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!.Introduction 

Noise and vibration analysis appears to be a valuable 

tool' for non-destructive nuclear reactor condition 

monitoring [1,2]. It enables early fault detection and 

gives the opportunity to avoid abnormal operation . and 

accidental situations. However, three dimensional 

(frequency, amplitude, time) noise patterns analysis gets 

very complicated. On the one hand, the bulk of information 

is useful for deep investigations, but on the other, the 

vast of them is unessential, disturbing and delaying the 

proper reaction of an operator to the reactor operation 

changes. To make the efficient and convenient tool for an 

operator the software system should enable the proper 

signal processing speed, its handling must be as easy as 

possible and the maximum information should be monitoring 

in the form of comprehensive patterns, relatively simple to 

analyze to perform suitable action. Pattern recognition 

techniques for noise analysis gives such an opportunity. 



The pioneering proposition of clustering application for a 

reactor control are presented in [3,4) and still have been 

used and developed (e.g. [5,6]). The reliability of such an 

approach depends mainly on the proper choice of clustering 

algorithm. 

In this paper some of pattern recognition methods for 

reactor operative diagnostics are recommended and the 

software system based on them is presented. In the last but 

not the least chapter, the information obtained by an 

operator is exemplified. The conclusions are reported at 

the end of the paper. 

2.Diagnostics system description 

The IBR-2 diagnostics system consists of two tightly 

coupled parts. The fi~st one, fully automated, is 

responsible for data acquisition and preprocessing. It ,is 

represented. by two minicomputers SM 1300.01 equipped with 

CAMAC-standard and IBM PC/38q, connected by the RS-232, and 

software. responsible for statistics computations and FFT 

transformation.,, which transforms the fluctuations of the 
' 

power pulsed energy and positions vibrations of moving 

reflectors, i.e. the . main (qPO) and the additional ones 

(DPO), . into the. ,corresponding spectral densities PSD and 

RMSs, respectively. As earlier investigations of random 

processes [7,8] taking place in the reactor core show.that 

the character of spectral densities of energy pulse 

fluctuations is tightly coupled with the current reactor 

state, their combination may be considered as a noise image 

2 

of the reactor. The subsequent noise images, where an 

instant noise image is added to a host of images registered 

we 11 .be tore, determine -the dynamic changes of the reactor 

state. 

The second part of diagnostics system comprises 

software for data processing, which is based on clustering 

techniques and may be fully controlled by the user. Each of 

PSDs and RMSs, ~orresponding to the instant measurement of 

a respective reactor parameter may be represented as a 

point in M-dimensional Euclidean space (for our purposes 

M=257), where each of its subsequent coordinates is equal 

to the value of the spectral density amplitude for a 

subsequent discrete value of frequency. Clustering methods 

al low one to reveal the M-dimen•sional structures 

constituted by all the points, which are continually 

recorded. The tendencies of changes in various 

characteristics of clusters i.e. an abrupt change in the 

position of an instant cluster center, a change in its 

shape or initiation of a new cluster, give information on 

the reactor anomalous operation. 

In Fig.1 the software system for nuclear reactor 

diagnostics is shown. The backbone of the system i.e. the 

clustering and mapping of patterns algorithms (the .MNN and 

PRR, respectively) and the way of moni taring results and 

visualization, are described briefly in the next chapters. 

3.Clustering method 

A proper selection of the clustering method should be 
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the first stage to design a reliable tool for reactor 

diagnostics. The clustering techniques can be divided onto 

two main groups [9]: the hierarchical and non-hierarchical 

ones. The clustering algorithm ISODATA was the first 

applied to the reactor control [3,4] and is exploited up to 

now (e.g. [5,6)). It belongs to the family of 

non-hierarchical clustering algorithms. However, the 

algorithm ISODATA has several deficiencies which obliged 

one.to look for a better method i.e.: 

• it gives adequate results rather for static than dynamic 

systems and needs several parameters, which must be fitted 

to various operation conditions, 

• considering the "rigid" clusters structure the new 

cluster initiation may be delayed, 

• for more sophisticated clusters structures it gives wrong 

results [6,10]. 

The hierarchical algorithm, slightly modified in 

comparison with the mutual nearest neighborhood method 

(MNN) presented in (10), is recommended here and described 

briefly. 

Let us assume that N spectral densities are considered 

and each of them can be represented by a point x . in ~ 
1 

dimensional Euclidean space w, i.e.: 

x . e: w, . dim w = M, 
1 

and i = 1, 2, ... , N. 

X • = (x .
1

, X •
2

, ••• , X .M), 
1 1 1 1 

(1) 

Two kinds of distances between these points are defined. 

The first one: 

s .. = (x. - X .) T (x. - X .) 
lJ 1 J 1 J 

(2) 
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is the square of the classical Euclidean distance. Whereas, 

the second is defined as follows: 

mnv . . = L . (j) + L .(i) , 
l] 1 J • 

(3) 

where L.(j) means the position of the x. point in the list 
1 ' J 

of k. neighbors of the x. point, which is constructed in 
1 1 

accordance with the increasings. distance, where mis the . 1m 
neighboring point number provided that: 

s. s R (4) 
llll CU t, 

As the number of the nearest neighbors k. performing 1 

condition ( 4) is different for each point i, the maximum 

mnv distance is less or equal to: 

mnv = max{k .} + max{ {k.} - {max{k.}}} 
1 1 

(5) 
MAX 1 

i i i 

and we can conclude that: 

'<:/ i, j; 2 s mnv . . s mnv 
lJ MAX 

(6) 

The agglomerative procedure commences with the situation, 

where each point belongs to the one out of N separate and 

one-element clusters. The · agglomeration of them is 

performed sequentially in accordance with the increasing 

mnv distance. For'the {i,J} pairs of points with equal mnv 

distances, an agglomerative procedure is performed; but now 

in accordance with the increasing s .. distance. The process 
lJ 

is continued until all the pairs with the maximum mnv 

values will be considered. The final clusters number K 

depends on R (cut-off radius) only. To obtain the 
CU t, 

may be corrected, if necessary. 

reasonable· number of clusters, 

e.g. at the beginning stage of 

R must be fitted once 
CU t, 

a diagnostics process, and 

In the original MNN method 
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(10] the number of neighbors k for each point are 

equivalent and must be given a priori .. Agglomerative 

process is finished, when all the points for~ the single 

cluster or a "rigid" number of clusters specified earlier. 

The procedure recommended here· gives the "soft" stop 

condition and the number of clusters may vary in time. 

Moreover, R determines the minimal separation between 
cut 

clusters. 

In comparison with the computational efficiency order 

our) for the algor:ithm presented in (10], the proposed 

version is the 0( N) order, assuming that for both of them 

the distances table [)= [s .. ] is computed and stored only 
lJ 

once, at the start of the system and is supplemented 

continually during operation. Using the linked-lists 

concept (11] additional memory savings are obtained. These 

properties enable the system implementation to. use 

non-sophisticated, standard, table- standing personal 

computers, that alleviate the system handling and 

contributes to costs savings .. Additionally, the method 

presented here enables one to recognize the sophisticated 

clusters structure e.g. branched, spherical, "bridged" and 

others (10), and lets one to follow the clusters formation 

process. 

4.Clusters analysis and visualization ~orithms 

The information on the points distribution among 

clusters is very valuable. The single cluster comprises the 

points, which are close together or form a specific shape, 
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due to some "similarity measure" (the Euclidean distance in 

this paper). It may be assumed that all the points which. 

belong to the same cluster refer to.the same physical state;· 

of a reactor. They determine the global characteristics of: 

a single cluster. If the subsequent point (which represents 

the _subsequent measurement) falls to some of the existing 

c 1 usters, the actual operationa 1 characteristics can be·_ 

determined immediately. Else, i.e. a new cluster is formed, 

additional studies are needed. However, each new point is 

carrying a new. information, which changes more or less a 

c 1 uster shape and its characteristics. Such a structural 

change may appear for ,anomalous operation as well~ So that, 

not only the cluster occupation but the information on the 

clusters structures and their characteristics appear to. be 

valid. As th~ great dimension. of c.> space, their .direct 

obs~rvation is impossible, that involves other methods for 

cluster analysis and visualization. 

To determine the most informative frequencies, several 

principal. components analysis algorithms are widely used 

[4]. Two of them can be invoked optionally in the 

diagnostics system presented here~ They are based on a 

minimal entropy method and apart from frequencies analysis, 

they can be used for the decreasing of pattern dimension> 

An operator can obtain the information, . which group of 

frequencies is responsible for clustering mainly i.e. which 

group reflects the reactor operation changes. The 

appearance of the new informative frequencies may signal 

the anomalous reactor operation and must be carefully 

examined. For each cluster the. information concerning its 

representation and compactness is available. The distances 
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between the clusters centers, an average distance between 

spectra and a cluster center and average standard deviation 

of distances between spectra and a cluster center, can be 

computed. The time characteristic shows the cluster number 

each subsequent spectral density belongs to. 

The cluster analysis entities presented above, gives 

rather poor information about the clusters structural 

changes. To observe them directly the mapping of patterns 

meth.ods seem to be attractive. The PRR program, which 

constitutes the second part of the software system 

comprises three ·algorithms 'transforming the M-dimensional 

Euclidean space into two-dimensional. The first one 

represents the linear Karhunen -Loeve transformation. As is 

shown in [12], it rather poorly pres·erves a real clusters 

structure, especially for the ~ophisticated clusters shapes 

and the great space dimensio_n. The non-linear mapping of 

patterns technique presented by Niemann in [12J is a better 

one. 

Let us assume that w' is an Euclidean space and: 

dim w' = M', M' < M • (7) 

The points in M' -:-dimensional space can be represented as 

follows: 

x'. = 
.1 

( ' ' ' ) x il'x i2' • • • ,x iM' • · (8) 

To preserve approximately the #-dimensional clusters 

structure, (especially the interpoint distances). in the 

M'-"dimensional space, the w' ={x'.; (i=l,2, ... ,N)} must 
0 .1 

perform the following condition [12]: 
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E(c.>,w') = min E(w,w'), 
0 , 

c.> 

(9) 

where: 

2 I 2 
E ( c.>, C..)' ) = I ( s j k - s ~jk) I • s j k (10) 

k< j k< j 

and N j-1 

I I I. (11) 

k< .i _j=2 k=1 

Niemann in [12J presents the iterative and deterministic 

technique for a minimum (9) finding. This method- slightly 

improved- is imple~ented in the diagnostics system. 

However, the Niemann algor:ithm is not able to find the 

global minimum of (10), but .rather a local one. The 

simulated annealing method (13] which may be optionally 

invoked should enable one to find global minimum not only 

for (10) but for other criterion function as well. As this 

method is very time consuming, authors recommend to apply 

it rather for long time investigations. Up to now, the 

improved Niemann algorithm seems to be sufficient for IBR-2 

operation monitoring. 

5.Monitoring and visualization 

The programs mentioned above are written in the 

FORTRAN 77 and OLYMPUS standard. The system has been 

deve 1 oped on IBM PC /386 ( 387, 20MHz, 1MB) c 1 one; Two work 

regimes are available. The first one- "suppressed"- is 

intended to monitoring reactor operation. It uses a set of 
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the fastest procedures of the software system, is fully 

automated and needs the 1 imi ted operator action only. On 

the EGA display the main information is shown, which may be 

immediately analyzed by an operator. The second one 

-"extended"- is destined for long term investigations. 

Then, all the system possibilities can be used. Some of 

them are scheduled below. 

• The row spectral densities and all the statistical 

information stored on the data base may be displayed. 

• Two c 1 ustering meth.ods may be optionally invoked i.e. the. 

ISODATA algorithm and MNN method. 

• The clusters agglomeration may be traced and interrupted 

at the optionally chosen stage. 

• The optional "window" of frequencies and optional data 

sample may be considered. 

• Two principal component analysis methods are available. 

• Coordinates clustering is possible if necessary. 

• Three mapping of patterns methods may be optionally 

invoked and optional combination of them is possible. 

• Three dimensional patterns may be obtained. 

• Apart from EGA display, the line printer and plotter may 

be used as graphical output. 

The system has been developed at the IBR-2 reactor and 

its use in "suppressecf' version is exemplified below. The 

subsequent PSDs are considered as images of the reactor 

states (with a new moving reflector) from the beginning of 

December 1987 to January 1990. Instant measu~ements are 

added to the host of images registered well before. If they 

are correct, the programs MNN and then PRR are invoked. The 

results of computations are stor:-ed on the hard disk. After 
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Fig.1 The diagnostics software system 

the response on the first prompt, the global 

characteristics of the clusters structure are displayed 

(see Fig.2). The positive response on the second prompt 

gives ·the possibility to show the internal clusters 

characteristics. In Fig.3 the information on e.g. the fifth 

cluster is gathered. An operator can observe the clusters 

centers and detect their changes. In Fig .4 the result of 

clusters visualization using Niemann technique is 
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Fig.2 The information on· global clusters structure 
obtained by an operator. 
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Number process name 
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Fig.3 The information on internal characteristics of the 
fifth cluster. 

13 



22· 

17 

12 

t 

2 

P R E P R O C E S - P R R 
Version 1.0 August 1989 

CLUSTERS Visualization (Niemann preprocessing) 

0134 

5 0135 
01~136 

048 of3$3 

a50 

i 

0140 144 

01s~}.f oli4ila3° 
. l ~~D 145 n1129 

o 1~ o a• 
0117 °0!:',~G 0132 

z 
~ 

D ~6 

0 119 011a' 

c:J~ 105 6 
0121 '1'696::,120 

0
116 ' ~ 

91° ,q,o9 ~ 19s 
o ~ ~8 

6 r:137 ~ a89~1rl4 rotd 
0108 011 ~9 lill riJJ',O 

aB8
1 

85101 073 ~PH 1
0 

0114 

·o 

0 32 ,3 

039 ;&r_3 025 
o62'l~ 0 34 

'tJ~61' 0 30 4 'o31 

-3 I 111 I I 11 I 1111 I 11111 I j I Iii i I I I Ii I I 1111 I 1111111 I I I I 
11 -4 1 6 

Fig.,, The clusters structure visualization. The 

two-dimensional pattern obtained on operator display. The 

points of fifth cluster are signed by rectangles. The 

substructure of the sixth cluster is visible. The cluster 

numbers are marked by hand. 
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presented. It reflects the clusters structure correctly, 

and gives additional information on the substructure of the 

sixth cluster, which is not detected by the clustering 

procedure. The tendencies of reactor operation changes are 

visualized and may be easily traced. The clusters structure 

obtained for· the IBR-2 reactor refers to its normal 

operation. Each cluster represents Vc!,rious conditions of 

reactor operation, which depends on the actual position of 

moving reflectors and the whole construction vibration. The 

changes actually observed are fully controlled. 

6.Conclusions 

In this paper two techniques for nuclear reactor 

operative diagnostics and operation monitoring are 

recommended: the hierarchical clustering algorithm MNN and 

mapping of patterns methods. The software system, which is 

constructed on.the base of these methods; performs the role 

of friendly human- machine interface. It is designed on the 

standard computer hardware and computer system independent. 

The great deal of attention was paid to enable the maximum 

time and memory computational efficiency. The maximal. 

number of PSDs which can be considered, are limited by 1MB 

computer memory to 450. The time necessary for their 

processing on IBM PC/386 (387, 20MHz, 1MB) is equal to 

several minutes. The on-line, short-term surveillance 

similar to that presented in [2] would be possible for more 

sophisticated hardware available. For a reactor 

diagnostics, the anomalous effects, initiating accidental 

reactivity disturbances on a 10- 7 -10- 6 AK/K level are 

apparent. 
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In the near future the data acquisition will be 

oriented to IBM PC/386 hardware with the LABCARD system, 

and diagnostics software will be enriched by procedures for 

the automated operation control, enabling one to process 

greater number of measured parameters simultaneously, and 

making the system more user friendly. 
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nenenblllee ij.H., AlBMHenb B. . 
MeTOA~ rpynnMpoeaHMR,M anropMTMbl BM3yanM3a4MM AflR 
onepaTMBHOH AMarHOCTMKM RAepH~X peaKTOpoe 

El0-90-323 

OnMC,aHa nporpaMMHaR peanM3a4MR CMCTeMbl, e~nonHRIOUlelil 4>YHK4MM noMO~Hl1Ka 
onepaTopa e AMarHOCTMpoeaHMM COCTORHMR RAepHoro peaKTOpa. 0CHOBY CMCTeMbl co 
CTaBnReT aHanMl WYMOB OCHOBH~X peaKTOPH~X napaMeTpOB, HanpMMep, MO~HOCTM, 
paCXOAa TennoHOCMTenR MT.A. CoeoKynHOCTb npo4eccoe HaKonneHMR AaHH~X, MX 
npeAeapMTenbHOH o6pa60TKM,· rpynnMpoeaHMR M BMlyanMla4MM B COYeTaHMM C 3BpM­
CTMYeCKOH TeXHMKOH aHaflMla nonyYeHH~X pe3ynbTaTOB onpeAenReT cnoco6 npMMe­
HeHMR CMCTeM~. npw pa3pa60TKe nOA06H~X CMCTeM peKoMeHAYeTCR McnonblOBaTb Me 
TOA 11 6nM>11alilwero COCeACTBa" B TeXHMKe pacn03HaBaHMR06pa30B M ABa HenMHelil­
H~X anrop11TMa BM3yanM3a4MM o6pa30B. B AOnonHeHM8_ K WMPOKO MleecrH~ MeTOAaM 
KnacTepM3a4M11 ISODATA M npeo6pa3oBaHMR KapyHeHa-nosea yKalaHH~e MeTOA~ 
cocfaenR~T OCHOBY nporpaMMHOH peanMla4MM npeAnaraeMOH CMCTeM~. Oco6oe BHM­
MaHMe YAeneHO BM3yanbHOMY npeACTaeneHM~ AaHH~X M 803MO>KHOCTM nerKoro ynpae­
neHMR CMCTeMolil. C~ecTeyeT ABa pe>KMMa ee pa6oT~: "pacwMpeHHblH11 

- AflR noA­
po6H~X M AonroepeMeHH~X MccneAOBaHMH M 11 C>KaT~lil" - AflR MOHMTopi,ipoeaHl'IR pa- . 
6oT~ peaKTOpa.CMCTeMa C03AaHa M npoeepeHa Ha MMnynbCHOM peaKTOpe O~R~ ~6P-2. 

Pa6oTa e~nonHeHa e fla6opaTOPMM HelilTPOHHOH cj)MlMKM O~R~. 

IlpenpHHT O61oe,1U1HeHHOro HHCTHTyTa RAepm.a Hccne,llOB&Hmt ,Uy6H& 1990 
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The software system developed plays the role of the aid to an operator 
for nuclear reactor diagnostics. The noise analysis of the reactor para­
meters such as power, temperature and coolant flow rate constitutes the 
basis of the system. Combination of data acquisition, data preprocessing, 
clustering and cluster visualization algorithms with heuristic techniques 
of results analysis, determine the way of its implementation. The pattern 
recognition methods, namely, the mutual nearest neighborhood clustering 
technique and two nonlinear algorithms for mapping the patterns are recom­
mended here. They supplement each other, and together with the wide known 
ISODATA clustering method and Karhunen-Loeve transformation constitute the 
"backbone" of the diagnostics software system. The attention is paid to 1;he 
proper visualization of results and easy system handling. Two regimes are 
available. The first one - "extended" - is recommended for a long term in­
vestigations and the second - "suppressed" - for the aid to the reactor ope 
.ration monitoring. The system has been tested and developed at the JINR 
IBR-2 pulsed reactor .. 

The investigation has· been performed at the Laboratory of Neutron 
Physics, JINR. 
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