$89-362$

ОбъӨДИНЕННЫЯ
 ИНСТИTYT
 ЯдерНых исслвдованй
 дубна

N.M.Nikityuk

SOME QUESTIONS OF USING THE ALGEBRAIC CODING THEORY FOR CONSTRUCTION OF SPECIAL-PURPOSE PROCESSORS

IN HIGH ENERGY PHYSICS SPECTROMETERS

Submitted to International Conference AAECC 7, Toulouse Cedex, France, 26.06.89

Problem
Different types of coordinate detectors, which consist of a large number of hodoscopic planes, are widely used in high energy physies. These pianes contain many position-sensitive detectors (sources). Dne plane is composed of several hundred or thousand sources and more. As a consequence, there are tens of thousands of registration channels in
conventional spectro-

meters. A typical scheme of such a spectrometer is given in fig.1. A great volume of fast electronics, special-purpose processors (SP) and modern computers are required for event registration, the accumulation of statistics and the reconst ruction of particle interaction. It should be noted that the cost of modern high energy spectrometers is equal to

Fig. 1. Block-diagram of a typical high energy physics spectrometer. TI - To - scintillation hodoscopes; PCI - PC6 and MI - MR - multiwire proportional chambers; H_{2}, P_{2} - targets.
several million dollars, and the cost of data processing electronics is about 40%. This is the reason why the problem of optimum coding and information compression, registered in multichannel detectors of charged particles (MDCF), arises so sharply. The processing of physics events is hierarchical in nature. Each selection level is characterized by the dead time τ. At the firist level the value of τ equals $30-50 \mathrm{~ms}$. During this
time the spectrometer is put into operation, and the multiplicity of events is determined. At the second level the coordinates of events or other parameters, e.9. the scattering angle of particles, are determined. If the solution is positive, the data are registered on a tape.

The method of symarome coding for the filtration of events at the first and second levels has been suggested by the author [23. The use of this method allows one to apply a mathematical algorithm of algebraic coding theory for the ereation of economical and fast devices for the registration and processing of useful events. New results are given.
II. Sustolic method of signal processing

According to the syndrome method, a Galois fieldelement is set for each source so that the first source corresponds to an a element, the second source to an a^{1} element and the $n-t h$ source to an a^{n-1} element. In other words, the positions of the sources are numbered by the degrees of the Galois field elements $G F\left(2^{m}\right)$. As data in MDCP are read out in a unitary position code, the next step after amplifying and shaping the signals is their transformation to a cyclic code (Galois field element) [2, 3J. For simplicity a MDCP is assumed to have $n=2^{6}-1=63$ sources im $=$ 6). This means that the Galois field elements are generated over an irreducible polynomial $x^{6}+x+1$, and the element $a^{1}=010000$ is the root of this polynomial. Then for multiplicity $t<4$ a part of the coding matrix (parity check) $H_{63,24}$ takes the form

To obtain a fast speed, the syndrome is calculated with the aid of parallel parity checkers (fig. 2). The analysis of the $H_{63,18}^{\top}$ matrix shows
that the numoer of checkers
can be decreased by a third if the
inpuis are gmouped so that coinci-
dent units in the columns of tine
matrix enter into paricy checking
for a variety of synurome digits.
For exampie, there is a coincidence
in the first column at positions 26,
$40,43,47,54,56$ and 58 -
Tine transformation of the unitary
position code to the Galois field
eiements is expcuted rather fast by
the parallel method as the delay of
MEiO1G0 is 6 ns . The number of sund-
rome bits, N, is 18 for $n=63$ and t
$=3$. Thus, information from a 63-bit
unitary code is compressed to a 13-
bit Eyciic code. The compression
coefiticient is 63/18.

Fig. こ. Frincipai scheme for the one-digit syndrome. i - 5 MCiDib0.

IIf. Majority coincidence circuits with algebraic structure
The imporiani propericy of the syndrome of the BCH-code is to carry iniormation on the multipiicity and coordinates of particie interactions . The algoritm of a majority coincidence circuit is based on the properiy of the L_{t} matrix. The $t_{x} t$ matrix [5]
is singuiar if the weight of t is $j-1$ or less and nonsingular if the weight of t is j or $j+1$. The expressions for a matrix determinant for $t=1-4$ calcuiated by a compuiter take the form

t		Det L_{t}
2	s_{1}	
2	$s_{1}^{3}+s_{3}$	

Each vaiue of L_{t} calculated independentiy may be equal to 1 or zero. The logical expressions for a majority coincidence circuit (MCC) containing n inputs and t outputs are of the following form:
Dutput I - deti $_{1}$ Voiect $_{2}$ Vdet $_{3} \ldots$. det $_{j} V^{\prime} \ldots .$. Vdet $_{t} \geqslant 1$
Gutput $\approx=$ det $_{2}$ VaetL $_{3} \ldots$. deth $_{j} V \ldots$. VaetL $_{t} \geqslant 2$
Output $3=$ det $_{3} \ldots .$. det $_{j} V \ldots .$. Vdet $_{t} \geqslant 3$
Output $j=$ dett $_{j} V \ldots .$. veteti $_{t} \geqslant j$
Output $t=$
A block-diagram of the MCC is described by the expressions [2J. if we ado a scheme used to anaiyse the determinants on logical 1 or zero, we can get rigorous equalities as seen from fig. 3 , where a block-oiagram for the caiculation of the determinani for $t-I, t-2, t-3$ and $t \geqslant 4$ is given. It should be scressed that the scheme in fig. \bar{j} is orawn so that FROMs or FLAs naving $2 m$ inputs for variables can be used to calcuiatie the de terminants. This aliows one to extend tine range of vailues of n for whicn the table metinod of soiution can be used. So, m - 10 the straight method of decoding can be used oniy for $t=2$ because modern FRDMs or FLAs have 18 - 20 inputs for variabies. In addition, the method of executing comioned operations in $G F\left(z^{M}\right)$ field is extensively used in such a scheme and below. The essence of the metiod iies in that the capacity of PROMs or PLAs used for the calculation of complicated expressions is independent of its complexity but determined by the number of variabies [5]. For example, to caiculate $5_{1}^{3}+5_{3}, 5_{2} 5_{5}$ and 50 on,it is enougn to use only one FFOM containing 2 m inputs for variabies because raising to a power and addition can be taken into account by module programming. Let $u s$ consider an example for $t=3$. We have $S_{1}=\operatorname{deth}_{1}=a^{23} \neq 0$, $\operatorname{cetL}_{2}=a^{69}+a^{62}=a^{6}+a^{61}=a^{46} \neq 0$, det $_{3}=a^{139}+a^{69} a^{61}+a^{23} a^{35}$ $+a^{122}=a^{12}+a^{4}+a^{58}+a^{59}=a^{54} \neq 0, d e t L_{4}=a^{41}+a^{33}+a^{24}+a^{14}+$ $+a^{16}+a^{17}+a^{59}+a^{7}=0$.

2.3. Determination of the event coordinates

The next step after multiplicity caiculation is to determine the coordinates $x_{i}\{i=1,2, \ldots t)$ as fast as possible. For this purpose the author has suggested to use the decoding method of the equation of
mistake iogation which is weil-known from aigeoraic coding theory

$$
\begin{equation*}
x^{t}+o_{1} x^{t-1}+o_{2} x^{t-2}+\cdots o_{2} \tag{3}
\end{equation*}
$$

This equation is cailed a coordinate one [8]. As

$$
\begin{equation*}
S_{i}=\sum_{i=1}^{t} x_{i}^{j} \tag{4}
\end{equation*}
$$

Fig. 3. Block-diagram for calculating the determinants in GF(2m)
for $t=1-4$.

$$
y_{i}^{P}+y= \begin{cases}a^{i} & \text { for } \operatorname{Tr}\left(a^{i}\right)=0 \\ a^{i}+a^{k} & \text { for } \operatorname{Tr}\left(a^{i}\right)=0\end{cases}
$$

After not complicated calculations, we obtain the following values of $\left.y_{0}\right]-y_{6}$ for $m=6:$
$y_{0}=a^{10} \quad$ IOOOOD for $a^{i}-0, y_{I}=a^{I I}=I I O O O O$ for $a^{i}=a^{36}$,
$y_{2}-a^{55}-$ UIIIOI for $a^{i}=a^{32}, y_{3}-a^{0} \cdot$ IOOOOO for $a^{i}=0$,
$y_{4}=a^{133}=$ IOOIOI for $a^{i}-a^{38}, y_{5}-a^{43}$. IIIOII for $a^{i}-a^{I 9}$ [8,9].

So, in $G F\left(2^{b}\right) y_{I}-y_{I O} a^{0}+y_{I I} a^{I}+y_{I 2} a^{2}+y_{I O} a^{3}+y_{I 4} a^{4}+y_{I E}^{5} a^{5}$ n $r=\gamma_{0} a^{0}+r_{I} a^{I}+\gamma_{2} a^{2}+r_{3} a^{3}+\gamma_{4} a^{4}+\gamma_{5} a^{5}$, then from (6) we have $y_{I O}=r_{0}, y_{I I}-r_{0}+r_{I}+r_{6}, y_{I R}-r_{I}+r_{R}+r_{I}+r_{E}, y_{I O}-r_{0}$, $y_{I 4}-\gamma_{0}+\gamma_{3}+\gamma_{5}$ и $y_{I 5}-\gamma_{0}+\gamma_{I}+\gamma_{2}+\gamma_{4}+\gamma_{5}$.

Fig. 4 presents a block - diagram of solving eq. (5) where use is made of one from having 2 m inputs for variables. The speed of the processor is calculated from the expression

$$
T_{K 2}-T_{y}+2 T_{s}+T_{\gamma}
$$

Fig. 5. Block- diagram for the calculation of the 2 nd degree coordinate equation in GF ($\left.2^{\text {mit }}\right)$.

Fig.6. Elock-diagramm for the calculation of the 3 d degree coordinate equation in $G F\left(2^{m}\right)$. where T_{y} is the time for multiplying two elements in GF (2^{m}), T_{s} the time of modulo 2 addition and T_{γ} the delay of one FROM. A fast solution (about 25 ns) can be obtained if logical elements MC10102 and parity checkers MC10160 are used instead of FROM. For instance, the sources are fired at $x_{1}=a^{0}$ and $x_{2}=a^{2}$. After simple calculations, we have $S_{x}-a^{I 2}, s_{3}$. $a^{3}, a_{I}=a^{I 2}, a_{2}-a^{2}$ and $r-a^{4 I}$ IOIIIO. From eq. 〈?〉 we obtain

$$
\begin{aligned}
& v_{3}=R_{3}+F_{I} 0_{2} \text { (IO) } \\
& \mathrm{F}_{55}+\mathrm{F}_{3} \sigma_{\gamma_{2}}+\mathrm{F}_{\mathrm{I}_{4}} \text { (II) } \\
& \mathrm{R}_{7}+\mathrm{F}_{5} \otimes_{2}+\mathrm{F}_{3} \otimes_{4} \quad\langle 12\rangle \text {, where } \\
& \mathrm{F}_{3}-5_{3}+\mathrm{S}_{7}=\mathrm{E} \\
& F_{\text {Lh }}-S_{5}+\operatorname{Si}_{5}^{5}=V \\
& \bar{x}_{\eta}=S_{7}+p+V+5 \frac{7}{I} \\
& \text { Equation s11? does not contain } f \text {, and thus it is calcuiated more easily } \\
& \text { So, after a preiimanary calculation of } \sigma_{2} \text { from (10) and (il) we can find } \\
& \sigma_{5} \text { and of As FROMS with a smaller number of inputs for variables are } \\
& \text { required to caiculate these valuas, such an algorithm for obtaining os } \\
& \text { and } u_{4} \text { has as a whole no influence on the speed. }
\end{aligned}
$$

V. Use of the theory of Reed-Solomon codes
If some ciuster events are simultaneousiy registered in a MDCF as sinown in iig. 6 [17j, it is worthwhile to use the theory and practice of nonoinary $\mathrm{BCH}-\mathrm{codes}$ (Feed-Solomon (RS) codes [18]. The advantage of this approach can be expiained as fallows. Events with elusters are most of ten registered in real experiments. According to the decoding method of binary BCh-codes, a cluster b in length naving i units is processed as if t indepencent sources be fired. From the physicists' viewpaint, a cluster is most commoniy a one-particie event. Thus, to determine the number of ciusters by the theory of RS-codes, it is necessary to solve the determinanics of lesser orders. For example, if two clusters b $=4$ in length are registered in a MDCF, in the first case the determinant of the 9 -th order shouid be calculated whereas, according to the theory of RS-codes, it is enough to solve the determinant of the उंd order.

Using the syndrome method, $2^{m}-I-2 t$ information symbols are consiqered as zero ones, the signals registered in the MDCF are divided into groups with m bits in each group, and the maximal cluster length is m. Since n >>t under experimental conditions, information compression with the coefficient $k_{c}=n / 2 t$ takes place:

VI. Syndrome coding method for sequential systems

Two reasons make us use economical, sequential methods of event registration in MDCPs.
i. A great number of experiments is pianned in which a large multiplici-
ty, t, of $15-30$ is registered in one hodoscopic plane. Thus, to solve coordinate equations for $t>5$, the author has suggested to use the sequential decoding methods which are well-known from the theory of error correcting codes. The most economical decoding method is described in paper [16]. The idea of creating coordinate processors for large multiplicity is taken from this article. Preliminary calculations show that for $t=$ 20 and $n=1000$ all 20 event coordinates can be found for $10-15$ رs. 2. There are many experiments in high energy physics [19] and applied research, e.g. in medicine, where it is enough to register one cluster. A scheme of the two-coordinate position-sensitive detector is given in fig. 7.
A series of pulses is generated from one charged particle in two planes. It is necessary to determine the centre coordinates of the cluster. The signals from the planes are read out with the help of a magnetostrictive delay line [25]. An economical coding scheme for cluster registration based on fire coding devices is suggested [22]. The tables of the Fire codes for $n=25-1200$, which can be used to create a coding

Fig.7. Example of the registration of two events with clusters in a hodoscopic calorimeter. device, are presented device, are presented in paper [23]. víe is 23 . The number of bits in the coding device is equal to the degree of the generating polynomial $g(x)$ because an information word equals zero. For $b=3$ and $n=15$ we have

$$
g(x)=x^{9}+x^{6}+x^{5}+x^{4}+x+1
$$

The compression coefficient is characterized by the ratio n / r. Besides, the efficiency of compression grows with increasing n on condition that $b \ll n$. It is shown [26] that there are optimum fire codes for some cases when $b=3$ or 4. For example, as it follows from [23], a b-bit register
can be used instead of a 9-bit one for $b=3$. So, $K_{c}=4096 / 14$ for $b=$ 4 and $n=4096$, and a PROM can be used for parallel decoding.
VII. Fast algorithm for multlplication in Galais field

Multiplication in Galois field it is performed simultaneously over only two elements or their logarithms [14, 16; 23]. Below we give a description of the algorithm with the help of which multiplication over an arbitrary number of elements can be performed [26]. Consider the essence of the algorithm illustrating the operation of multiplication in GF $\left(2^{4}\right)$. The base of the algorithm is the method of parallel data compression used in the schemes of fast multiplication of usual numbers. Fig. 8 gives two examples which illustrate the proposed algorithm. Such a device is called a cyelic compressor because addition is performed modulo $2^{m}-1$.

Fig. 8. Two examples illustrating the operation of a cyclic compressor in GF (2 2^{4}).

The first example on the left corresponds to a simultaneous multiplication of 15 elements $a^{0}=a^{15}$, and cyclic compression is executed over the degrees of multiplicands. After three compression steps, we get two addends divided into 2 parts. Besides, the second part of the cyclic sum (left) corresponds to a maximum number (11010000) which equals the sum of cyclic carries arising from the compression of is addends iili. At the last step high-order bits of 1101000 are added to 1101 modulo 15. The complete result is 11il. Fig. 8 on the right shows an example of the sum of the multiplicand degrees $a^{10} a^{14} a^{9} *$ $a^{8} a^{7} a^{6} a^{5}=a^{45} a^{14}=a^{14}$ in $\operatorname{BF}\left(2^{4}\right)$. This example can be used as a basis for the creation of a cyclic compressor (fig.9). The schemes for the calculation of the logarithws, which are in essence PROMs, are not given in this figure. Parallel (n, k)- counters can be used for creating cyclic
compressors as well as usual PRom.
[29]. As shown ih fig.8, the cyclic compressor is composed of a group of (15,4)-, (4,3)- and (3,2)-counters. The number of cascades of parallel counters, M, equals 3 for $m=3-7$ and 4 for $m=B-15$. Fig. 10 shows the schemes with the help of which it is powsible to detarmine
the structure of the counters and to create the corresponding cyclic compressor. The time of multiplying $2^{m}-1$ multiplicands can be calculated from the expression

$$
T_{m}=2 T_{p}+2 T_{s}+\left(T_{c 1}+T_{c Z}+\ldots . T_{c M}\right)
$$

T_{p} is the delay in a PROM used to calculate algorithms and antilogarithms, T_{s} is the time of summation modulo $2^{m}-1$ and the delay times in the corresponding parallel counters are given in brackets.

Fig.9. Scheme for simultaneous multiplication in GF (2^{4}).

Fig. 10. Diagram for the calculation of cyclic compressors at $m=5-8$.
Coclusion
It is shown that the algebraic coding theory can be successfully used for data compression registered in MDCPs and for the creation of special purpose coordinate processors. The economical algorithm of executing a simultaneous multiplication over a great number of elements has been suggested for fast speed operations in complex exprssions in Galois field. The method of syndrome coding can be used in other multichannel systems for data registration.

References

I. Badier J., et al., CERN/EP 80-36, Geneva, 1980.
2. Nikityuk N.M., JINR No. E10-88-28, Dubna, 1988. Submitted to the Int. Joint Conference of 1SSAC-88 and AAECC- 6, Rome, 1988.
3. Nikityuk N.M., Radzhabov R.S., Shafranov M.D., Nucl. Instr. and Methods, 1978, vol. 155, No. 3.
4. Nikityuk N. M., Radzhabov R.S., Shafranov M.D., Pribory i tekhnika eksperimenta, 1978, No.4, p. 95.
5. Messy J.L., IEEE Trans. on Inf. Theory, 1965, vol. IT-11, No. 4, p. 580.
6. Gaidamaka R.I., Kalinnikov V.A., Nikityuk N.M., Shirikov V.P., JINR, P13-82-628, Dubna, 1982.
7. Nikityuk N.M., JINR, P11-87-54, Dubna, 1987.
8. Nikitưuk N.M., JINR, No. P11-80-484, Dubna, 1980.
9. Nikityuk N.M., JINR, No. P1日-88-853, Dubna, 1989.
10. Polkinghorn F., LEEE Trans. on Inf. Theory, 1966, vol. IT-12, No. 4.
11. Banerji R.B., Froc. IEE, 1961, vol.49, No. 10, p. 1585.
12. Chien R.T., Cunmingham B.D., IEEE Trans. on Inf. Theory, 1969, vol. IT-15, No. 2.
13. Okano H., Imai H., IEEE Trans. on Comput., 1987 , vol. C-36, No. 16
14. Nikityuk N.M., JINR, No. P10-89-16, Dubna, 1989.
15. Berlekamp E.R., Rumsey H., Solomon G., Information and Control, vol.10, 1967, p.553-564.
16. Berlecamp E.R., IEEE Trans. on Information Theory, 1964, vol. IT-11, No.4, p.577.
17. Chien R.T., IEEE Trans. on Inf. Theory, 1964, vol. IT-10.
18. Nelson K.S., Erwin A.R., IEEE Trans. on Nucl. Science, 1983, vol. NS-30, No. 4.
17. Nikityuk N. M., JINR, No. P10-88-854, Dubna, 1989.
20. Breskin A., Charpak G., Demierre C et al. Nucl. Instr. and Meth.,

1977, val. 143, No. 1.
21. Hendrix J., Furst H. IEEE Trans. on Nuclear Science, 1980, vol. NS-27, No. 5.
22. Jeavons A.P., Fora N., Lindberg B. et al. IEEE Trans. on Nucl. Science, 1976, val. NS-23, No. 1.
23. Nikityuk N.M., JINR, No. R1B-8B-742, Dubna, 1988.
24. Wagner W., IEEE Trans. on Inf. Theory, 1970, voi. IT-8, NO. 5.
25. Elspas B., IRE Trans. on Inf. Theory, 1962, vol. IT-8, No. 1.
26. Bartee T.C., Sneider P. I., Information and Control, 1963, vol.6, No. 1
27. Nikityuk N.M., JINR, No. P1i-88-852.
28. Ho I.T., Chen T.C., IEEE Trans. on Comput., 1973, vol. C-22, No. 8. 29. Gajski D.D., LEEE Trans. on Comput., 1980, No.5, p. 393.
30. Swartzlander E.E. IEEE Trans. on Comput., 1973, vol. C-22, No. 11.

Appendix
The elements of Galoius field modulo $X^{6}+X+1$

$a^{0}=100000$	$a^{21}=11011$	$a^{42}=010111$
$a^{1}=010000$	$a^{22}=101011$	$a^{43}=111011$
$a^{2}=001000$	$a^{23}=100101$	$a^{44}=101101$
$a^{3}=000100$	$a^{24}=100010$	$a^{45}=100110$
$a^{4}=000010$	$a^{25}=010001$	$a^{46}=010011$
$a^{5}=000001$	$a^{26}=111000$	$a^{47}=111001$
$a^{6}=110000$	$a^{27}=011100$	$a^{48}=101100$
$a^{7}=011000$	$a^{28}=001110$	$a^{49}=010110$
$a^{8}=001100$	$a^{29}=000111$	$a^{50}=001011$
$a^{9}=000110$	$a^{30}=110011$	$a^{51}=110101$
$a^{10}=000011$	$a^{31}=101001$	$a^{52}=101010$
$a^{11}=110001$	$a^{32}=100100$	$a^{53}=010101$
$a^{12}=101000$	$a^{33}=010010$	$a^{54}=111010$
$a^{13}=010100$	$a^{34}=001001$	$a^{55}=011101$
$a^{14}=001010$	$a^{35}=110100$	$a^{56}=111110$
$a^{15}=000101$	$a^{36}=011010$	$a^{57}=011111$
$a^{16}=110010$	$a^{37}=001101$	$a^{58}=111111$
$a^{17}=011001$	$a^{38}=110110$	$a^{59}=101111$
$a^{18}=111100$	$a^{39}=011011$	$a^{60}=100111$
$a^{19}=011110$	$a^{40}=111101$	$a^{41}=101110$
$a^{20}=001111$		$a^{63}=100011$
	$a^{62}=100001$	
		$a^{0}=100000$

[^0]
[^0]: Received by Publishing Department on May 24, 1989.

