
f9 -90 I 

<2-

COOft~eHMR ~ 

V. E. Zhiltsov 

OtibBAMHBHHOrO 
MHCTMTYT8 

RABPHbiX 
MCC~BAOB8HMM 

AYfiHa 

E10-89-302 

LIVE HISTOGRAMS IN MOVING WINDOWS 

Example of implementation 

1989 



1. INTRODUCTION 

Real world is arranged so that very often events can not 

be observed directly. 'It is always so in high energy physics. 

Therefore we have to apply some detector, some hardware to read 

data out of the detector and - as a rule - a computer with data 

processing and data presentation software. 

In an ordinary modern high energy physics experiment there 

are usually dozens, or even hundreds of detectors of arbitrary 

complexity. Evidently, all of them should be carefully tested 

and tuned so that the experimental setup could produce trus­

table data. Of course, any detector should be tested with some 

testing equipment before it is installed in the setup. Such an 

equipment is also needed for research of the detectors. 

Testing is usually being done by applying some source of 

test signal (natural or artifical) to the detector. With the 

help of data taking and presentation hardware and software one 

may compare the data with what is expected and tell what the 

problem is with. 
The testing software should meet the following requirements: 

- it should work with the same hardware as that used in the 

experimental setup: there~s often no other hardware; 

- it should provide the user with possibilities of hardware 

control and data presentation not necessarily needed during 

the experiment: some things are of interest for test purposes 

only; 
- user interface should be as simple as possible, and data 

should be processed on the fly and displayed in some easily 

uderstandable form: one needs not to eat the whole egg up to 

know it is spoiled; 

- hardcopy of the test results should be of quality adequa­

te for passportisation, human communication and publication 

purposes: easy-to-read and fine-looking operator's journal 

may help to save a lot of energy; 

- computer environment it works with should be compact and 

simple to operate: a student or two may always be found to do 

the dull job. 

An example of software for testing some specific detector 

is discussed here. The detector under conSideration is the so­

called multi-wire proportional chamber. 

1 



2. HARDWARE 

Most popular detectors used now are position sensitive de­tectors which are usually multiwire proportional or drift cham­bers. Such a chamber is a thin box up to several meters long and high, and about fifty or so millimetres deep with up to se­veral hundred thin wires stretched inside it. It is filled with a special gas mixture, and high voltage of several kilo­volts is applyed to it. Each wire is connected to its own am­plifire and some other electronics. As a charged particle goes through the chamber, it ionizes the gas, and the appropriate amplifire senses that local charge and produces an electrical pulse. We can tell position of the particle on the hit wire number. 
In particular, the chamber under test is 1.5 meters long, 1.0 meter high and 50.0 millimetres deep. It contains 640 wires which are stretched horizontally. It is developing at JINR/1,2/ and is equipped with proprietary read out hardware in CAMAC standard. The computer used is MS-DOS IBM PC/XT equivalent with 256 KB of RAM, two 5.25" 360 KB floppy disks (only one is needed actually), CGA card and EPSON-like dot matrix prin­ter. This environment is quite compact and simple to operate. 

3. GENERAL PROGRAM DESCRIPTION 

The program utilizes the so-called "desk-top methaphor". That means that from the user·s point of view it looks like a stack of 12 windows he interacts with the program through (see fig1). The windows may be reordered, moved around the screen, changed in sizes and contents. Any action is possible with the window that is on top of the "stack" only. Any window may be made the top one - that is, the "active" one. The con­tents of a window can be changed by the user or by the data taken from the hardware. The interaction with the program re­minds that of an ordinary screen text editor. If, for example, the user wants to change some parameter, he has just to enter the appropriate window and press the appropriate keys. Any text may be placed to any window (with some minor exeptions discus­sed below). 
Not all the windows were created equal. There are 8 graphi­cal windows to display histograms and 4 text windows to dis­play some text. There is also one more "virtual" window - the 13th one - which exists only when active. Some service func­tions are performed with the help of this window. Two text 

2 



i! 
111 

'--!' 

fxooM 
. to 
froM 

to 

Fig.l. 

\II. Par-aMeters : run i I 
, EoentfNoise/Tost EVENT :' 

l
i Read Events Hlll 
. Read Ti,.. ALL I 
I Hist Ti,.. 13 ' 

!
\Read ~H~es: frot.Mo 1 if&ijHlllll.J¢ 

640 I Conti'O el' nUJ< 

i Eff Wil'es: t'I'OM 1 I Events to I'ead 

Li. _____ _.:.to;__ ___ 6:_4:;0'-i! Event '""'bel' 

- I Null Wol'ds 
Status Wol'ds 

, Tio;e I'eadiny 
[ Wol'ds in Event 

Fig.2. 

·---

windows are somewhat special ones. These are the ''PARAMETERS'' 

and the "COUNTERS" windows (fig.2). The user can not change 

the contents of the "COUNTERS" window, and only valid in a cer­

tain sence characters may be put to "PARAMETERS" window. Size 

of neither of those windows may be changed also. There is no 

need for this. 
The two other text windows are the "COMMENTARY" and the 

"HEX DUMP" ones. The "COMMENTARY" window acsepts any text and 

can be of any size up to the whole screen. No hardware-data 

3 



~~===""""'~ &!i432i. 987tH32i 
8901 941F ..... ~~····"'''' 8902 9481 •.•..•..••.....• 

This is 

all the 

I 909J 4861 .~.,,,,, ,+i:~,,, ,-!II: 

. 8904 C2F3 *'· .. ·*·*'"'· ·"' 
I 8905 C3CE .............. *' 
i 0096 »928 "-~·*· .... ·*·*·.' 
:8907 30C6 . ·"'· .• ·"'·. ·"'· 
! i!lil!8 F41C *'"'·* ..... *<< .. 
: 911119. 2273 ..•.•.•.. "'· ·"' '----------i; 0019 Q000 ............. " . 
! . . 65432!~9&7654~t~ 
18901 0Elf ... ·*"'• .. ·**·'"·' 

009'.! 428F' ............ *"' 
1 0003 33E4 . ·*'· ·*''""· .• .. 19094 6%9 ...... ~>.«.• .. • 
10005 9379 • .. • .. *'·*" .... 

· ~un - -! ---- ---- - ---·--··*· .... ·*·*:::: 
rt'n'---,.;d 6543H. 98'i6:l43H 

89ti1 941F ..... •~ .•.. *<>>> <-Status word- heg1n of event 
8902 9481 •.••.•..•...•..• 
91103 4961 ••••••... *'· ...• 
8904 C2F3 *'· .. ·*·*'"~· ·*' 
0095 C3CB *'· ... **"·. •. *' Data wol'<ls 
9111!6 0028 *'·*· .... ·*·*· .. 
91197 30C(; , , *'·,,, G,,, *'· 
8908 F41C *"'· *· .... e< .. 

L ---i 00119 2273 • ·*·. ·*· ·*"'· ·*" 0019 0000 .. .. .. .. .. .. .. .. {- Null word - end of event 
' 654321_987&54321 

99111 l!ElF .... •n .... nux 
91192 428F ·*····*·*···*''' 
91103 33E4 . ·*'· .*>»<. ·*·. 
99114 6369 ...... •:. •:" ... * 
9995 9379 *· ·*· •*"•*""• ••. 

Fig.3. 

can change the contents of this window. It exists all the ses­
sion through. The "HEX DUMP" window is just what it says: the 
hexadecimal dump of raw data as they are taken from the CAMAC 
hardware. The text scrolls within this window as every data 
word is read out. This is useful to fix hardware problems 
which may be marked with plain text to communicate to hardwa­
re personell (fig.3). 

In eight graphical windows eight different histograms are 
represented. The histograms are of fixed size each but the 

4 



user may change the scale (pan and zoom) to see any part of 

any histogram (fig.4). Those windows may be changed in size 

from a certain minimal size up to the whole screen. If all the 

eight windows are of minimal size, they may fit the screen so 

that they all are seen with no overlapping (fig.S). The histo­

gram in the window that is currently "active" is changing on 

each data word read from the CAMAC hardware so that one may 

observe the data taking process while it is in progress. The 

J 

J 

1 
j 

1 
8 I ' 

--... . ~~-~ 
~ -- -

·~--·--·--·-·---~-----· ------: i 

" i i 
l: 
i / 

----'~-- ',· ! 
I j I ' :! 

r--<,, ; i , n---:-1---'-- · 1 

! i ' \ ' il : 

. I !l----1 r---r--Ti 11----fi ! 
: ! i : : I ; r-1 J r 1 :' 

I I I i ' ' I I ! I I I 

I i ! i i l ' ! ! I 

! ' I ' ' l II 
: i ! i 

I I j i 

1 ) I .i 1,,1 

! I I I 
zJa ' 1z4$ z4kJ 

I 
' I 

! ~ 

Fig.4. 

5 



Fig.S. 

, .... 

Fl 
f2 

- Bb£-fl;:Ht Ha :W.Pa.H 3TOT TeKCT. 
- nepetnu e OKHO "Papaflletersi1 

HoMe - nepeABUH:;JTb OKHO BAeBO; End nepeABHH!JTb ov.Ho enpaeo; PgUp - nepeABHH::JTb or.Ho eeepx; 

I n 
'I AltA~ 

16 
I !7 

HeHflTb, ecAtt STOP; 
- nepepucoearb or.Ho; 
- eaecrw rer.cr B OY.Ho; 
- HapMCOBa.Tb ECe OY.Ha; 

CKOOMPOBaTb :w.paH 
Ha nel.la.Tb; 

- noKa3a.Tb r.apT!J/r;aHal!; 
- erepeTb ece or.Ha, 

Y.POHe TfY.!jqero; 
- Jf3HeHIHb 003~11..lHH 6;10KOB; 
- npo'itnaTb or.Ha It I R 

I AI t/1'9 
napatterph: c AJtcr.a; 

- 3aflJ.tCaTb OKHa H 
napa.HeTPLI Ha ,IJ.HCV.; 

Fl~ - npeY.PaTJ.tTb Ha6op 
AaHHW<; 

AI t/Fl0 - Y.oHeU pa6on1; 

PgDn - nepeaBHH~Tb OKHO EHH3; 
Ct:rl/HoMe - !JHeHblUHTb liNPitH!J OV.Ha; 
Ct:rl/End - ~BeAlt'iUTb liiMPUH!J oY.Ha; 
Ct•lfPgUp - ~11eHbWitTb .. ICOT~ OKHa; 
Ctr>i/PgDfl - !jBe.IBtl.lifTb UICOT~ OY.Ha; 

Ins - ~~AH'iitTb t-iacwra6 e. or.He; 
])el - ::Jt-teHblllitTb t-tacwra6 e o.r.:He; \ 

Al t/u.~t4'Pa - nepe(nn e OY.Ho Hot-tep "l..lnlWa" AI t/- - nepe1-1nt B Ot:Ho 11 Pa:raJ~teters" r AI t/+ - nepe1tn1 e OKHO "Countet"s" 

~~~r.g~3 - nepe~int e CAe~HQee or.Ho; BnPABO, BAEBO - nepeasllH~Tb OY.HO no 
ntcrorpaMtte; 

Retu~ ltAit Entef' - 3an~cntTb Ha6op naHHLtx; 
t1HJ6aR r.Aaenwa - ec11u RUNNING - ocraHOBHn., ec111t PAUSE - npoAf)A»>Tb. i 

Fig.6. 

user may browse through the windows quickly to decide whether 
there are any problems with the object under test. After the 
test is done the windows may be configured on the screen in 
any suitable manner, a commentary text may be put to any gra­
phical window, and the hardcopy may be produced. 

Naturally, there is some "help" facility. Help is implemen­
ted in two ways. First, there is a prompt line on top of the 

6 



screen specific for each mode the program is in. The current 

mode is indicated and a short reminder of what key may be pre­

ssed is displayed in it. Second, the full list of the control 

keys and their functions descriptions may be displayed at anv 

time on the whole screen on pressing the "help" key (Fl key). 

Of course, it may be hardcopied as it is shown in fig.6. Prac­

tically, this is all that is needed to know the full program 

control. 
All the parameters settings and the screen window arrange­

ment may be saved onto disk for later sessions. 

4. SOME PROGRAM INTERNALS 

The windowing technique utilized here is sometimes called 

"RAM-screen11
• To move a window we have to copy the appropriate 

part of the screen - the window - to some other place in the 

screen memory and restore the part of the screen that has been 

discovered after that. So it has to exist somewhere. Best of 

all is to keep the whole screen that underlies the moving win­

dow in program data memory - in RAM. 

As we have many windows and each one is to be moved, we 

have to keep all of them in RAM, also, as single windows. So 

if, for instance, there are M windows and some window N is to 

be moved, the following preparations should be undertaken: 

Store the current window to RAM window area; 

Clear the screen; 
Restore M-1 windows from RAM window area, 

excluding window N; 
Copy screen to RAM screen area; 

Restore window N from RAM window area; 

In fact, this is a "Go to Window N" procedure. Restoring many 

windows is time-consuming. As we usually go to window other 

than the current one, we may speed up the process by reducing 

it to just: 

Store the current window to RAM window area; 

Copy screen to RAM screen area; 

Restore window N from RAM window area; 

To restore a window and process it properly some information 

is needed in addition to its contents. Thus, to draw a histo­

gram, its values should be converted to screen points to fit 

the window according to the formulae: 

7 



Screen Value : = WorldValue '' Coeffl + Coeff2; 

Where the conversion coefficients coeffl and coeff2 must be evaluated for both horizontal and vertical dimensions (X and Y) of the window,according to window location and size and maximum and minimum histogram values: 

Coefflx = (ScreenX2 - ScreenXl)/(WorldMaxX - WorldMinX); 
Coeffly (ScreenY2 - ScreenYl)/(WorldMaxY - WorldMinY); 
Coeff2x = ScreenXl - Wor ldMinY '' Coeffly; 
Coeff2y = ScreenYl - Wor ldMin Y ·k Coeffly; 

Where ScreenXl, ScreenYl and ScreenX2, Screen Y2 are screen coordinates (in screen points) of upper left and lower right corners of the window, respectively. WorldMinX and WorldmaxX are the lowest and highest bin numbers of the histogram to draw. WorldMinY and WorldMaxY are the minimum (always zero) and maximum bin values of it. The coefficients under considera­tion are to be reevaluated each time the window moves or the 
histogram limits change. It occurs, for instance,if the histo­gram maximum overflows the current window vertical size. 

Hence, we have to define the window identificator, the win­dow screen coordinates, the histogram limits, pointer to the histogram array and a few other things for service purposes such as, for instance, a flag to indicate that the histogram is already drawn. So, a window appears to be a structure (as it is in Pascal): 

Windiow = record 
WindowiD 
Header 
Sxl, Sx2, Syl, Sy2 
Wxl, Wx2, Wyl, Wy2 
Histogram 

Drawn 
end; 

:integer; 
:Textstring; 
:integer 
:integer; 
:HistPointer; 

:boolean; 

All the windows are defined as an array of suGh structures: 
Windows: array [l .. MaxWindow] of Window; 

Also, information about window ordering is needed. It is kept in the window layout array: 
WindowLayout : array [l .. MaxWindow]· of integer; 

8 



This array contains window identificators (which are window 

numbers) and is used in the following sence: WindowLayout [l] 

is the active window number, WindowLayout [ 2] is the window be­

neath the previous one, and so on.The array elements are reor­

dered each time the active window number changes. There are 

two ways to change it. The user may "go" to window next to the 

current one ("below" or "above") or select a window by its 

number. The "above" window is the one that is the "lowese' in 

the screen window stack. Its number is WindowLayout[MaxWindow]. 

Any action with a window is fulfilled according to the fol­

lowing scheme: 

with Windows [WindowLayout[l)] do 

begin 

end; 

The idea of windowing mechanism discussed so far has been 

derived from Turbo Graphic Toolbox package from Borland Inter­

national/3,41. A few routines have been modified and some rou­

tines have been added to implement the following functions: 

- scroll window content within the window borders; 

- write scrolling test to window; 

- invert rectangular area within the window; 

- move the inverted area within the window; 

display and move text cursor within the window in graphic 

mode; • 

- draw a single histogram bar (erase existing bar and draw 

a new one - to make histogram live); 

- draw histogram axis and histogram; 

- change window size (horizontal and vertical dimensions 

separately); 
- change the displayed portion of the histogram (pan and 

zoom with appropriate change of histogram axis); 

- change active window number (so that to update all window 

attributes); 

Some optimization was done to draw a single histogram bar fast 

enough. Only points that are not drawn are fired up - a check 

is made if the point is already drawn. As the new bar value is 

usually higher than the old one, the bar is drawn down till 

first drawn point is met. If a· bar is "narrow", i.e. if it is 

to be displayed as a single line - one line is drawn only. 

Erasing is performed likewise - drawn points of the old bar · 

are erased only, and after the new bar has been drawn (fig.7). 

9 



O~Al·l HI STOG~flM 8A~ 

~-------........ _ 

) 
1,¥-" draw 

whilE- point 
i :5 not dr .3on 

llil:i 

1 

0 ,.;::. '·''' ,,,, ,j,. 
''

1
·' '1:1!1· 

\1:::::: .$ ... ,,,,-. eeee 
er ast? old points --::..• ¥¥ C • • 

• • e ee e• . ... ~ ~ ~ ~ 
••••.,-. e ee . . . . " " 

Fig. 7. 

The main cycle of the program is clear and simple and des­
criptive enough to understand the functions of all the control 
keys: 

10 

(Initialization part) 

repeat 
begin 

if ord (Ctr1Char) <> ESC then read (Kbd, Ctr1Char); 
if ord(Ctr1Char) =ESC then read (Kbd, Ctr1Char); 
case ord (Ctr1Char) of 

Alt1 .. AltE GotoWindow (ord (Ctr1Char)- 119); 
DownArrow NextWindow(-1); 
UpArrow NextWindow(1); 
LeftArrow MoveHist(-1); 
RightArrow MoveHist(1); 
EndKey WindowMoveHor(1); 
HomeKey WindowMoveHor(-1); 
Ctr1End WindowZoomHor(1); 
CtrlHome WindOwZoomHor(-1); 
PgUpKey WindowMoveVer(-8); 
PgDnKey WindowMoveVer(8); 
CtrlPgUp WindowZoomVer(-8); 
CtrlPgDn WindowZoomVer(8); 
InsKey ZoomHistogram(1); 
DelKey ZoomHistogram(-1); 



Fl 
F2 
F3 
F4 

·FS 
AltFS 
F.6 
F7 
F8 
F9 
AltF9 
FlO 
AltFlO 

end; 

Xhelp; 
ChangeParameters; 
RedrawHistogram; 
TextToWindow; 
RedisplayAll; 
PrintScreen; 
ShowBinValue; 
ClearScreen; 
ChangeCamacN; 
LoadWind.ows; 
StoreWindows; 
StopRun; 
Quit : = true; 

if Running or (ord(CtrlChar)=ENTER) then TakeData; 
end; until Quit; 

Data reading cycle is hidden in TakeData subroutine. It can be 
seen that it is activated on pressing ENTER key. If any key is 
pressed during the data reading cycle, the cycle is suspended 
and program control is transfered to the outer cycle - the main 
program cycle - to see what particular key has been pressed. 
After the appropriate function has been accomplished the data 
reading cycle is resumed. Data decoding, histogram filling and 
displaying (with "Draw Histogram Bar" routine) is being perfor­
med during it. So, if the user is sitting quietely staring at 
the screen he may see the process in progress, if the currently 
active window is one of the histogram windows or the "HEX DUMP" 
window or the "COUNTERS" window - i.e. the one which content 
can be changed by the data. Or he may switch to any other win­
dow, or move the window, or change its size - the process will 
be going on untill the predefined (by the user) number of 
events is reached or FlO key (the "Stop Run" command) is pres­
sed. 

5. CONCLUSION 

Computer graphics adds new dimension to man-mashine inte­
raction. It especially is true if you deal with complicated 
data aquisition hardware. If it is the case then, as experien­
ce shows, even simple, monochrome, two-dimensional graphics 
can save a lot of time and labour. 

11 



The language the program is implemented in is Pascal. Some 
portions of routines that deal with windows and RAM-screen are 
implemented in Assembler for speed and efficiency. So, we may 
conclude that Pascal is not an ideal langauge for graphics 
(and data acquisition). 

Assembler is hardly an ideal language for anything that is 
more than memory-to-memory move. There is C programming lan­
guage, of course, that seems to be suitable for almOst every­
thing. But - what we deal with if we do graphics are images or 
objects. So an object-oriented approach might be reasonable. 

We now see a dramatic pace of computer graphics progress: 
raw power of computers increases, specialized chips appear, 
new architectures emerge, new software appears - algorithms, 
languages, standards, and so on. Along with all that prices 
steadily go down - we are getting still more and more bang for 
the buck. State-of-the-art computer graphics has come from se­
parate rooms to under the table, and is now taking its place 
on top of the table for table-top prices. So, one may expect 
that in near future compact and simple to operate test systems 
will have more graphics of higher resolution and colour. It 
will bring to life better detectors, those will let us learn 
more about the real world, and that will stimulate new ideas 
on computer graphics to appear. 

The author is grateful to D.A.Smolin for helpful discus­
sions on CAMAC hardware. 

REFERENCES 

1. Kiryushin Yu., Vishnevsky A. - Nucl. Instr. and Meth., 
1984, A252(2,3), p.281. 

2. Vishnevsky A. - JINR Commun. 13-83-15, 1983. 
3. Turbo Pascal Reference Manual. Borland International Inc., 

1985. 
4. Turbo Graphics Toolbox Reference Manual. Borland 

International Inc., 1985. 

12 

Received by Publishing Department 
on April 28, 1989. 


