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1 .  THE CALCULATION OF SWITCHING FUNCTIONS 
REPRESENTED AS GALOIS FIELD GF (2m) ELEMENTS 
ON COMPUTER 

The theory of ~alois field GF(~") being a natural continua- 
tion of the theory of Boolean field, the representation of 
switching functions as a polynomial, where both variables and 
coefficients are Galois field elements, is thought to be the 
most long-term one among the number of different methods of 
switching function synthesis. 

~epresentation of switching functions in such form (Galois 
switching function - GSF) has a number of advantages. First, 
algebraic operations can be executed over the GSF and the prob- 
lem of minimization and its formal representation simplifies. 
Second, an input-output state of a combinational scheme or a 
sequentionalautomath being coded by the Galois field elements, 
a next state of input-outputs can be represented as a polyno- 
mial function of a current state and a current output. Third, 
the representation of switching function as a polynomial for 
a large number m(m .3) makes it possible to use standard pro- 
gramming systems and prese~t-day computers for calculation of 
logic schemes. Finally, the advantage of switching function re- 
presented as a polynomial is in compact form of presentation 
of multivalued and multilevel schemes. 

For the purpose to approach the abstract Galois field theory 
to engineering practice all calculations of the schemes in each 
particular case have been executed and the possibility of des- 
crete logic schemes designing on the base of analytical trans- 
formations and calculations on a computer are shown. The PL/I, 
REDUCE, SCOONSCHIP programs have been usedf1 l '. The fundamen- 
tal properties of GSF are considered in details in the litera- 
ture ' 1-8 '. 

Let us consider some examples. It is known that any swit- 
ching function f(x)=(x,,xl,x2 ,.... x,-l) of the rn argument 
of the GF(2") can be presented as a polynomial'1-4' 

Here and further a modulo-2 sum is denoted by the sign + and 
the A(k) coefficients are calculated from the expression 



where B(aj) are the substitutional elements taken from the in- 
put-output correspondence Table and B(0)is the function at 
a zero point. Thus for GSF synthesis the following steps are 
executed: an irreducible polynomial of the m / * /  power is cho- 
sen in conformity with a number of variables and all nonzero 
GF(2m) elements are found; a table of input-output correspon- 
dence is drawn up; the A(k) coefficients are calculated; the 
A(k) coefficients and the x powers are expanded in the basis 
elements of a selected field; similar terms are eliminated. 
Note that any x element of the Galois field G F ( ~ ~ )  can also be 
represented as a polynomial 

where a', al, a2, ... , am-' are basis elements of the field 
and xo , xl , x2, ..., are equal to 1 or 0 .  

Example 1 . Consider a Galois field GF(~~) formed over the 
irreducible polynomial x3 + x + 1. Suppose that a0 = 100, a1 = 
= 010, a2 = 001 are basis elements (linear independing) of the 
field; and a l , a root of the polynomial. T n  such a way one can 
easy find the other field elements because a4= a3a1 = a2 + a1 = 

= 011, a5 = = + a2 = + a1 + a0 + a2 = 111, a6 = 
= a5a1 = a2 + a0 = 101 and a7 = a'. 

Suppose that a scheme of a 
one-bit full summator should 
be designed. Let's draw up a 

x ,  table of correspondences (Tab- 
le 1). The sequence of the fi- e eld elements arranged in increa- 
sing order of their powers and 
their binary equivalents (in- 

f l  puts) are given on the left. 
The corresponding values which 
it is necessary to get at the 
outputs of the summator are 
shown in the second column. 

Fig. 1. Principle scheme of 1- 

ye ,bit  combined swnmator nC1, nC2 
- halfswnmator. 

Inputs 

Table I .  

Outputs 

0 = 000 = 00 
a0 = 100 = 10 
a0 = 100 = 10 
a0 = 100= 10 
a1 = 010 = 01 
a' = 010 = 01 
a3 = 110 = 1 1  
a1 = = 01 
a0 = 100 = 10 

Carry 
Sum 

x,, xl,x2 are values of the first summand and the second one 
and the carry output,C and 1 1  are values of the sum and the 
carry at the outputs of the summator. For our example,as fol- 
lows from Table 1, the substitutional elements B(l), ~(2), 
B(3), B(4), B(5), B(6), B(7) are the Galois field elements 
a', a1 , a2, a3 ,..., a6 , accordingly. This is a more detailed 
presentation of the calculation of the ~ ( 1 )  coefficient: 

Here the division operation of two elements was being exchan- 
ged for the multiplication by an inverse element according 
to their rules in the Galois field theory. Then we have 

The analogous calculations :;ive A(3) = a0 = 100, ~ ( 4 )  = A(7) = 
= 0, A(5) = a4 - 01 1, A(6) = a6 = 101. By virtue of these cal- 
culations the expression (I) has the form 

f(x) = x1 + ax2 + x3 + a4 x5 + a6x6 . (2) 



The expression (2) can be simplified by means of representa- 
tion of both the coefficients and the variables as a polyno- 
mial in the basis elements. For example a4 = a '  + a 2 ,  a6 = a0 + 
+ a 2 ,  X: = xo + x 2 a 1  + ( x i  + x 2 ) a 2  and so on. Hence, we have 

By simple manipulations we get the following boo1 expressions. 
By means of these expressions the work of the one-bit full sum- 
mator is described: 

It is shown by practice for m . 4 a large body of calculations 
is increasing. That is why a computer should be used in this 
case. 

Example 2. Let us calculate the scheme of the sequential 
automath. The Galois field GF(24) elements generated over the 
irreducible polynomial x 4  + x  + I arrange correspondingly in 
increasing order of their powers at the inputs. At the outputs 
we obtain the same elements in the 5iven sequence (as shown in 
(Table 2). The Galois field GF(2 ) elements in increasing 
order of their powers can be rather simply obtained with the 
help of the counter in the ~ ~ ( 2 ~ 1 .  It is a shift register with 
the logical opposite connections. If we carry unit into the 
low-order digit and zeros into the other ones the successive 
shifts of the register will give us the presentation of the a' 
element powers and the root of the polynomial x4 + x 1  + 1 as 
they are shown in Table 2 on the left. It should be noted 
that any x  element of the Galois field ~ f ( 2 ~ )  has the form 
xoaO + x l a l  + x 2 a 2  + x 3 a 3 .  To construct a scheme for trans- 
formations of 4-bit codes in accordance with Table 2 it is es- 
sential to calculate 15 coefficients in the polynomial GSF rep- 
resentation of 4 variables: 

4 

Table 2 

Inputs Outputs 

x = x , ,  XI ,  x 2 .  x 3  f (x )  

0 = 0000 0 
a0 = 1000 a' = 0100 
a' = 9100 o = 0000 
a 2  = 0010 a7 == I 101 
a s  = 0001 a5 = 0 1 1 0  
a4  = I I O O  a5 = 0 1  1 0  
a5 = 0 1 1 0  a"= 0 1 1 1  
a6 = 0 0 1 1  a t 3 =  1 0 1  I 
a7 = 1101  a0 = 1000 
a8 = 1 0 1 0  a 3  = 0001 
a 9  = 0 1 0 1  aI4= 1001 

a10 = 1 1 1 0  a14= 1 0 0 1  
a l l  = 0 1 1 1  o = 0000 
a12 = 1 1 1 1  a 2  = 0040 
a13 = 1 0 1 1  a4 - 1 100 
a14 = 1001 aO = 1300 

By calculation of the A(k)  coefficients and elimination of si- 
milar terms on the computer we get the following switching 
functions. With the aid of these functions a scheme of sequen- 
tial automath shown in Fig.2 has been obtained. Such schemes 
can be used to get a given sequence of binary digits for examp 
le in microprogramming control devices 
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2l Summ 
z0 " 

Fig. 4. Principle scheme 
carry s m a t o r  execu tin( 

.Xoxi x2,X3 Xr v Xs, tion- f4), M1+M4 are KI 5 5 1 ~ -  mi::- 
A p k s  6 .rocircuits fi?lc10160, SN74 18fi). I 

and the specialized modules as well. Then using minimum quan- 
tity of tuning inputs we rqust design a module that executes 
a highest possible number of logic operations with a smallest 
number of logic elements to be used. Below we shall consider 
in detail that analytical calculations on computer can be used 
with that end in view. 

The identity (3) gives the following: 
the values of the A(1)-A(15) coefficients determine a type 

of a GSF to be realized; 
to design a scheme for calculation of the polynomial in the 

(1 )  identity a device to multiply, to sum up and to raise to 
power Galois field elements should be created. As shown in the 
investigation such operations can be executed with the 
standard micrc)circuits of medium-scale integration and large- 
scale integration as well. To execute these operations a table 
can be draw up.Fig.5 presents a table for multiplication of 
the A and B el ements in the Galois field GF(~~). The field ele- 
ments for a fixed q forming a cycle group, calculations of mo- 
re difficult expressions such as simultaneous multiplication 
of several facttors and simultaneous multiplication with rai- 

2. UNIVERSAL DYMANICALLY PROGRAMMABLE 
MODULE 

Nowadaysintensive work that is of interest from both theore- 
tical and practical points of view is carried out with the ob- 
ject of devising universal dynamically programble modules 
(UDPLM) '1424'. The main problem is to design an efficient 
mathematical device. It allows to create the universal modules 

Fig. 5. Table for multiplication of tuo elements in 
the ~ ~ ( 2 ~ 1  modulo x 4  + x + 1. 



Fig.6. Table for multiplication of the B element by 
~3 in the G F ( ~ ~ )  modulo x4 + x + 1 .  

sing to power attached can be reduced to table methods. Table 
of all the possible values of the A B~ expression is given in 
Fig.6. The upper row consists of the A elements, .the next row 
consists of those to the power. The B elements (the A, B ele- 
ments are the Galois field G F ( ~ ~ )  ones, see Table 2) are gi- 
ven in the left column. For example the B expression for 
A = a7 and B = a12 is equal to the a3 element. Indeed, ai2 x 
, (a7 )3 = a12 a21 = (a 33) -r a15 a15 a3 = a3. 

In this way 14 tables of the same type can be drawn up. 
Figure 7 presents the UDPLM scheme that has been designed 

accordingly to the identity (3). The scheme contains 4 input 
variables, 15 inputs for tuning coefficients and 4 output/ 16/ 
To apply this device 15 schemes for simultaneous multiplica- 
tion and raising to power of two Galois field G m 4 )  elements 
should be available. If we use a fast PROM MC10149 with that 
end in view, we obtain the identical and rather simple scheme 
of this type. The difference is in the content of PROM. Figu- 
re 8 presents such a scheme. It consists of a 4-bit register 
that contains the tuning coefficients and the MC10149 micro- 

Fig. 7. UNPLM scheme for a function of 4 variables, 
S is modulo 2 s m a t o r .  

o u t p u t s  

Fig. 8. Scheme of reasing to power and simultaneous 
multiplication of an element. I is a register; 2, 
PROM MC10149. 

circuits. Changing the A(k) coefficients,where k =1,2,3, ..., 1 
by hand or by computer the module can fast be reconstructed 
to perform different functions up to 65536 in number. 

Consider some examples which are illustrated by Table 3. 
In the first column on the left the Galois field G F ( ~ ~ )  

elements and their binary equivalents are given. The signals 
corresponding to their codes are driven to 4 inputs. The va- 
lues corresponding to them at the outputs and the A(k) coeff 
cients calculated on the computer are shown in the next co- 



C O C O O O O O O O O O O O C  
O O C C O O O O G O O O O O O  
0 C 0 0 0 0 0 0 0 ~ 0 0 C 0 0  
0 0 0 0 0 0 0 0 0 ~ G -  C O O  

lumns. The methods of calculation of the coefficients are gi- 
ven in '9 ' . The function is supposed to have a true value at 
the outputs if it is equal to a unity element a0 = 1 0 0 0 .  In 
the first case the coefficients calculated on the computer 
equal to A ( I )  = a 3  , A ( 2 )  = a 6 ,  A ( 3 )  = a9 ..., ~ ( 1 4 ) = a  12, A ( 1 5 ) =  
= a0 . Substituting into expression ( 3 )  we obtain 

f ( x ) = a 3 x + a 6 x 2 + a 9 x 3 +  a 1 2 x 4  + a " x 5  + a3x6  + a 6 x 7  + a 9 x 8  + 
( 6 )  

+ a~ 10 + a 3 x 1  1 + ,6.12 + ,9 ,13  + ,12,14 ,oX15 
4 

The fact that work of a 4  inputs scheme of coincidence is des- 
cribed by means of expression ( 6 )  can be verified in two ways: 
1 .  Substituting x = a 1 2  and calculating a 3 a 1 2 =  a 1 5  a o ,  a6(a12)2 = 
- - ,30 = , 15 , 15 = ao gnd so on we obtain 15 terms each of those 
being equal to a O .  Taking a sum of these terms to modulo 2 we 
get finally f ( x )  = a ' .  Substituting the other elements into 
expression ( 6 )  instead of x we obtain 15 different elements 
a O  +al4.The sum of all the field G F ( ~ ~ )  elements to modulo 2 
equals to zero. 
2 .  Let us simplify eypression ( 6 )  expanding the field elements 
of different degress in the basis elements by the computer. 
As a result of the simplification one can see the next expres- 
sion on terminal: 

It means that the module outputs equal to a O .  It is a true va- 
lue if all the inputs are in a state of logic unity. 

Consider the second column. A module tuning in performance 
of a "passive" operation when the input-output values are the 
same (repeating logic signals) is illustrated in it. In this 
case only coefficient for x  is equal to a O . W e  have 

& 

P 

substituting the corresponding coefficients a0 fur x  and 
a 1 2  for x15 in identity ( 3 )  we shall get a logic equation for 
inverse with the exception of a zero point: 



CONCLUSION REFERENCES 

The calculations of switching functions represented here 
are generally experimental ones. The data obtained prove the 
truth of usage of present-day computers for the automatical 
synthesis of switching functions for a large number of variab- 
les rn(2 <_ rn < 12). The main improvement should be directed 
to descrease both computing time of central processor and re- 
quired size of memory. There are large reserves in that way. 
The operations of raising the elements to power and expanding 
them in basis elements to simplify the expressions are most 
laborious ones. Algebra in Galois field G F ( ~ ~ )  being modular 
one,it is in a position to perform them by selected irredu- 
cible polynoms beforehand and to store results in external me- 
mory. 

It can be seen in our examples that using this method of 
a synthesis of switching functions "and" elements, modulo-2 

I summators and many-input parity check circuits which consist 
of the modulo-2 summators of the same type for 2 inputs are 
used as the basis elements. 

A microcircuit technique extending,we pay a great attention 

~ to the problem of a synthesis of circuits in whiczh "andtt ele- 
ments and modulo-2 summators are used 'I9' '(". In particular 
the following facts account for it: 

a component of inversion containing within summator,it is 
by no means to introduce an inversion of variables; 

canonical representation of Reed-Maller switching functions 
can also be executed more simply within basis "and" exepting 
t t ~ r t t  one ; 

the logic schemes which realize switching functions within 
the "and" basis and modulo-2 summator are obtained more simply 
compared with the "and", "not" (as a practice shows)'19' but 
the question is still "opened" theoretically. This fact is al- 
so important for devising multifunctional LSI which consist of 
modulo-2 summators; 

analogous basis is widely used for devising universal gene- 
rator of functions and dynamically programmable modules as 
we11'24'. 

The calculation of Galois switching functions by computer 
enables for integrated automation of engineering systems of 
discrete logics. A new method of devising UDPLM is given. Its 
scheme has an algebraic structure. 
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The ques t i ons  of c a l c u l a t i o n  of swi tch ing  func t ions  
by means of computers a r e  considered.  The input  and out- 
pu t  v a r i a b l e s  a r e  elements of t h e  Galo is  f i e l d  GF(2m) 
t h a t  a l lows  t o  p re sen t  any swi tch ing  func t ion  a s  a poly- 
nomial t o  power 2m-1. The examples of t h e  c a l c u l a t i o n  of 
t h e  schemes i n  each p a r t i c u l a r  ca se  a r e  presen ted .  
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