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Problem 

Different types of coordinate detectors. which consist of a large num

ber of hodoscopic planes, are widely used in high energy ph~sics. The

se planes contain many position-sensitive detectors <sources). One pla

ne is composed of several hundred or thousand sources and more. As a 

consequence, there are tens of thousands of registration channels in 

Fig. I. Block-diagram of a typical high energy 

physics spectrometer. TI - T~ - scintillation 

hodoscopes; PCI - PC6 and MI - M2 - mul tiwire 

proportional chambers; H2 , Pt -targets. 

conventional spectro

meters. A typical 

scheme of such. a 

spectrometer is given 

in fig.!. A great vo

lume of fast electro

nics, special-purpose 

processors (SP> and 

modern computers are 

required for event 

registration, the ac

cumulation of statis

tics and the reconst 

ruction of particle 

interaction. It 

should be noted that 

the cost of modern 

high energy spectro

meters is equal to 

several million dollars, and the cost of data processing electronics 

is about 40 •· This is the reason why the problem of optimum· coding and 

information compression, registered in multichannel detectors of charg•d 

particles <HDCP), arises so sharply. The processing of physics events is 

hierarchical in nature. Each selection level is characterized by the dead 

time T· At the firSt level the value of T equals 30 - 50 ns. During this 
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time the spectrometer is put into operation, and the multiplicity of 
events is determined. At the second level the coordinates of events or 
other parameters, e.g. the scattering angle of particles, are 
determined. If the solution is positive, the data are registered on a tape. 

The method of syndrome coding for the filtration of events at the 
first and second levels has been suggested by the author [23. The use 
of this· method allows one to apply a mathematical algorithm of algebra
ic coding theory for the creation of economical and fast devices for 
the registration and processing of useful events. New results are given. 

II. Systolic method of signal processing 

According to the syndrome method, a Galois field ele.ent is set for 
each source ·so that the first source corresponds to an a 0 element, the 
second source to an a 1 element and the n-th source to an an-1 element. In 
other words, the positions of the sources are numbered by the degrees of 
the Galois field elements GF<2m). As data in MDCP are read out in a uni
tary position code, the next step after amplifying and shaping the sig
nals is their transformation to a cyclic code <Galois field element) [2 1 -

3J.For simplicity a MOCP is assumed to haven= ~6 - 1 = 63 sources (m = 
6). This means that the Galois field elements are generated over an 
irreducible polynomial x6+ X + 1, and the element a 1 010000 lS the root 
of this polynomial. Then for multiplicity t < 4 a part of the coding 
matrix 

T 
H63,2 

(parity check 

* 0 I 

I a I 

2 a2 

- * 3 a3 

4 a4 

*5 a5 

H63 , 24 takes 

I I 1 

the form 

IOOOOO 

a3 a5 a 7 OIOOOO 
a6 aiO ai4 OOIOOO 
a9 ai5 a2I OC()IOO 

: 
ai2 a20 ._28 OC()OIO 

ai5 a25 ._35 OOOOOI 

IOOOOO IOOOOO IOOOOO 

OOOIOO OOOOOI OIIOOO 

IIOOOO OOOOII OOIOIO 

OOOIIO OOOIOI IIOIII 

IOIOOO OOIIII OOIIIO 

OOOIOI OIOOOI IIOIOO . 
62 ._62 a60 ._58 a56 IOOOOI IOOIII IIIIII IIIIIO 

The elements of GF<26 J are presented in Appendix. Let the sources operate 

silhlllt.aneously at XI .. e~~.Ox2 ... o-3 H x3 ... o-6. Then we have 
si .. 13,0_.. a3_.. a6· a23. 5

3 
_ aD_.. a9_.. ai5 _ a6I_ 5

6 
... aD• aiB_.. a25 _ 

a36 H s
7 

_ aO• a:;u_.. a36 _ a6I. <D 
To obtain a fast speed, the syndrome is calculated(with the aid of paral
lel parity ch•ckers (fig. 2). The analysis of the.H!3 , 18 matrix shows 
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CHANNELS 
I 

16 
26 
40 
43 
41 
54 
56 
58 

To tne 2.and 3 6Lt 
23 
32 
44 
45 
52 
59 
60 
61 

6 
11 
16 
21 
30 
35 
38 

• r=---'r"-o ~th• &cH 
0 

12 
22 
24 
31 
41 
46 
52 

5 

Fig.2. Principal 9Cheme for the 

one-digit syndrome. 1 - 5 MC10160. 

that the numoer of checkers 

can be decrea9ed by a third if the 

inputs are grouped so that coinci

dent units in the colu~ns of the 

matrix enter into parity checKing 

for a variety of syndrome digits. 

For example, there is a coincidence 

in the first column at posit1ons 26, 

40 • 43. 47, 54, 56 and 58· 
The transformation of the unitary 

position code to the Galois field 

elements is executed rather fast by 

the parallel method as the delay of 

MC10160 is 6 ns. The number of synd-

rome bits, N, is 18 for n : 63 and t 

= 3. Thus, information from a 63-bit 

unitary code is compressed to a 18-

bit cyclic code. The compression 

coefficient is b3/1B. 

III. Majority coincidence circuits witn algebraic structure 

The important property of the syndrome of the DCH-code is to carry 

information on the multiplicity and coordinates of particle interac

tions • The algoritm of a majority coincidence circuit is based on the 

proper~y of the Lt matrix. The txt matrix L5J 

31 1 • • • • •••••• 0 

'3 s2 91 • 0 ••••••• 0· 

ss s • 93 92 91 0 .•.•••• i2l 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . · ............. . 

is singular if the weight of t is j - 1 or less anti nonsingular if the 

weight of t is j or j + 1. The expressions for a matrix determinant for 

t 1 - 4 calculated by a computer take the form 

t Det Lt 

2 

91 

93 
1 

3 



535.,.+ 
1 " sl~+ s:z 

3 

s 7s • s 5s + 8~385 + s 8 3+ s s • c~ + s 3s 1 3 1 5 1 3 3 7 ~5 1 7 

Each value oi Lt calculated independently may be equal ~o 1 or zero. 
The logical expressions ior a majority coincidence circuit (MCC) con~ai-

ning n inputs and t outputs are of the iollowing form: 
Output I - detL1 VdetL2 VdetL3 •••• detL j V ••••• VdetLt >,., 1 
Output 2 detL2VaetL3 .... detLj V ..... VaetLt ~ 2 
Output 3- detL3 .••• detLj V ..... VdetLt ~ 3 
.•••..•••••••••••.•••••••••••••.••• - • • • . • • • . • • . • • • • • <2) 
Output j """ detLj v ••••• VdetLt >,. J 

output t = detLt >;. t [6J. 
A block-diagram of the MCC is described by the expressions (2J. If we ace 
a scheme used to analyse the determinants on logical 1 or zero, we can 
get rigorous equalities as seen from fig.3, where a block-diagram 
for the calculation of the determinant for t - I. t .. 2. t .. 3 and t > 4 
is given. It should be stressed that the scheme in flg.3 1s orawn so that 
PROMs or PLAs naving 2m inputs for variables can be usee to calculate the 
de terminants. This allows one to ·extend the range of values of n for 
whicn the table method of solution can be used. So, m .. 10 
the straight method of Decoding can be used only for t = 2 because mociern 
PROMs or PLAs have 18 - 20 inputs for variables. In addition~ the method 
of executing combined operations in GFlZffi> field is extensively used in 
such a scheme and below. The essence of the method lies in tnat the capa
city of PROMs or PLAs useci for the calculation of complicated expressions 
is independent of its complexity but determined by the number of variables 
[5]. For example, to calculate ~ + ~, ~~ and so on,it is enough 
to use only one PROM containing 2m inputs for variables because raising 
to a power and addition can be taken into account by module programming. 
Let us consider an example for t ~ 3. We have 5 1 = detL 1 = a 23 t 0, 

69 61 6 61 46 138 69 61 23 35 detL
2 

= a + a a + a = a 'f 121, detL3 =- a + a a + a a 
+ a122 = a12 + a4 + a58 + a59 = a54 + 0 , detL

4 
= a41 + a33+ a24 + a14+ 

16 17 59 + a + a + a 

2.3. Determination of the event coordinates 
The next step after multiplicity calculation i~ to de~ermine the co

ordinates Xi ( i :: 1,2, •• t> as fast as possible. For this purpose the 
~uthor has suggested to use the decoaing method of the equation oi 

4 



mi !OtaKe location wnich 
xt + 

is well-known from algeoraic 
..,t-1 + xt-2 + c)'l" ()'2 ••••• .:-t. 

coding theory 

<3> 

t>4 

""" 
dot L•·~ •S: s.•s{ s..S.;,. 
SSsss+S.sl•s.s,..s: 

Fig.3. Block-diagram for calcula
ting the determinants in GF(~) 

for t = 1 - 4. 

y~ ... y -

This equation is called a coordi
nace one (8]. Aa 

s1 = ~ xJ <4> 
i =1 l 

the calculat1.on ·of the coordina-
tes of events can be eMecuted si
multaneoualy with the determinati
on of multiplicity t. As_ known, 
for t < 5 the roots of eq. 3 can 
be found by the table method (10 

13]. For example, consider the ca
ses t = 2 and t = 3 separately. 
For t = 2 we nave 

X.._ + .:-
1 

X + .:-
2 

= 0~ (5) 

3 where c:-2 = s 1 + s3 1s1 and s 1 = c::-1 • 
Substituting X = <1' 1y, eq. (5) re
duces to the form Y2 + Y = ~ (b), 
wnere r = <1'

2
/.,.t, x1 = <)'l Y 1 , 

x2 = c:-1v2 and v2 = v1 + 1. 
In the author's opinion, the algo
rithm described in (18) is most 

simply realized with the aid of 

combined operations. So, if 

T<r> = o, then 
m-1 

yl - ~ ~iyi (6) 

i=0 

The values of y
1 

are determined 

from the relation 

for Tr <a i) = 0. 
After not complicated calculat)ons, we obtain the following values of 
Yo - y 15 for m = 6: 

Yo"" aO.. !00000 for ai .. 0. Yr .. ali - IIOOOO 
_Y:z - a55 - tJIIfOI for a - a·32, y3 ... aO .. 
y 4 - a 23 - IOOIOI for ai - a 38• Yo - a43 -

5 

for ai 

IOOOOO 

IIIOII 

.. a36. 
for i - o, a 
for a' • ai9 <8.91. 



So, in BF <26 > YI .. YIO aO.._ y ai ... y a2 ... Y a3 ... Y a4+ y5 ._5 
II Ifl ra I4 I5 

~ r - ro ao + 'I .r 
+ '2 a2 + r3 ._3. r4 a4 + r 5 'a5, then from (6) we have 

Yro - ro, YII .. Yo + 'r • ro, Yrfl - rr ... r2 ... r3 ... r6, YI3 .. 'o· 
YI4 - ro + r3 ... r5 H Yr5 - ro + rr + r2 + r4 + r5. (7) 

Fig.4 presents a block - diagram of solving eq. (5) where use lS made of 

one PROM having 2m inputs for variables. The speed of the processor is 

calculated from the express1on 

TK2 - Ty + 2T 5 + Tr. 

Fig.5. Block- diagram for the cal

culation of the 2nd degree coordi

nate equation in GF<2ml. 

Fig.6. Block-diagramm for the 

calculation of the 3 d degree 

coordinate equation in GF<2m). 

where Ty 1s the time for multiplying two elements in GF<2ml. T5 the time 

of modulo 2 addition and Tr the delay of one PROM. A fast solution (about 

25 nsl can be obtained if logical elements MC10102 and parity checkers 

MC10160 are used instead of PROM. For instance, the sources are fired at 

X1"" a0 and X2 = a2. After simple calculations, ~o~e have s., _a. I2 s
3 

e_3. c:.-1 - e..I2, <)'
2 

- a2 and r - e..4I- IOIIIO. From eq. <T> ~o~e obtain 
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R~ - s3 + si B 

R5 s5 + s~s3- v 

o-3 - R3 + RI<)'2 GO) 

R5 + R3a 2 + Ria 4 <:ID 

" P + V + Sf 

<12), .,.here 

Equation ~11~ does not contain ~ and thus it is calculated more easily 

R5 R3q; --. 
RI RI 

So! ai~er a prelimanary calculation of ~~. from <10) and (11) ... e can find 
c.o-:

3 
3.nO .,.

4 
As PROM5 with a smaller number of inpUts for variables are 

required to calculate these valuas, such an algorithm for obtaining a
3 

ana o-4 has as a ... hole no influence on the speed. 

v_ Use of the theory of Reed-Solomon codes 

If some cluster events are simultaneously registered in a MDCP as 

~nown in fig.6 [17J, it is worthwhile to use the theory and practice of 

nonoinary BCH-codes (Reed-Solomon (RS> codes [18]. The advantage of this 

approach can be explained as follows. Events with clusters are most of

ten registered in real experiments. According to the decoding method of 

binary BCH-codes, a cluster b in length having t units is processed as if 

t indepenoent sources be fired. From the physicists' viewpoint, a cluster 

is most commonly a one-particle event. Thus, to determine the number of 

clusters by the theory of RS-codes, it is necessary to solve the deter

minants of lesser orders. For example, if two clusters b = 4 in length 

are registered in a MDCP, in the first case the determinant of the 9-th 

order should be calculated whereas, according to the theory Of RS-codes, 

it is enough to solve the determinant of the 3d order. 
Using the syndrome method, 2m - I - 2t information symbols are 

con~iaereo as zero ones, the signals registered in the MDCP are divided 

into groups with m bits in each group, and the maximal cluster length is 

m. Since n >>t under experimental conditions, information compression 

with the coefficient Kc = n;2t takes place. 

VI. Syndrome coding method for sequential systems 

Two reasons make us use economical, sequential •ethods of event 

registration in MDCPs. 

1. A great numbe~ of experiments is planned in which a large multiplici-
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ty, t, of 15-30 is registered in one hodoscopic plane. Thus, to solve co
ordinate equations for t > 5, the author has suggested to use the sequen
tial decoding methods which are well-known from the theory of error cor
recting codes. The most economical decoding method is described in paper 
(161. The idea of creating coordinate processors for large multiplicity 
is taken from this article. Preliminary calculations show that for t = 
20 and n = 1000 all 20 event coordinates can be found for 10 15 ~s. 
2. There are many experiments in high energy physics [19] and applied 
research, e.g. in medicine, where it is enough to register one cluster. 
A scheme of the two-coordinate position-sensitive detector is given in 

Hg.7. 

A series of pulses is generated from one charged particle in two planes. 
It is necessary to determine the centre coordinates of the cluster. 
The signals from the planes are read out with the help of a magneto-
strictive delay line C25J. An economical coding scheme for cluster regis
tration based on Fire coding devices is suggested [22]. The tables of the 
Fire codes for n = 15 - 1200, which can be used to create a coding 

111 liS "' " 91! 19s 

"' .. " • " " " " " " .. " " '" " ~j& lj7 " '" ,,. 
I" 

" " ' ~~jl5U2"1'~t " " '" '" 
IH " " .. "' "' lSI '" .. .. • 29 ~9 

, 
" " " "" " " " "' '" "' '" " " " " 31 !> 35 " " " '" "' "' "' "' ·~ " " " " " 5~52 '" 

'" " " " " " ,, I ,a " "' 
101 IIDi 1105 10~ IID3l '" 

Fig.7. Example of the registration 
of two events with clusters in a ho
doscopic calorimeter. 

~ 

~_;~~~~.~~ .. ~ .. ~.~ .. ~~22 
CATHODE PLA~E 

Fig.S. Diagram of the two-coor
dinate position-sensitive detec
tor. 

device, are presented in paper C231. The number of bits in the coding de
vice is equal to the degree of the generating polynomial g<X> because an 
information word equals zero. For b = 3 and n = 15 we have 

g<X>= x9+ x6+ x5+ X4 + X + 1 
The compression coefficient is characterized by the ratio n;r. Besides, 
the efficiency of compression grows wit~ increas;.ng n on condition that 

b << n. It is shown [26] that there are optimum Fire codes for some cases 
Nhen b = 3 or 4. For example, as it follows from [231, a 6-bit register 
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can be used i~stead of a 9-bit one fer b = 3. Sc 9 Kc = 4096/14 for b 
4 and n = 4096 9 and a PROM can be used fer parallel decoding. 

VII. Fast algorithm fer multiplication in Galois field 
Multiplication in Galois field it is performed simultaneously over on

ly two elements or their logarithms (14, 16; 23]. Below we give a 
description of the algorithm with the help of which multiplication over 
an arbitrary number of elements can be performed [26]. Consider the es
sence of the algorithm illustrating the operation of multiplication in 
GF<24 ). The base of the algorithm is the method of parallel data compres
sion used in the schemes of fast multiplication of usual numbers. Fig.B 
gives two examples which illustrate the proposed algorithm. Such a device 
is called a cyclic compressor because addition is performed modulo 2•-1. 

+ 
I 
I 

+ I) 

+ 2) 

0 I 
3) 

0 I 0 4) 
I 
0 0 I 0 

S) +I 0 I 
I !=IS to 

I 
+ I 

0 
0 
0 

0 
+ 0 0 
I I I 

I I I 
o· 0 0 0 

I I I 
+ 
I 

0 
0 
0 
0 
0 
0 

I 

0 

0 

I 0 
0 

0 I 
I 

I I 
0 
I I 
I I 
I Col 

Fig.S. Two examples illustra-_ 
ting the operation of a cyclic 
compressor in GF<~>. 

The first example on the left cor
responds to a simultaneous multiplica
tion of 15 elements a0 = a 15 , and cyc-
lic compression is executed over the 
degrees of multiplicands. After three 
compression steps, we get two addends 
divided into 2 parts. Besides, the 
second part of the cyclic sum <left> 
corresponds to a maximum number 
<11010000) which equals the su• of 
cyclic carries arising from the com
pression of 15 addends 1111. At the 
last step high-order bits of 1101000 

~0 are added to 1101 laOdulo 15. The com
plete result is 1111. Fig.S On the 
right shows an example of the sum of 
the multiplicand degrees a

10 
a

14 
a 9* 

as a7 a6 a5 = a4S a14 = a14 in GF<24). 
This example can be used as a basis for 
the creation of a cyclic ca.pressor 
<fig.9). The schemes for th• calcula-
tion of the logarithMS 9 which are in 
essence PROMs 9 are not giv~ in this 
figure. Parallel (n 9 k)- count.rs c~ 
be used for creatino cyclic 
~ompr•ssors as well as usu.a.l PROf't .. 

C29J. As shown ih fig.8 9 the cyclic compressor is composed of a QrDUP 
of <15,4>-, <4,3>- and <3 9 2)- counters. The nu.Oer of cascades of 
parallel counters, M, equals 3 form 3 - 7 and ~ for • • 9 -1~. Fig~ 
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the structure oi the counters and to create the corresponding cyclic com

pres-sor. The time of multiplying 2m - 1 multiplicands can be calculated 

from the expression 

T 
m 

TP is the delay in a PROM used to calculate algorithms and antiloga

rithms, T5 is the time of summation modulo 2m - 1 and the delay times 

in the corresponding parallel counters are given in brackets. 

Fig.9. Scheme for simultaneous mul

tiplication in GF<~}. 

Coclusion 

Fig.10. Diagram for the calculati

on of cyclic compressors at 

m = 5 - B. 

It is shown that the algebraic coding theory can be successfully used 

for data compression registered in MDCPs and for the creation of special

purpose coordinate processors. The economical algorithm of executing a 

s1multaneous multiplication over a great number of elements has been sug

gested for fast speed operations in complex exprssions in Galois 

field. The method of syndrome coding can be used in other multichannel 

systems for data registration. 
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Appendi>< 

The elements of Galoius field modulo X6 + X + 

100000 

010000 

001000 

0011U00 

00001111 

000001 

110000 

011000 

001100 

000110 

000011 

110001 

101000 

010100 

001010 

00011111 

110010 

01 U1101 

11111110 

011110 

001111 

21 1111111 42 a a 
.22 10111U 1 .43 

.23 100101 .44 

.24 100010 .45 

.25 010001 .46 

.26 111000 .47 

27 
011100 48 a a 

28 01111110 49 a a 

29 000111 .50 a 

30 110011 51 a a 

.31 101001 .52 

32 100100 53 a a 

.33 0101l110 .54 

34 
001001 55 a a 

a 35 110100 •56 

.36 011010 .57 

37 
001101 

58 a a 

.38 1101 HZI 0
59 

39 
011011 

60 a a 

40 111101 a 61 • 
41 101110 .•2 • 

63 0 a = a 
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010111 

111011 

lliH 101 

111U111 1111 

010011 

111001 

11111100 

0HH10 

001011 

11011111 

101010 

Ql10101 

11101111 

01111111 

111110 

11111111 

111111 

101111 

100111 

1011111111 

100001 

100000 


