

1. INTRODUCTION

Real world is arranged so that very often events can not
be observed directly. It is always sO in high energy physics.
Therefore we have to apply some detector, some hardware to read
data out of the detector and - as a rule - a computer with data
processing and data presentation software.

In an ordinary modern high energy physics experiment there
are usually dozens, or even hundreds of detectors of arbitrary
complexity. Bvidently, all of them should be carefully tested
and tuned so that the experimental setup could produce trus-
table data. Of course, any detector should be tested with some
testing equipment before it is installed in the setup. Such an
equipment is also needed for research of the detectors.

Testing is usually being done by applying some source of
test signal (natural ot artifical) to the detector. With the
help of data taking and presentation hardware and software one
may compare the data with what is expected and tell what the
problem is with.

The testing software should meet the following requirements:

- it should work with the same hardware as that used in the
experimental setup: there s often no other hardware;

- it should provide the user with possibilities of hardware
control and data presentation pot necessarily needed during
the experiment: some things are of interest for test purposes
only;

- user interface should be as simple as possible, and data
should be processed on the fly and displayed in some easily
uderstandable form: one needs not to eat the whole egg up to
know it is spoiled; ’

- hardcopy of the test results should be of quality adequa-
te for passportisation, human communication and publication
purposes: easy-to-read and fine-looking operator s journal
may help to save a lot of energy:

- computer environment it works with should be compact and
simple to operate: a student or two may always be found to do
the dull job. :

An example of software for testing some specific detector
is discussed here. The detector under consideration is the so-
called multi-wire proportional chamber.

2. HARDWARE

Most popular detectors used now are position sensitive de-
tectors which are usually multiwire proportional or drift cham-
bers. Such a chamber is a thin box up to several meters long

with a special gas mixture, and high voltage of several kilo-
volts is applyed to it. Each wire is connected to its own am-
plifire and some other electronics. As a charged particle goes
through the chamber, it ionizes the g8as, and the appropriate
amplifire senses that local charge and produces an electrical
pulse. We can tell position of the particle on the hit wire
number,

In particular, the chamber under test is 1.5 meters long,
1.0 meter high and 50.0 millimetres deep. It contains 640 wires
which are stretched horizontally. It is developing at JINR/1,2/

and is equipped with proprietary read out hardware in CAMAC
standard. The computer used is MS-DOS IBM PC/XT equivalent
with 256 KB of RAM, two 5,25" 30 KB floppy disks (only one
is needed actually), CGA card and EPSON-like dot matrix prin-
ter. This environment is quite compact and simple to operate,

3. GENERAL PROGRAM DESCRIPTION

The program utilizes the so-called "desk-top methaphor",
That means that from the user’s point of view it looks like
a stack of 12 windows he interacts with the program- through
(see figl). The windows may be reordered, moved around the
screen, changed in sizes and contents. Any action is possible
with the window that is on top of the "stack" only. Any window
may be made the top one - that is, the "active" one. The con-
tents of a window can be changed by the user or by the data
taken from the hardware. The interaction with the pProgram re-
minds that of an ordinary screen text editor. If, for example,
the user wants to change some parameter, he has just to enter
the appropriate window and press the appropriate keys. Any text
may be placed to any window (with some minor exeptions discus-
sed below).

Not all the windows were created equal. There are 8 graphi-
cal windows to display histograms and 4 text windows to dis-
play some text. There is also one more “virtual" window - the
13th one - which exists only when active. Some service func-
tions are performed with the help of this window. Two text

2

rLin

Event/Moises 1est
Fead Events ;
Read Time i
gist Iime i3 ggﬂuli Words
i
!

=4
-
m
=]
-
4
b1
mmwmﬁwm

Read Mires: from 1 i1%tatus Words
o _to 546 || 3ime peading
Eff iires! {rom ~1 iidWords in Event
to gda ||
1]
Fig.1l

1T, Fapametsers | pun

u 1

| Event/Moice/Test EVENT
i Read Events ieg@
|
t

i

L —

| Read Time aLL
[Hist Time 13
i Read HWives: from i
i] _to (40 (Controlier num ‘ g
VEff Hipes! fron i | Events_to read 168 |
i fo 4@ | Event Number 2o
tull Hords g i
Status Words "
| Tine reading g |
| Words in Event ")

Fig.2.

windows are somewhat special ones. These are the 'PARAMETERS"
and the "COUNTERS" windows (fig.2). The user can not change
the contents of the "COUNTERS" window, and only valid in a cer-
tain sence characters may be put to "PARAMETERS" window. Size
of neither of those windows may be changed also. There is no
need for this.

The two other text windows are the "COMMENTARY" and the
"HEX DUMP" ones. The MCOMMENTARY" window acsepts any text and
can be of any size up to the whole screen. No hardware data

oL; Gade . ZZ.J.; ,
wi 654321 G805

¥, Commentary © i Biddl Bgéf *.i.:*..ﬂ.,.?T?;
@ug3 4661 .x#,...... R, .08 !

This is text w 8884 (2F3 xx,... %, Wxxx, ¥

o5 C3CD x=x, ., .. ¥xxx, %, %=

all the sessioa

iv, Coq wevl B41F 1 {- Status word - hegin of event
[BBz A401 =, * *..* *
i geut 4661 .x,,..... HA, L%
! Thi gded C2F3 *a... x, HAHH, , H2] ‘
i sy JEEEX, M %3 Data words
i almmzs *n U X
; a7 18ce | .“,iﬁu.*m
i o FaicC Hm‘x L T *1x,
[aele %%%% Ko AR, X {- Muil word - end of event
éﬁéééi 9&?554ééi ‘
Bee E. 2 s KEXAY
godz 228F ., . * ¥, Muxx
P83 33E4 . X, %aEEE. K,
RN, AN NN K, ¥
T PO

Fig.3.

can change the contents of this window. It exists all the ses-
sion through. The "HEX DUMP" window is just what it says: the
hexadecimal dump of raw data as they are taken from the CAMAC
hardware. The text scrolls within this window as every data
word is read out. This is useful to fix hardware problems
which may be marked with plain text to communicate to hardwa-
re personell (fig.3).

In eight graphical windows eight different histograms are
represented. The histograms are of fixed size each but the

4

user may change the scale (pan and zoom) to see any part of
any histogram (fig.4). Those windows may be changed in size
from a certain minimal size up to the whole screen. If all the
eight windows are of minimal size, they may fit the screen so
that they all are seen with no overlapping (fig.5). The histo-
gram in the window that is currently "active' is changing on
each data word read from the CAMAC hardware so that one may
observe the data taking process while it is in progress. The

7

) el

o

-~

225 _ 23@ 23 248 245 248
Fig.h4.

rin

= .) i id M =
Max = 15.96 in 822 Max = 943.88 in 12
282 \ 300
gEl oo | I T T
¥ s Y=t - L4
278 g £15 Tl & b ig
Clusteprs, A Time 12 pun 21 3. T Hidih I-G36 Tipe IZ pap
Max - 4.88 in 993 lax = 4.6 in i1
187 56 -
= 252
g:

¥&

Alt/FY
Fig
RIt/FL@

BLSBECTH Ha JKPaH OTOT TekcT; Howe
fIEPeUTH & OKHD "Parameteps

HeHATE, eca STOF; Bgllp -
NepEPUCOEATE OKHO; . Pgly -
BEBCTH TEKECT B OKHG; Ciri/Home -~
HaPHCOBATE BC@ OKHA, Cirl/knd -
EHKONHPOEATL SKPaH Lirl/Pgily -

Ha Me4aTk;) Ciri/Pgbn -
RQKasaTe KaprTy/ravas, Ins -
CTEPETE BCE OKHa, Del -

KpOHe TeKyuerc,

: Time 17 pun . Eff Hange 1-%46 run :

Nax - 4.8 in 564 Max - 6,89 in 2 :
28~ . L o a5y R
1g N ¢
B 1@ 32p 488 4@ g T Y

NEPENEHHYTE GKHO BABEQ;
NEpeEHHYTL OKHO BNPABRO! !
NEPeBHHYTE OKHD BEAPX,
NepepEdHYTh OKHD EHHE;
YHEMLUMTL BHPHHY OKHa;
YEEAIYHTE EMPHHY OKHA,
YHEHBUMTE BLCOTY OHHA,
JERAHMHTEL EHICOTY OKHA,
YERAHMHTL MACHTAG B OKHe;
SHEHBUNTE MACUTES E OKHE,

T M3MEHHTL NOZHWMM BACKCE; R11/un9pPa -~ mepeiTH B oKHO Hoep “uwipa®™
- {IPO4HTATE OKHA M ali/- - MefedTy B OWHO “?aranetegs
RAPAMBTPL & DHMCKA, Als+ — NepedTy E oKHo "Countens

Aw6an ¥Aaenua

330KCATE OHMA W c
NapaMETPE HA JHCE | TPEAKH |
NPEEPATHTL Habop BBEPX BHU3

~ MEPEHTH & CAROYMEEE OKHO|

BaHHMX B{IPABD, BAEBD - N8PEgRHHYTE OKHO 1D

voHel paboTh,

Return uad Enter - zanycTnte pabop maHMax :
- ecAH RUNMING - ocTakeeuTh, #can PAUSE - npomoamers.|

FHCTOFpaMpe,

Fig.6.

user may browse through the windows quickly to decide whether
there are any problems with the object under test. After the
test is done the windows may be configured on the screen in
any suitable manner, a commentary text may be put to any gra-
phical window, and the hardcopy may be produced.

Naturally, there is some "help" facility. Help is implemen-
ted in two ways. First, there is a prompt line on top of the

6

screen specific for each mode the program is in. The current
mode is indicated and a short reminder of what key may be pre-
ssed is displayed in it. Second, the full list of the control
keys and their functions descriptions may be displayed at anv
time on the whole screen on pressing the "help" key (Fl key).
Of course, it may be hardcopied as it is shown in fig.6. Prac-
tically, this is all that is needed to know the full pregram
centrol.

All the parameters settings and the screen window arrange-
ment may be saved onto disk for later sessions.

4. SOME PROGRAM INTERNALS

The windowing technique utilized here is sometimes called
"RAM-screen'. To move a window we have to copy the approepriate
part of the screen - the window - to some other place in the
screen memory and restore the part of the screen that has been
discovered after that. So it has to exist somewhere. Best of
all is to keep the whole screen that underlies the moving win-
dow in program data memory - in RAM.

As we have many windows and each one is to be moved, we
have to keep all of them in RAM, also, as single windows. 5o
if, for instance, there are M windows and some window N is to
be moved, the following preparations should be undertaken:

Store the current window to RAM window area;
Clear the screenj;

Restore M-1 windows from RAM window area,
excluding window Nj

Copy screen to RAM screen area;

Restore window N from RAM window area;

In fact, this is a "Go to Window N" procedure. Restoring many
windows is time-consuming. As we usually go to window other
than the current one, we may speed up the process by reducing
it to just:

Store the current window to RAM window area;
Copy screen to RAM screen area;
Restore window N from RAM window area;

To restore a window and process it properly some information
is needed in addition to its contents. Thus, to draw a histo-
gram, its values should be converted to screen points to fit
the window according to the formulae:

ScreenValue : = WorldValue * Coeffl + Coeff2;

Where the conversion coefficients coeffl and coeff? must be
evaluated for both horizontal and vertical dimensions (X and
Y) of the window,according to window location and size and
maximum and minimum histogram values:

Coefflx : (ScreenX? - ScreenX1)/(WorldMaxX - WorldMinX);
Coeffly : = (ScreenY2 - ScreenYl)/(WorldMaxY - WorldMinY);
Coefflx : ScreenXl - WorldMinY * Coeffly;
Coeffly : ScreenYl - WorldMinY Coeffly;

Where ScreenXl, ScreenYl and ScreenX?, Screen Y2 are screen
coordinates (in screen points) of upper left and lower right
corners of the window, respectively. WorldMinX and WorldmaxX
are the lowest and highest bin numbers of the histogram to
draw. WorldMinY and WorldMaxY are the minimum (always zero)
and maximum bin values of it. The coefficients under considera-
tion are to be reevaluated each time the window moves or the
histogram limits change. It occurs, for instance,if the histo-
gram maximum overflows the current window vertical size.

Hence, we have to define the window identificator, the win-
dow screen coordinates, the histogram limits, pointer to the
histogram array and a few other things for service purposes
such as, for instance, a flag to indicate that the histogram
is already drawn. So, a window appears to be a structure (as
it is in Pascal):

Windiow = record

WindowlD integer;

Header :Textstring;

Sx1, Sx2Z, Syl, Sy2 :integer

Wxl, Wx2, Wyl, Wy2 :integer;

Histogram :HistPointer;

Drawn :boolean;
end;

All the windows are defined as an array of such structures:
Windows : array [1..MaxWindow] of Window;

Also, information about window ordering is needed. It is kept
in the window layout array:

WindowLayout : array [1..MaxWindow] of integer;

This array contains window identificators (which are window
aumbers) and is used in the following sence: WindowLayout [1]
is the active window number , WindowLayout [9] is the window be-
neath the previous one, and so on.The array elements are reor-
dered each time the active window number changes. There are
two ways to change it. The user may "go'" to window next to the
current one ("below” or "above") or select a window by its
aumber. The "above' window is the one that is the "lowest' in
the screen window stack. Its number is WindowLayout[MaxWindow].

Any action with a window is fulfilled according to the fol-
lowing scheme:

with Windows [WindowLayout[l]] do
begin

end;

The idea of windowing mechanism discussed so far has been
derived from Turbo Graphic Toolbox package from Borland Inter-
national/3®/. A few routines have been modified and some rou-
tines have been added to implement the following functions:

- scroll window content within the window borders;

- write scrolling test to window; '

- invert rectangular area within the window;

- move the inverted area within the window;

- display and move text cursor within the window in graphic
mode; .

- draw a single histogram bar (erase existing bar and draw
a new one - to make histogram live);

- Graw histogram axis and histogram;

- change window size (horizontal and vertical dimensions
separately);

- change the displayed portion of the histogram (pan and
zoom with appropriate change of histogram axis);

- change active window number (so that to update all window
attributes);

Some optimization was done to draw a single histogram bar fast
enough. Only points that are not drawn are fired up - a check
is made if the point is already drawn. As the new bar value is
usually higher than the old one, the bar is drawn down till
first drawn point is met. If a bar is Ynarrow", i.e. if it is
to be displayed as a single line - one line is drawn only.
Erasing is performed likewise - drawn points of the old bar -
are erased only, and after the new bar has been drawn (fig.7).

i

9

DREL HISTOGRAM EFR

R

g;i dr au
while point

?‘ﬁ mﬂ'l iz nat draun
e W ¥
Lv eeee
& eeee
erase old points & W3 & & &
* L 3 & L X B -1
- XX & & &= &
L1 X X € € & &
= * & & [& [
Fig.7.

The main cycle of the program is clear and simple and des-
criptive enough to understand the functions of all the control
keys:

(Initialization part)

repeat

begin :

if ord (CtrlChar) <> ESC then read (Kbd, CtrlChar);
if ord(CtrlChar) = ESC then read (Kbd, CtrlChar);
case ord (CtriChar) of

Altl..AltE : GotoWindow (ord (CtrlChar) - 119);

DownArrow : NextWindow(-1);

UpArrow : NextWindow(1});

LeftArrow : MoveHist(-1);

RightArrow : MoveHist(1});

EndKey : WindowMoveHor(1);

HomeKey : WindowMoveHor(-1);

CtrlEnd : WindowZoomHor(1);
CtrlHome : WindOwZoomHor(-1);

PgUpKey : WindowMoveVer(-8);
PgDnKey : WindowMoveVer(8);
CtrlPgUp : WIndowZoomVer(-8);
CtriPgDn : WindowZoomVer(8);
InsKey : ZoomHistogram(1);
DelKey : ZoomHistogram(-1);

10

Fl : Xhelp;

F2 + ChangeParameters;

F3 : RedrawHistogram;

Fa : TextToWindow;

-F5 : RedisplayAll;

ALtF5 :+ PrintScreen;

Fo . : ShowBinValue;

F7 : ClearScreen;

F8 : ChangeCamacN;

F9 : LoadWindows;

AltF9 : StoreWindows;

F10 : StopRun;

AltF10 : Quit : = true;
end;

if Running or (ord(CtrlChar)=ENTER) then TakeData;
end; until Quit;

Data reading cycle is hidden in TakeData subroutine. It can be
seen that it is activated on pressing ENTER key. If any key is
pressed during the data reading cycle, the cycle is suspended
and program control is transfered to the outer cycle - the main
program cycle - to see what particular key has been pressed.
After the appropriate function has been accomplished the data
reading cycle is resumed. Data decoding, histogram filling and
displaying (with "Draw Histogram Bar' routine)} is being perfor-
med during it. So, if the user is sitting quietely staring at
the screen he may see the process in progress, if the currently
active window is one of the histogram windows or the "HEX DUMP"
windoew or the "COUNTERS'" window - i.e. the one which content
can be changed by the data. Or he may switch to any other win-
dow, or move the window, or change its size - the process will
be going on untill the predefined (by the user) number of
events is reached or F10 key (the "Stop Run'" command) is pres-
sed.

5. CONCLUSION

Computer graphics adds new dimension to man-mashine inte-
raction. It especially is true if you deal with complicated
data aquisition hardware. If it is the case then, as experien-
ce shows, even simple, monochrome, two-dimensional graphics
can save a lot of time and labour.

11

The language the program is implemented in is Pascal. Some
portions cof routines that deal with windows and RAM-screen are
implemented in Assembler for speed and efficiency. So, we may
conclude that Pascal is not an ideal langauge for graphics
(and data acquisition).

Assembler is hardly an ideal language for anything that is
more than memory-to-memory move. There is C programming lan-
guage, of course, that seems to be suitable for almost every-
thing. But - what we deal with if we do graphics are images or
objects. So an object-oriented approach might be reasonable.

We now see a dramatic pace of computer graphics progress:
raw power of computers increases, specialized chips appear,
new architectures emerge, new software appears - algorithms,
languages, standards, and so on. Along with all that prices
steadily go down - we are getting still more and more bang for
the buck. State-of-the-art computer graphics has come from se-
parate rooms to under the table, and is now taking its place
on top of the table for table-top prices. So, one may expect
that in near future compact and simple to operate test systems
will have more graphics of higher resolution and colour. It
will bring to life better detectors, those will let us learn
more about the real world, and that will stimulate new ideas
on computer graphics to appear.

The author is grateful to D.A.Smolin for helpful discus-
sions on CAMAC hardware.

REFERENCES

1. Kiryushin Yu., Vishnevsky A. - Nucl. Instr. and Meth.,
1984, A252(2,3), p.281.

2. Vishnevsky A. - JINR Commun. 13-83-15, 1983.

3. Turbo Pascal Reference Manual. Borland International Inc.,
1985,

4. Turbe Graphics Toolbox Reference Manual. Borland
International Inc., 1985.

Received by Publishing Department
on April 28, 1989.

12

