend only on estir.mte variances. However, usually 

Gauss or Lorentz functio"1s 1 which represent the real peaks, as a 

rule, only approximately are taken as models; the background models 

lgnnre usually loc"\J. fluctue.tions of the real background. The result 

1s that the estirnCJ.tes he.ve a bias, the value of which is not d'3ter-

mined by the method. Meanwhile , the uncontrolled systematic error 

is to be avoided while processing spectra with large statistic, 

becHuse 1 t can overbalance the statistic error manytimes. 

The bias can decrease if some complementary varying parameters 

are introduced; however, this leads to the increase of estimate va­

riances; this means that the problem of reduction of estimate uncer­

tainties (variancP- plus bias) can not be solved merely by increasing 

:unount of vary:~'lg parameters. 

One cnn, of course, determine some parameters previously and fix 

them varyine; only "< Riru-:tll set of parameters. However, such a compli-

cation of pgrametric schet:~e requires a great caution, for lf the 

qu.'Lntities of jnterest: area, position and width are composite 

functions of nonphysicnl parameters and are not estimated immediate­

ly, their estim::J.tes can be inefficient (in statistical sense !G/). 

2) Another uifficulty is connected with stability of the estimates. 

First of all, one must take into account that the absolutely exact 

peak and backt;round shapes are unknown. Moreover, some disagreement 

may ncc1rr between the suggested ~~d real conditions of the problem. 

Hence, the estimntes should be stable with respect to small changes 

of the problem conditions: a small variation of the conditions (for 

ex'l.mple, ryf the model) should le'l.d to the sm:;oll estimate variation. 
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The method, described below, enables to decr'3a.se the total error 

of the estimOJ.tes (variance plus bias) and to control their stabUity. 

It is based on some ideas of pattern recognition theocy/
7
/ and assu­

mes that there exists the pattern of a peak, which represents the 

shape of this peak whatever sophisticated it may be.An experimental­

ly measured isolated peak with large statistic (previously smoothed 

and with the extracted background), or a combination of analytical 

functions, which fit this experimental peak, or an analytical func­

tion, which describes the peak shape according to theoretical consi­

derations can be taken as such a pattern. Therefore, the real peaks 

are obtained from this pattern by some transformations. 

The problem of recognition and description of these peaks can be 

very succesfully solved when these transformations are relatively 

simple and do not distort the shape very strongly 171. One can admit 

such transformations as a shift, broadening and amplification (group 

of linear transformations in terms of ref./7/). In this case,if the 

real peak has the amplitude A, position N and width W, its function 

m..<J.y be denoted as f(x,A,N,W) and it is connected with the pattern 

cp (x) very simply: 

f(x,A,N,W) = A ff( xWN) • (4) 

We can normalyze cp (x), so that it has a center equal to zero, width 

and amplitude (or area) equal to unity. Then, (4) Rhows that the 

real peak is obtained from ~(x) by shifting by N channels, broade­

ning by W and amplification with the similarity coefficient A· 

In fact, the other characteristics of the peak shape such as 

asymmetry, for example; can change along the spectrum. However, it 

is not to be regarded as a serious obstacle , because one can always 
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divide the spectrum into sections, in which all characteristics, 

except for 3 above mentioned, are approximately constant, and pro­

cess these sections correcting the shape model before transition 

from one section to another. 

Furthermore, we can estimate unknown quantities A,R,W by LSM -fit­

ting. The relation (4) enables a simple calculation of the partial 

derivatives with respect to the parameters A,N,W, which are required 

by LSI\1. In fact: 

af -me)· Of Atn
1
(z); Of -!A tO'(z)• dA - T z ' 3N = - ji"Z fi = W T Z ' 

*
J "()l I dl I i 

2 -o· ~---.f.z· ~=-z~z. ,.....t= 
- ' aAoN- W ' aAoW '"T'" ' aN" 

dlf A • II 

dNdw = W2( "Pz + z lfJzz); 

J 
df Az , ,.. 
CJw2= W2' (2 <fz + z 'Pzz)' 

where z = x-N -w· 

A 11 

y;2 'f'zz 

(5) 

(6) 

(7) 

If !p (x) is given analytically, it is sufficient to know only ~ 
and ~ • If IIJ (x) is given by a table, then the values {1) (x) in x, 

0 x.l r T 

situated between the points of the table can be calculated by an 

interpolating formula and the derivatives by the difference formulas. 

VIe can note the following advantages of this method: 

1) ~ (x) can describe the peak shape with any exactitude and at the 

same time the amount of parameters is minimal; furthermore, they are 

of interest; thus, they are statistically efficient; 

2) the method is universal and allows one to process the spectra of 

different kinds,without program transformation,merelyby the substi-

tution of the corresponding model table; 

3) it is easy to prove whether the estimates are stable with 

respect to small model variations,because the appropriate model va-
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riations can be performed using, if necessary, visual control means. 

Now let us consider some statistical aspects of the method. On 

the basis of the relation (4) a set of models can be considered: 

cwn (/) (xWN), where - oo < n < + oO • 

Practically, there are often used such Gaussian models as 

___ s_ 2 l'jjf 
6 

• exp(- (x-~) 26 ) and A•exp(- l~!dii) 2 62 • 

(8) 

They are the particular cases of (8) with n = -1 and n=O, respecti­

vely. We wish to consider each of models (8) in order to determine 

the most efficient way of parameter estimation. Let us construct for 

each model its Fisher matrix 161• In our case we assume that the 

errors of the spectrum have the normal distribution so that the mat­

rix desired will coincide with that of LSM-procedure. The minimized 

functional in 13M-procedure is 

~ D(;) (s(x)-f(x,p))
2 

, where 

"' p is the abbreviation for parameters to 1Je estimated. 

The element of its matrix is written 

bij =In(;) 
X 

Thus, we hElve: 

a r(x) () f(~ 
dPi ~ 

(9) 

(10) 

t-;----------1--------r--;--;:----------------I 
I W a

11 
I - I GW n- (na11 - a 13 ) I 

I I I I 1---------------y----------T---------------I 
I _ I G2,12n-2 I I 

' a22 I - I 
I I I I 
I---------------~--.---------y--------------------------I 

± 2n-l )i I 2 2n-2 2 I I CW (na
11

-a
13 1 - I C W (n a11-2na13+a33) I I _______________ I ________ .J _______________ I 
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' 1 2( )· where ~1 = L,_jj'(X) r z ' 
>( 

'1 I 2. 

a13= I.kx) rp (z)f?)z)z 
X 

a33= Ln(x) (z rp ~)2 • 
(11) 

a22 =LD(x) Cf/z)' 
X X 

We neglect the elements b12 , b21 , b 23 , b32 , because they are compara­

tively snall (if the asymmetry of ~(x) is at a reasonable level). 

The determin~t of the matrix is 

L6n-4 ( _ a2 ) • 
net= c·w a22 alla33 13 

The area of model (8) will be 
-roa 

s = J cwncpcx;N)dx = cwn+l (12) 

··OCI 

provided that the area of ~ (x) is equal to unity. Then we find: 

LL2n-6 ( 2 ) 
Det = s·w a22 ~la33- al3 ' (H) 

i.e. if the area is fixed,the determinant is greater for the greater 

n. On the other hand, if we put n = a13/a11 1 we make matrix almost 

diagonal, i.e. the estimates C1W1N will be uncorrelated. 

The reciprocal of the matrix is: 

I-2----
i n all - 2nal3 + a33 

I w2nd 
I -----
I 
I 
I 
I 
I------
I - nall - al3 

I I I 
I I ~l- ~3 I 
I - I - I 
I I w2n-lcd I 

I I 
I 1 I I 
I 

0
2w2n-2 I - I 

I a22 I I 
I I I 

I I ~ 
I I all I 
I - i c2w2n-2d i I w2n-icd 

I I I 

where d 2 
alla33 - al3 
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Let us evaluate the variance of the area estimate. We can use 

the foi~ula for variance of the function of random quantities 

f('ll' ... , 'h): 
~ 

Df = L ~ 1-,t cov( '1_. 1 '(j) 
'li "{j I 

,,jd. 
We obtain 

w2 
DS = d (all+ 2al3 + a33 ) . (14) 

i.e. the area variance does not depend on n. One should notice that 

if the width W is varied, then (in the case of usually suggested 

Poisson distribution) the area variance differs from its expects-

tion (otherwise, if W known and, therefore, fixed then the variance 

and the expectation should be equal). 

Further, the position and width variances are, respectively: 

1 
DN = 2 2n-2 C W a 22 

au 
DW = :2 2n-2d c \'{ 

(15),(16) 

For a peak with the area Sf' taking into account (12), we have: 

DN w4 

s~ a22 

DW = allw4 
S2d 

f 

(17) 

The relations (14) 1 (15),(16) are available if the background has 

been previously subtracted. In the general case, we should estimate 

the peak and background parameters simultaneously.Then the accuracy 

of peak par11.meters estimates will depend on the amount of informa­

tion about background. Commonly is assumed that the shape is known 

(polynomial, for instance) and only the amplitude is to be estima­

ted. Then we can take·the spectrum model in the form: 

f(x)=A
1

b
1

(x) + A2b2(x) + ••• + ApbP(x) + C\fl!p(xWN) 

where b
1
(x)- the background functions, Ai- their amplitudes. 
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Jo'urther, we can constr'-lct Fisher matrix and se~, that none of Ai 

influences the Yariances of peak parameter estimates. Thus, we can 

conclude in this case, that the accuracy of peak parameters depends 

on the shape of background and does not depend on its level (the in­

direct dependen0e may be if, for example, the variance of the spect-

rum depends on its level: the case of Poisson 

counts). 

distribution of the 

While processing the section with many peaks the parameters of 

one peak do not influence those of another if the peaks are not over­

lapped. Otherwise, the correlations between the parameters of the 

overlapped pe'<ks ar1se. In this case the quR.lity of estima.tes will 

depend on the parametrisation way. Let us consider the doublet,which 

can be described by two different models: 

V'j = Cllfl + c2 ~2; ~ 2 = (A - B) ~ l + (A + B) 9' 2 

We have fixed here the position and the width. 

The determin.'lnts of LSM - matrices are 

det1 = a 2 - b2 ; ( :? 2 det 2 = 4 a - b ) , 

where 
'1 2()"'\ 1 2 )· 

a = Lnrxl <p 1 x ~LD(x) lp 2(x ' 
b- \ 1 - LnCx) ffJI(x)f{J2(x) 

X X X 

The second matrix will be approximately diagonal. 

The variances are 

a DA = __!_; DB=__!_ • (18) DC1= DC 2= ~ ; 
a -b 2(a+b) 2(a-b) 

The second model gives the more efficient estimates. By analogy to 

that let us consider the optimal parametrisation of the position 

(the amplitudes and the width are fixed).Let us take two models: 

!p1= A
1

cp(x-N1) + A2 tp(x-N 2); YJ 2= A1 ~(x-N+S) + A 2 ~(x-N-S) • (19) 
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The determinants are 

2 2( 2 2 det1= A1A2 a -b ) 

The variances are 

DN1= 

2 2) (AI + A2 a - 2A1A2 b 
4AfA~(a2-b2) 

DN 

2 2 2 2) det2= 4A1A2(a -b • 

DS = (Al + A~)a + 2A1A2b 

4AiA~(a2-b2 ) 

(20) 

The second model gives here more efficient estimates too. Thus, it 

is more appropriate to describe the doublet by such chara-cteristics: 

1) the center of gravity N ; 

2) the deviation from center of gravity S 

3) the mean amplitude A ; 

4) the deviation from the mean 2mplitude B • 

This parametrisation is more suitable when the decomposition of the 

doublet is not necessary. 

The full matrix for simultaneously estimated parameters of seve­

ral peaks and background has, of course, the more complicated struc­

ture and its consideration in the general case does not give the pos­

sibility to obtain the analytical formulas for estimate variances, 

but if we neglect some unessential details and small quantities, we 

reduce the consideration of full matrix to above given considerations 

of separate blocks of this matrix. 

We must point out one more source of estimate errors, namely, 

the computational one. Usually, if the LSM - matrix is well condi­

tioned (its determinant is great) and minimisation process is cor­

rectly performed, the computational error, compared with statistical 
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one and error due to uncertainty of models, is neglectibly small. 

However, when the determinant is close to zero, the computational 

error becomes great. It is difficult to evaluate it, thus one can 

only recomm~~d to use the models with well conditioned matrix. 

The prematQ~e interruption of the iterational process can increa-

se the computational er~or too: the estimates are not in this case 

least squ~res estimates and have a bias and no>~.-minimal variance. It 

occurs usu.,_lly while using the minimisation methods with slow and 

non-monotonous convergency: gradient, stochastic and so on. In order 

to avoid this error, the following minimj_sRtion procedure is the 

most desirable: 

1) at first, the method with great radius of convergency should be 

employed (gradient, Gauss-Newton or some others); 

2) at last, the method with great rate of convergency, e.g. Newton; 

the Newton's method has also the adv~ntage: its matrix is the 

2-nd derivative of the functional and if it is positively de-

fined, then we are at minimum point. 

Taking into account (11) 1 (14) 1 (15),(16),(18),(20), we can conclu­

de: if the models are in agreement with the real objects and the com­

putation is correctly performed, the errors of estimates depend only 

on following factors: 

1) the variance of the spectrum D(x) (an unfavourable factor); 

2) the statistic s4 (a frwourable one); 

3) the width W (an unfavourable one); 

4) the shape of background (an unfavourable one). 

Thus, the accuracy of the estimates is defined by these factors and 

in order to improve it, the improvement of the factors is required. 

It was assumed above, that the amount of peaks in the spectrum 
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is known. However, the situation often occurs when it is unknown and 

the experimentator can only construct some hypotheses abo'.lt it. 

Further, he tests these hypotheses in order to accept those of sicni­

ficwce. Recently a set of metho<l.s was proposed to construct these 

hypotheses automaticallyl8,9/. Omitting the a.nalysis of details of 

these methods we consider only the final utage of testing the hypo­

theses. There are difficulties in two following situations: 

1) if the srectrum contains the overlapped peaks; 

2) if the spectrum contains the weak peaks. 

Let us consider both cases. Suppose that the real spe~trmn has 

m peaks and there are two hypotheses: 

f~ - the spectrum has m peaks; 

~ - the spectrum has n peaks. 

We can put for simplicity m=2 1 n=l. Let ~s use the most powerful cri­

terion of likelyhood ratio/lO/. If the spectrum s(x) has sufficient­

ly large statistic in each channel (s(x)) 5-10), then it has approxi­

mately GaussiP~ distribution, so that the ratio of likelyhoods i9: 

L(H2) 

exp(-L]rx ( s(x) _ A1f(x-:"N))2) 
,. D x) l/1 

"1 l 
exp(-{r-DCX)( s(x) _ Injlf'(x~~j))2) 

J '1 

L(~) 
cl ' (2J.) 

whel:'e A
1
N

1
VI

1 
c>.nd B

1
, B2, N1 , N2, r1 2 are LSM - estimn.teR of parameters 

for the hypotheses H1 and H2 , respectively. It may be written: 

~ 2 ? .2 2 
2 

c
1

= exp(-L~(A ~ --c LBj tpj) + 2s(x)(Acp- 2>j ¥>j))) • 
X J•1 J·"\ 

(22) 

Only one of hypotheses is P.cceptable, but we can surely reject the 

other hypothesis only when c1 differs essentially from 1. Otherwise, 

they will be simultaneously significant and we can not draw safe in-
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ference about amount of peaks. However, if N1 is elose to N2, N is 

situated with ~re~t probability within the range (N
1

,N2) and expan­

di~g ~Bj~j in the Taylor's power series in (Nj-N) we can show that 

if N2-N1 tends to zero, then B1+ B2 tends to A and w2 to w
1 

, whence 

c1 tends to unity. Thus, a minimally admissible limit for the diffe­

rence N2-N1 should be put, in order to guarantee the unique signifi­

cance. Denote it R (resolution). In the case m=l, n=2 we come to the 

same conclusion. 

The analogous consideration of the 2-nd situation (weak peaks) 

enables to conclude: a minimally admissible limit for the amplitude 

of peak should be rut, in order to have only one hypothesis from all 

significant. Denote it S (sensibility). 

These limits remove not unique significance of the hypotheses as 

well as prevent the degeneration of the LSM-matrix. It follows from 

(22), that they depend on the same factors as the accuracy of esti­

mates: the variance D(x), the statistic s1 and the width \1. 

Certainly the shape of be.ckground influences the safety of the infe­

rence too. Moreover, the lccal background fluctuation, which looks 

as a peak, and the real peak can not be distinguished by statistical 

means, if the complel'lentary physicrtl information is not used. This 

emphasizes the necessity of development of such methods of '1Utomatic 

peak finding, which imply also the physical ~nalysis of the spect­

rum (e.g. the prediction of the lines belonging to known isotopes in 

l or x ray 8pectra, usine the available tables, or the calculation 

of the resonance energies in neutron diffrR-ction spectr~. ?nd S'J en). 

The computer program UPR~K R.S the implement~tion of the method 

described is written in FORTRAN-IV and was used, most succes-

fully when the decomposition of lines with non-Gaussian asymmetry 
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and excess was required. The peak models ar~ given by tables and 

can vary along the spectrum; two different models are admissible for 

simultaneously analysed peaks (e.g. photo and escape peaks intfspec­

tr~). The resolution R and sensibility s can be given or taken from 

statistical conditions. The initial values for the positions and 

width are required. Each parameter may be fixed or restricted by 

lower and upper limits. 

The memory capacity needed for the program is less than 32K for the 

4096 - channel spectra analysis. An average time is about l-2R per 

analysed peak ( CDC-6200 ). 
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