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Problem

Different types of cocrdinate detectors, which consist of a large num—

ber of hodoscopic planes, are widely used in high energy physics. The-—

se pianes contain many position—sensitive detectors {(sources). One pla-

ne is composed of several hundred or thousand sources and more. As a

consequence, there are tens of thousands of registration charnels in
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Fig.1. Block-diagram of a typical high energy
physics spectrometer. T7 - T3 - scintillation
hodoscopes; PCI - PC&6 and MI — MR — multiwire
proportional chambers; Ho, P, — targets.

conventional spectro-

" meters. A typicai

scheme of such a
spectrometer is given
in 4ig.1. A great vo-
lume of fast electro-
nics, special—purpose
processors {SP) and
modern computers are
required for event
registration, the ac-
cumulation of statis-
tics and the reconst
ruction of particle
interaction. It
should be noted that
the cost of modern
high energy spectro—
meters is equal to

several million dollars, and the cost of data processing electreonics
is about 4@ %. This is the reason why the problem of optimum coding and

information compression, registered in multichannel detectors of
particles (MDCP), arises so sharply. The processing of physics events

charghkd

is

hierarchical in nature. Each selection level is characterized by the dead

time r. At the first level the value of 7 equals 3@ — 5@ ns.
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time the spectrometer is put into operation, and the multiplicity of
events is determined. At the second level the coordinates of events or
other parameters, e.g. the scattering angle of particles, are
determined. If the solution is positive, the data are registered on a tape.
The method of syndrome coding for the filtration of events at the
first and second levels has been suggested by the auther [23. The use
of this method allows one to apply a mathematical algorithm of algebra-—
ic coding theory for the creation of economical and fast devices for

the registration and protessing of useful events. New results are given,
II. Systolic method of signal processing

According to the syndrome method, a Galois field slement ‘is set Ffor
each source -so that the first source corresponds to an aa element, the
second source to an a1 element and the n-th source to an an_1 element. In
other words, the positions of the sources are numbered by the degrees of
the Galois field elements GF (2™ . As data in MDCF are read out in a uni-
tary position code, the next step after amplifying and shaping the sig~

nals is their transformation to a cyclic code (Balois field element) [2,~

31, For simplicity a MDCP is assumed to have n = 26 - 1 = 63 sources {m =
6. This means that the Galois field elements are generated over an
irreducible polynomial x6+ X + 1, and the elenant a1 = PiBPAY is the root
of this polynomial. Then for multiplicity ¢t < 4 a part of the coding

matrix (parity check } H63,24 takes the form
*x0 [ I I I 1 100000 IOOOOO IOOOO0 — 1ODOCO
5 a7 0IC000 0ODIOO 00DOOI  OII0OO
z |a® o aI0 oI4 00IO00 IIDOOD OOOOIE OCIOIO
Hiz2=*3 |a® % oI o2 000100 OOOII0 O0OOIOI IIOILT
4 lat  alZ 20 438 000010 I0IOO0 DOITII OOILIO
#5 |a®  aIF @70 36 0O0DDI 0OOIUI OIO0OI 1IOIOO

62} a62 260 B8 56| | igooor ToOTIT TITITT 1ITTIO

The elements of GF(26) are presented in Appendix. Let the sources operate

I |al a3.a

simultaneously at XI - goxa - GB M xa - QE.Then we have
0, a9 4B- a28, 53 - a0 2% 16 . 361.55 - als oIB, 426 .
as® u Sy - als a?l. o35 o 6T I
To obtain a fast speed, the syndrome is calculatedcuith the aid of paral-

SI - a

lel parity checkers {(fig. 2). The analysis of thelﬂzz’ia matrix shows



information on the multiplicity
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Fig.Z. Principal scheme for the

one—digit syndrome. i — 5 MC1a1468.

that the number of checkers
can be decreased by a third if the
inputs are grouped so that coinci-
gent units in the columns of the
matrix enter into parity checking
for a variety of sSyndrome digits.
For exampie, there is a coincidence
in the first column at positions 26,
48, 43. 47, B4, OB and  $j.
Thne transformation of the unitary
position code to the Galois field
elements is executed rather fast by
the parallel method as the delay of
M 10168 is & ns. The number of synd-—
rome bits, N, is 18 for n = 83 and t
= 3. Thus, information from a £3-bit
unitary code is compressed to a 13-
bit cucglic code. The compression
coefticient is &43/1B.

iIl. Majority coincidence circuits with algebraic structure

The important property of the syndrome of the BCHM-code is to carry

and coordinates of particie interac—

tions . The algoritm of a majority coincidence circuit is bOased on the

property of the

Lt matrix. The tyt matrix L[5]

5, 1 ] a a @ ......0
54 52 Sl 1 "] Bevee...@
Lt = 55 54 S3 52 81 B.......2
o
Sap-1 Spe-z S2t-3 Sot-4 Fze-s Fae-s T
is singuiar if the weight of t is ] — 1 or less and nonsingular if the

weight of t is j orr j + 1. The expressions for a matrix determinant for

T
t

= i - 4 calculated by a computer take the fara

Det Lt
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Each vaiue of Lt cajcul ated independentiy may be equal to i or zero.
The logical expressions for a majority ceincidence circuit (MCC) contal—

ning n inputs and t outputs are of the folliowing form.
Qutput T - detledetLZVdebLs....detLj U.....VdetLt % 1
Dutput =2 = detLZVdeth....detL. V.....VuetLt A Z

Gutput 3 = dEth....detLj V.....VdetLt 5 3

i T T ]

Gutput j detLj V.....VdatLt 5 j
'

detLt ot [63
A block-diagram of the MCC is described by the expressions {23. If wWe addg

Output £

a scheme used to analyse the determinants on logical 1 or zero, we can
get rigorous equalities as seen from fig.3, where a bleck-diagram

for the caiculation of the determinant for t - L t~7. t-3and t > 4
is given. It shouid be stressed that the scheme in fig.3 is nrawn 50 that
FROMs or PLAS naving 2m inputs for variables can oe used to calcuiate tne
de terminants. This aliows one to extend the range of vaiues of n for
which the table metnod of solution can be used. S5, m - [

the straight method of decoding can pe used oniy for £t = 2 because modern
FROMs or #LAs have 18 - 20 inputs for variabies. In addition, the method
of executing combined operations in GF(z™ field is extensively used in
such a scheme ang below. The essence of the methnod iies in that the capa-
city of PROMs or PLAs used for the calculation of complicated expressions
i3 indapendent of its camplexltg but determined by the number of variabies
[33. For example, to caiculate a 53 5535 and so bh,it is  enougn
to use only one FROM containing Zm inputs for variabies because raising

to a power and addition cam be taken into account by module programming.

tet us consider an example for t = 3. We nave Sl = detLl =‘323 + a,

& 4 L3 3 I
o’etL2 = ab? + abl = a& + a LI a s $ a, detl. = aL 8 + abqa61 + azqa s
- a122 = 312 + a4 + a58 + aS? = aS4 +a, detL4 - a41 + a33+ a24 N al4+
v ally Q17,0 57, oo

2.3. Determination of the event coordinates
. The next step after multipiicity caiculation if to determine the co-

ordinates Xi {i=1,2,,,t) as fast as possible. For this purpose +the
author has suggested to use the decoding method of the equation of
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Mmistake location which is weil-known from aigepraic coding theory
A I T (%33
1 2 -

This equation is cailed a coordi-

nate one (Bl. as

t .
g, =z X}, %)
1 i=1 1
det Ly=5y = .
N the calculation of the coordina-
- L gl -
s = tes of events can be executed si-—
S 3 B {7 _—_— o kg
55+ 1 d!th'S%*Sa multanesusiy wWwith the determinati-

q - on of muitipiicity %, As known,
I:E}:I : for t ¢

1 3 the roots of eg. 3 can

Fyd
&
(2]
+

F—{ & b et L3=S0s5,5s+8Set
H
x3 ses t
= ss U

For t we nave
X * + @n = @, (5)

7] G N
where =, = 5] + 93/51 and 8, = o

$ s Substituting X = 14, €G. (5) re-

duces to the form Y<+ Y = r (b)Y,
5 _@E tx4 wnere = enset, X = oY,

1]

and t = 3 separately.

-
z=
2
+

|

-
m4 s hp b g = &1¥s and Yo = ¥, + 1.
detLa-g“S?S:*S‘Ss'ﬁsr In the author’s opinion, the aigo-
N S rithm described in (i8] is most
—] ¥ 5% S15s5+5i53+ 5057455
i 58 K simply realized with the aid of
T combined operations. So, if
i
- ‘Tiry = o, then
m—1
4 - ¥y &
Fig.%. Blouck-diagram for calcula-— 1=
ting the determinants in GF (") The values of y, are determined
for ¢t =1 - &, from the relation
al " for Trial) =@
v+ y - A
i 3 i, .
a + a for Tria") = Q.

" After not complitcated calculafiuns, we obtain the following values of
¥p - yg for m = &

o~ @ 100000 for a® - 0, y; ~ Il - IT0000 for o} - o7,
yg = @20 = OITIOL for a' - %%, yo « a0 = 10ogoO for at - o,

vq = @0 = IQDIOL for al - 238, vg = 243 = 117011 ¢or al - a9 cg91.

be found by the table method {108 -

13]. For example, consider the ca—



So, in BF (2% y_ -y als Yo als ¥
0

2.
12 85+ ¥g a0 » vy, et ¥R, oO
+ ¥y al + g af «+ s a3+ ¥y ad 4+ g a2l then from (g we have

H?"?“Da
Y

- + + +

0" ¥, YIT Tt Tt ¥e, Yra T f1 tfz t ¥z e Y1z T Yo
yI4'?'U+?'3+?’5HyIs'?’D+?’I+?’2+?’4+?’5- ()

Fig.4 presents a block - diagram of solving eq. (5) where use is made of
one PROM having 2Zm inputs for variables. The speed of the processor is
calculated from the expression

TKE - Ty + 8Ty + Tr’

Yis
™ 6
\_5_ ¥, §y e X8
=) Y4
L4 ]
Yi3
Tive
L3
[ =lvy YoSol-&- X2
Lo AxB-E
Yo ¥ LT § A
5 You st
=D
[r-m/el | o D
61 64
Stl & S S s
Fig.5. Block- diagram for the cal- Fig-&. Block-diagramm tor the
culation of the 2nd degree coordi- calculation of the I d degree

™y .

nate eguation in GF (2 coordinate equation in aF 2™ .

where Tg is the time for multiplying two elements in GF(2m), TS the time
of modulo 2 addition and Tr the delay of one FROM. A fast solution {about

25 ns) can be obtained if logical elements MC1@10Z and parity checkers
MC1Bl6E are used instead of FROM. For instance, the sources are fired at
Xy = a® and X2 = a<. After simple calculations, we have Sg -tlIz » 53 -
_3, ey - 312, az - az and p = a4I- TOITID. From eq. (7> we abtain

o



73 " Ry * Rp7p IO
5+ Rgop + Rpog <ID
R? + R5°2 + R3a4 <Ig», where

tguation (11! does not contain R, and thus it is calcuiated more easily

7
R5 stz
9-4 -— —
1 1
So, after a preiimanary calculation of o,, from (1@ and (11) we can find
ey and o As FPROM=: with a smaller numbé? of inputs for variables are

required to calculate these valuas, such an algorithm for obtaining oo
ang e, has as a whele nc influence on the speed. -
v Use of the theory of Reed-Solomon codes

If some ciuster gvents are simuitaneocusly reqistered in a MDCF  as
snown in iig.é'[17], it is worthwhile to use the theory and practice of
nonoinary BCH-codes (Reed-Solomon (RS) codes [181. The advantage of this
approach can be expiained as tollows. Events with clusters are most of-
ten registered in real experiments. According to the decoding method of
pinary BCH-codes, a cluster b in length naving ©t units is processed as if
t indepencent sources be fired. From the physicists’ viewpoint, a cluster
is mosi commonly a one—particie event. Thus, to determine the number of
ciusters by the theory of RS—codes, it is necessary to solve the deter-
minants of lesser orders. For exampie, if two clusters b = 4 in length
are registered in a MDCF, in the first case the determinant of the 9-th
order shoulid be calcul ated whereas, according te the theory of RS—cades,

it is enough to solve the determinant of the 3d order.

Using the syndrome method, 2" _ I - 2t information symbols are
consiaered as zero ones, the signals registerad in the MDCF are divided
into groups with m bits in each group, and the maximal cluster length is
m. Since n *3»t under experimental conditions, information compression

with the coefficient Kc = n/2t takes place.

V1. Syndrome coding method for sequential systems
Two reasons Mmake us use economical, sequential methods of event

registration in MDCPs.
i. A great number of experiments is plianned in which a large muitiplici-



ty, t, of 15-30 is registered in one hodoscopic plane. Thus, to solve co-
ordinate equaiions for t > S, the author has suggested to use the sequen—
tial decoding methods which are well- known from the theory of error cor-—
recting codes. The most economical decoding methad is described in paper
{16}. The idea of creating coordinate processors for large multiplicity
is taken from this article.
28 ang 15 s

2. There are many experiments in high energy physics [19) and applied
research, e.g.

Preliminary talculations shaw that for t =
n = 1800 all 2@ event coordinates can be found for i@ -

in medicine, where it is enough to register one cluster.
A scheme of the two—coordinate position

—sensitive detector is given in
fig.7.

A series of pulses is generated from one charged particle in two planes.

It is necessary to determine the centre coordinates of the cluster.

The signals from the planes are read out with the help of a magneto—

strictive delay line [25]1. an economical coding scheme for cluster regis—

tration based on Fire coding devices is suggested L[22]. The tables of the

Fire codes for n = 15 - 1208, which can be used to create a cading
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Fig.7., Example of the registration
of two events with clusters in a ho-—

Fig.8. Diagram of the two-coor—
dinate position—sensitive detec-
tor.

device, are presented in paper (231. The nusber of bits in the coding de-
vice is equal to the degree af the generating palynomial g (X)
information word equals zero. For b = 3 and n =

g00= x7+ x84 x5r x% x 4 g

The compression coefficient is characterizeaed by the ratio n/r.

doscopic calorimeter.

because an
15 we have

Besides,
the efficiency of COmpression grows with 1ncreas}ng N on condition that

b << n. It is shown [246) that there are optimum Fire codes for some cases

when b = 3 or 4. For example, as it follows from £231, a 6-bit register

8



can be used instead of a $-bit one for b = 3. So, K = 40596/14 far b =
4 and n = 40946, and a PROM can be used for parallel decoding.
VII. Fast algorithm for multiplication in Galois field

Multiplication in Balois field it is perf{ormed simultanesusly over on-
ly two elements or their logarithms £i14, 165 231. Below we give a
description of the algorithm with the help of which multiplication over
an arbitrary number of elemente can be performed [26]. Cuns:der the es—
sente gf the algorithm illustrating the operation of multxplxcat1on in
EF(24). The base of the algorithm is the method of parallel data compres-—
sion used in the schemes of fast multiplication of usual numbars. Fig.8
gives two examples which illustrate the proposed algorithm. Such a device
is called a cyclic compressor because addition is performed modulo 2”—1.
The first example on the left cor—
responds to a simultaneous multiplica-—
tion of 15 elements am = 315' and cyc=-
lic compression is executed over the
degrees of multiplicands. After three
compression steps, we get two addends
divided into 2 parts. Besides, the
second part of the cyclic sum (left)

- - Do o -
o - -0 — —
- o 0o - o O

(=]

corresponds to a maximum number
{(1121090@) which equals the sum of

l cyclic carries arising from the com-
pression of 15 addends 1ili. At the
last step high—-order bits of 1131000
0=l4,, are added ta-llﬂl modulo 15. The com-—
plete result is 1111, Fig.8 on the

-+
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1
i
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1
|
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+
1
§
!
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1
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—|lo =0l o= - - ~
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i 3 right shows an example of the sum of
the multiplicand degrees alla a14 aq*
001 4 a® a7 a® &7 = 3% al? = o14 in &F (2%,

0 This example can be used as a basis for
i

i
)
1
0
0
i
1

the creation of a cyclic cospressor

o= =
(=]

(fig.?). The schemes for the calcula-
tion of the logarithms, which are in

Fig.8. Two examples illustra— essence PROMs, are not given in this
ting the operation of a cyclic figure. Parallel (n,k)— counters can
compressor in BF(Z‘). be used for creating cyclic

compressors as well as usual PROM.

LZ273. fAs shown ih fig.8, the cyclic compressor is composed of a group
of (15 42—y (4,3)— and (3,2)~ counters. The number of cascades of
paraliel counters, M, equals 3 form = 3 — 7 and 4 for m = 8 -15. Fig.
1@ shows the schemes with the help of which it is possible to determine
9



the structure of the counters and to create the corresponding cyclic com-—
. . . m :
pres.-sor. The time of multiplying 2 - 1 multiplicands can be calculated

from the expression

T = 2T + 2T + R
m 2 B 2 5 (Tc1+ Tc2 + TcM)’

Tp is the delay in a PROM used to calculate algorithms and antiloga-—
rithms, Ts is the time of summation modulo 2™ — 1 and the delay times

in the corresponding parallel counters are given in brackets.

b0 4l i el
(15,4) (15.4) {15.4) (15,4} seeeee

|
Ll

23222120 232?.2120 232'12120 23222120
T

i
. e
i 1 K 1“11 sl 1]
(2] [62] (2] [ea]e2
1| o K fdofe « 1 40
{ssaannna
i HE: 3
r22) 22| 22 22 |2z B suessree
1o 10
[ opd ol il ol o !
Ca}—]Col-—{Ct o 3 2 ] 5c|1
1 1 0 1 1 0 [ 0

QUPUTS

Fig-9. Scheme for simultanepus mul- ¥ig.1@. Diagram for the calculati-
tiplication in GF(24). on of cyclic compressors at
m =35 - B.
Coclusion

It is shown that the algebraic coding theory can be sucressfully used
for data compression registered in MDBCPs and for the creation of special-
purpose coordinate processors. The econgmical algorithm of executing a
simultaneous multiplication over a great number of elements has been sug-
gested for fast speed operations in complex exprssions in Galois
field. The methad of syndrome coding can be used in other multichannel
systems for data registration.
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The elements of Galoius field modulo x6+ X
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