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1. THE CALCULATION OF SWITCHING FUNCTIONS
REPRESENTED AS GALOIS FIELD GF (2™) ELEMENTS
ON COMPUTER

The theory of Galois field GF(2™) being a natural continua-
tion of the theory of Boolean field, the representation of
switching functions as a polynomial, where both variables and
coefficients are Galois field elements, is thought to be the
most long-term one among the number of different methods of
"switching function synthesis.

Representation of switching functions in such form (Galois
switching function - GSF) has a number of advantages. First,
algebraic operations can be executed over the GSF and the prob-
lem of minimization and its formal representation simplifies.
Second, an input-output state of a combinational scheme or a
sequentional automath being coded by the Galois field elements,
a next state of input-outputs can be represented as a polyno-
mial function of a current state and a current output. Third,
the representation of switching function as a polynomial for
a large number m(m -3) makes it possible to use standard pro-
gramming systems and present-day computers for calculation of
logic schemes. Finally, the advantape of switching function re-
presented as a polynomial is in compact form of presentation
of multivalued and multilevel schemes.

For the purpose to approach the abstract Galois field theory
to engineering practice all calculations of the schemes in each
particular case have been executed and the possibility of des—
crete logic schemes designing on the base of analytical trans-
formations and calculations on a computer are shown. The PL/I,
REDUCE, SCOONSCHIP programs have been used’!!’. The fundamen-
tal properties of GSF are considered in details in the litera-
ture 87

Let us consider some examples. It is known that any swit-
ching function f(X)=(Xo,X1,X2,-e0,Xp~1) of the m argument
of the GF(2™) can be presented as a polynomial’ =4/

f(x) =B0)+A(1)x + A(2)x2 + A(3)x3 + ... - A(@" - 1)1 | (1)
Here and further a modulo-2 sum is denoted by the sign + and

the A(k) coefficients are calculated from the expression
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Ak) = 21 a;®* [B(0) + B(a;)], k = 1,2,8,...,2™"!
]:

where B(aj) are the substitutional elements taken from the in-
put- output correspondence Table and B(0) is the function at

a zero point. Thus for GSF synthesis the following steps are
executed: an irreducible polynomial of the m’®/ power is cho-
sen in conformity with a number of variables and all nonzero
GF(2™ elements are found; a table of input-output correspon-
dence is drawn up; the A(k) coefficients are calculated; the
A(k) coefficients and the x powers are expanded in the basis
elements of a selected field; similar terms are eliminated.
Note that any x element of the Galois field GF(2™) can also be
represented as a polynomial

x = x52° + xqa' + %587 4o+ xp_a™
where a%,al, a?,..., am-1 are basis elements of the field
and x5, Xy, Xg, eeey X1 Aare equal to | or 0

Example 1. Consider a Galois field CF(2%) formed over the
irreducible polynomial x3 + x + 1. Suppose that a® = 100, al =

= 010, a® = 00l are basis elements (linear independing) of the
field; and al, a root of the polynomial. Tn such a way one can

easy find the other field elements because a%= a3al = a® +al-=
=011, a% =a%al =a3 +a% =a? +al + 2% +a% = 111,238 =
=a%al =a% + a° = 101 and a7 =a®

Suppose that a scheme of a
one-bit full summator should
be designed. Let's draw up a
table of correspondences {(Tab-
le 1). The sequence of the fi-
eld elements arranged in increa-
sing order of their powers and
their binary equivalents (in-
puts) are given on the left.
The corresponding values which
it is necessary to get at the
outputs of the summator are
shown in the second column.

Fig.1. Principle scheme of 1-
bit combined summator NCl, TIC2
- halfsummator.

Table 1.

Inputs Outputs

X = X4,Xy,Xp B(a;)

0 = 000 0 = 000 = 00

a® = 100 a® = 100 = 10

al = 010 a® =100 =10

a® = 001 a° =100 = 10

a% =110 al = 010 = 0l

at = 011 al = 010 = 01

a2=]]l a‘l3 =110 = 11

a = 101 a’ = 010 = 01

a = 100 = a° a® =100 = 10
Carry
Sum

Xp» X1, Xp are values of the first summand and the second one
and the carry output, C and 11 are values of the sum and the
carry at the outputs of the summator. For our example,as fol-
lows from Table 1, the substitutional elements B(1), B(2),
B(3), B(4), B(5), B(6), B(7) are the Galois field elements
a®, al , a®, a%,..., &, accordingly. This is a more detailed
presentation of the calculation of the A(l) coefficient:

1 3 1
a a a a a

A(D) = g +—g+gi—gt—gt—gtg =2 #a%; oa® 4 alat o
a a a a a a a

+alad + ala? 4+ al al = a°,
Here the division operation of two elements was being exchan-
ged for the multiplication by an inverse element according
to their rules in the Galois field theory. Then we have
A a® a° &L al al a3 al 21 - o010
= + + + + + + = = ]
0.2 1.2 2.2 3.2 4.2 5.2 6 \2
@)” (@H" @")" @)y @)y @7y @)

The analogous calculations cive A(3) = a°® = 100, A(4) = A(7) =
= 0, A(5) = a% = 011, A(6) = a® = 101. By virtue of these cal-
culations the expression (1) has the form

f(x) = x1 + ax® + x3 + atx® + a8x6 | (2)
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The expression (2) can be simplified by means of representa-
tion of both the coefficients and the variables as a polyno-
mial in the basis elements. For example a* = al! + a®, a6 =a%+
+ a8 xg = X, +%x2al + (x;+ x9)a® and so on. Hence, we have

f(x) = (%o +x1a1 +x2a2)+al[x0 + x2a1 + (% +x2)32]+(xo + X+ Xg+X X9+
+(x] + %o Xy + xoxgale(xy + xox )22+ (al + a2)[(X + Xy + X + X1Xp) +
Xy v Xg+XoXp)al +(Xy +XoX 1+ XoXp)a% +(a% +a®)[(Xo +X) +Xp + X1xp) +

+(x2+xoxﬂal+(x1rxz;xonaﬁ.

By simple manipulations we get the following bool expressions.
By means of these expressions the work of the one-bit full sum-
mator 1is described:

C:x0+x1+x2 <a% -

Il = XpX, + Xy%g + XyXp  -ale,

It is shown by practice for m " 4 a large body of calculations
is increasing. That is why a computer should be used in this
case.

Example 2. Let us calculate the scheme of the sequential
automath. The Galois field GF(2%) elements generated over the
irreducible polynomial x% +x + | arrange correspondingly in
increasing order of their powers at the inputs. At the outputs
we obtain the same elements in the §iven sequence {as shown in
(Table 2). The Galois field GF(2%) elements in increasing
order of their powers can be rather simply obtained with the
help of the counter in the GF(2%). 1t is a shift register with
the logical opposite connections. If we carry unit into the
low-order digit and zeros into the other ones the successive
shifts of the register will give us the presentation of the al
element powers and the root of the polynomial xt + x! + ] as
they are shown in Table 2 on the left. It should be noted
that any x element of the Galois field Gf(2*) has the form
xoa% + xla1 + x2a2 + x3a3. To construct a scheme for trans-
formations of 4-bit codes in accordance with Table 2 it is es-
sential to calculate 15 coefficients in the polynomial GSF rep-
resentation of 4 variables:
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Table 2

Tnputs Outputs
X = X, X1, Xg, X3 f(x)

0 = 0000 0
®® = 1000 al = 0100
al = 0100 0 = 0000
a® = 0010 a’ = 1101
a8 = 0001 a5 = 0110
at = 1100 a® = 0110
a5 = 0110 all= 0111
a® = 0011 al®= 1011
a’ = 1101 a® = 1000
a8 = 1010 a3 = 000!
a? = o101 alt- 1001
ald = y1j0 alt= 1001
all - o111 0 = 0000
al2 = {1]] a? = 0010
ald - 1011 at = 1100
ald = 1001 a® = 1000

f(Xo.X,,Xg,%5) = BO) + A(DX - A(DxZ + AB)x3 + A(D)x* + A(B)X® +
F A8 AT AR KB L A@ XY+ A0 x 0 - A x 1+ A12)x 12 L (3)

+ A1) x1? L AL k1t 5 A(15)x 1P,

By calculation of the A(k) coefficients and elimination of si-
milar terms on the computer we get the following switching
functions. With the aid of these functions a scheme of sequen-
tial automath shown in Fig.2 has been obtained. Such schemes
can be used to get a given sequence of binary digits for examp-
le in microprogramming control devices

X+ % Xg ~ XoXg + XyXp +XyXg + XoXXg + Xy XpXg + Xg X XpXg <a®>

- 1
Xo +x2+X3 x1x3 ¢xox1x3 +X1X2X3 <at >
2
x3+x0x1+x°x3+x1x3+x1x2x3+xox1x2x3+x1x2 <ac >
3
X2+X1X3+X°X1X3+XOX2X3 <a9 >
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Fig.2. Principle scheme of sequential automath executing
equation (4). T1, T2, are D-triggers, S 1s modulo 2
swmmator, MI1+M4 are SN74180 microcircuits (parity check
etrcutts).

For simultaneous modulo-2 summation of several summands,

a SN74180 microcircuit (Fig.3) having 8 data inputs or

a MC100160 microcircuit having 12 inputs (Parity checker) can
be used. 64 and 144 one-bit summands respectively can be sum-
marized simultineously with 2-cascade turning on of a parity
checker. All necessary calculations for example 2 have been
executed by means of the ES-1033 computer. For this purpose
the PL-1 program which fulfils calculations in Galois field
are given. At the present stage the program has such possibili-
ties that the total number of symbols in the factors must not
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( Fig.3. Principle scheme of modulo
S 2 summator for 16 inputs, 1, 2

are MC10160 microcircuits; 3

MC10107 microcircuits.

>

be in excess of 250 during the
calculation of coefficients for
every given basis. For m = 4 and
1 m =5 a processor spends | minu-
te and 5 ones accordingly.
S Example 3. The calculation
of a scheme for a sum of two 3-

bit digits with a carry. It is
2 obvious that such scheme has 6 in-
puts for summands (an input for
a carry from the low-order digit
is thought to be absent), 2 out-
puts for sum and an output for carry. It means that the calcu-
lations must be executed over switching function of 6 variab-
les in the Galois field (28) which consists of 63 nonzero ele-
ments. These elements are considered a 6-bit binary digits or
as arguments of the function of 6 variables
Xy, X5 .

Choose a polynomial of the 6 power x®+ x + 1. The tables
of irreducible polynomials to the 34 power are given in’8/.
With some calculations and simplification on computer the fol-
lowing expressions are obtained

e N

i

Addendums

11

Xog» Xy, Xg, Xg,

XO X3 + XOXI X1 + X X3X4 + X0X1X2X5 + X0X2X4X5 + X1X2X3X5 + X2X3X4X5

<a®>

Xo + Xg + Xg Xy + Xy XoXg + Xg X, Xg <als
) (5)

X1 + Xgq + XgXp <a” o

x2+x5 <a3>

Fig.4 presents a principle scheme of a 3-bit parallel summa-
tor and a mod-2 summator. With the aid of the first one
Xo Xy X and xgx,X; are summed up in the ''and" basis.

It should be noted that for a large number of variables
the draving-up of input-output correspondence Table can be
automated.



Xo X1 X2 X3 XaXs

o

<d>

2
:a3> 2! rSumm
a°> 2o

4
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& Fig.4. Principle scheme of 3-bit
|| carry surmator erecuting equa-

Xo X1 X2 X3 Xu X5 tior-z (4)., MI1+M4 are K155IP8 mic-
A pbus B ‘rocireutts (MelO160, SN74180).

2, UNIVERSAL DYMANICALLY PROGRAMMABLE
MODULE

Nowadays intensive work that is of interest from both theore-
tical and practical points of view is carried out with the ob-
ject of dev131ng universal dynamically programmble modules
(UDPLM) . The main problem is to design an efficient
mathematical device. It allows to create the universal modules

8

and the specialized modules as well. Then using minimum quan-
tity of tuning inputs we must design a module that executes
a highest possible number of logic operations with a smallest
number of logic elements to be used. Below we shall consider
in detail that analytical calculations on computer can be used
with that end in view,

The identity (3) gives the following:

the values of the A(1)-A(15) coefficients determine a type
of a GSF to be realized;

to design a scheme for calculation of the polynomial in the
(1) identity a device to multiply, to sum up and to raise to
power Galois field elements should be created. As shown in the
investigation 714/ such operations can be executed with the
standard microcircuits of medium-scale integration and large-
scale integration as well. To execute these operations a table
can be draw up.Fig.5 presents a table forxr multlpllcatlon of
the A and B elements in theGalois field GF(2 ) The field ele-
ments for a fixed m forming a cycle group, calculations of mo-
re difficult expressions such as simultaneous multiplication
of several factors and simultaneous multiplication with rai-

A—-
B O? a' |a?d? a'la’ QS a'lq® Q® do a' 012 Qg
‘ Q?QL az 03 “ QS as Q7 08 09 010 OH Q‘Z 013 am

12

013 OB GN QO 01 az a3 a" 05 QG D.., Qe ag 010 QH 012
a“la“la®|a"|a?]a? [a%[af|aé{a”|a®]a%]a®|a"|aR|a®

Fig.5. Table for multiplication of two elements in
the GF(2%) modulo x% + x + 1.



a*1a“la?|a’|at|a" |a¥|a?|a%|ada"a™|a? [aS |a®|a"

Fig.6. Table for multiplication of the B element by
A8 in the GF(2%) modulo x* +x + 1.

sing to power attached can be reduced to table methods. Table
of all the possible values of the A B3 expression is given in
Fig.6. The upper row consists of the A elements, .the next row
consists of those to the power. The B elements (the A, B ele-
ments are the Galois field GF(2 ) ones, see Table 2) are gi-
ven in the left column. For example the B A3 expression for
A =2’ and B =al? is equal to the a3 element. Indeed, al?
x (a7)3 = al2a®l - (a33) _ al6 48 _ a8

In this way 14 tables of the same type can be drawn up.

Figure 7 presents the UDPLM scheme that has been designed
accordingly to the identity (3). The scheme contains 4 input

X

variables, 15 inputs for tuning coefficients and 4 output/ 16/,

To apply this device 15 schemes for simultaneous multiplica-
tion and raising to power of two Galois field GF(2%) elements
should be available. If we use a fast PROM MCIOI149 with that
end in view, we obtain the identical and rather simple scheme
of this type. The difference is in the content of PROM. Figu-
re 8 presents such a scheme. It consists of a 4-bit register
that contains the tuning coefficients and the MCI0149 micro-

10

Ay{AX ] ! As—AsX3 9; ]
3
Ry—1AX 2 A m;
3
Ay—1AsX? 3 e 1
8 y §(XeX2 Xaxs)
g |Sp~= "
m_q AI! QY 12 10
4
B3
M
R R e T ma 115
A1 A'lx‘ 7 Ais 15 o
: y | As—1AaX 4
XXX o Xl

Fig.7. UNPLM scheme for a function of 4 variables,
S 18 modulo 2 summator.

,Xo_

X2=—1 [~ \Outputs
X3 B
Ao RC —

{ 2

Fig.8. Scheme of reasing to power and simultaneous
multiplication of an element. 1 18 a register; 2,
PROM MC10148.

circuits, Changing the A(k) coefficients, where k=1,2,3,...,15,
by hand or by computer the module can fast be reconstructed
to perform different functions up to 65536 in number.

Consider some examples which are illustrated by Table 3,

In the first column on the left the Galois field GF(2%)
elements and their binary equivalents are given. The signals
corresponding to their codes are driven to 4 inputs. The va-
lues corresponding to them at the outputs and the A(k) coeffi-
cients calculated on the computer are shown in the next co-
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A(k)
20

f(X)=Xa Xy XpX g
1011
1101
1110
0011

Inversion

A(k)

X

Pass
f(x)
a2

412

A(k)
1

Coincidence
f(x)=%x,%1X2Xg
0000
0000
0000
0000
0000

= 0100

a® = 0010
a® = 0001
at = 1100
ad = 0110
a® = 0011
a’ = 1101
a® = 1010
a? = 0101

alO

Table 3. Representation of logic functions by the Galois field GF(2%) elements

Inputs/function
X = X, ,X;;%Xp,X3

al

=
N

1001

)

o

,‘1()

al2

1100
0010
0101
1010
0001
1000
0000
0100
0110
0000

a1t

a7

a6
212
2.3

0000
0000
0000
0000
0000
0000
1000
0noo
0000
0000

1000

1110

o111

1111

ald= 1011

al4

1001

11 _

a
3.12
a'15,___, a

lumns. The methods of calculation of the coefficients are gi-
ven in’%’, The function is supposed to have a true value at
the outputs if it is equal to a unity element a° = 1000. In
the first case the coefficients calculated on the computer
equal to A(1) =a3, A(2) =28, A(3) = a%...,A(14)=a ' A(15)=
=a® . Substituting into expression (3) we obtain

f(x) = aBx 1+ abx2  a%x% 4 al®x? L a%x® 1 a®x® b7 1298 L al2d

(6)

o, 10

+ ax Byell , 46,12 | 29,13 12414 .0 15

+a™x +a X + a”" X a X .

The fact that work of a 4 inputs scheme of coincidence is des-
cribed by means of expression (6) can be verified in two ways:
1. Substituting x = 212 and calculating a3al2= 315,30, aB(a12)2 =
= a% = al®al® - a° and so on we obtain 15 terms each of those
being equal to a®. Taking a sum of these terms to modulo 2 we
get finally f(x) = a°. Substituting the other elements into
expression (6) instead of x we obtain 15 different elements

a® +al4The sum of all the field GF(2%) elements to modulo 2
equals to zero.

2. Let us simplify expression (6) expanding the field elements
of different degress in the basis elements by the computer.

As a result of the simplification one can see the next expres-
sion on terminal:

1(x) = (X (XpXgX,) = a%.

It means that the module outputs equal to a®, It is a true va-
lue if all the inputs are in a state of logic unity.

Consider the second column. A module tuning in performance
of a '"passive' operation when the input-output values are the
same (repeating logic signals) is illustrated in it. In this
case only coefficient for X is equal to a°. We have

f(x) = a%x = @ (@ x, + alx, +a®xy, +adx5) -x.

Substituting the corresponding coefficients 2° for x and
al2 for x!® in identity (3) we shall get a logic equation for
inverse with the exception of a zero point:

f(x) = a®x + al? x15 - x + al?,

13



CONCLUSTION

The calculations of switching functions represented here
are generally experimental ones. The data obtained prove the
truth of usage of present—day computers for the automatical
synthesis of switching functions for a large number of variab-
les m(2 <m < 12). The main improvement should be directed
to descrease both computing time of central processor and re-
quired size of memory. There are large reserves in that way.
The operations of raising the elements to power and expanding
them in basis elements to simplify the expressions are most
laborious ones. Algebra in Galois field GF(2™) being modular
one,it is in a position to perform them by selected irredu-
cible polynoms beforehand and to store results in external me-
mory.

It can be seen in our examples that using this method of
a synthesis of switching functions "and" elements, modulo-2
summators and many-input parity check circuits which consist
of the modulo-2 summators of the same type for 2 inputs are
used as the basis elements.

A microcircuit technique extending,we pay a great attention
to the problem of a synthesis of circuits in which "and" ele-
ments and modulo-2 summators are used’ 12+ 20/ 14 particular
the following facts account for it:

a component of inversion containing within summator,it is
by no means to introduce an inversion of variables;

canonical representation of Reed-Maller switching functions
can also be executed more simply within basis "and" exepting

"or" one;

the logic schemes which realize switching functions within
the "and" basis and modulo-2 summator are obtained more simply
compared with the "and", "not" (as a practice shows)’ 1’ but
the question is still "opened" theoretically. This fact is al-
so important for devising multifunctional LSI which consist of
modulo—-2 summators;

analogous basis is widely used for devising universal gene-
rator of functions and dynamically programmable modules as
well’ 24/,

The calculation of Galois switching functions by computer
enables for integrated automation of engineering systems of
discrete logics. A new method of devising UDPLM is given. Its
scheme has an algebraic structure.
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Fafigamaxa P.H., Huxurtiox H.M. . E10-88-53
IIpuMeHeHHe aHaJIHTHUYECKHX TNIpeo6pas3oBaHuil

4 pacueToB Ha 3BM nns cuHTesa mnepekimodyaTelbHBIX

GYHKUHH M pemeHHs Tipo6jieMbl CO3daHUA

YHHUBepCaJIbHHIX AHHAMHYECKH NpPOTpaMMHDYeMbiX

JIOTHYEeCKHX Moayneil

B maHHOM [oKIiaZe pacCMOTpEeHbl HEeKOTOpble BONPOCH pacuera
nepekmovaTeNnbHelXx GOYHKUUHE npH nomomu 3BM. IIpu 3TOM BXO[OHBIE
U BbIXOLHbBIE MapaMeTphl TlepekKJiouaTeJibHOH GYHKIHYU NpencTaBie-—
Hbl B BHAE sJieMeHTOB nona lamya GF(2™) u sto nosBonseT Im—
6yio dyHKIHMI H3 M apryMeHTOB NpeAcTaBHTh B BHAe NOJIHHOMA
cteneHd 2M-]. PaccMOTpeHO HeCKOJIbKO TpUMepoB pacuyeTa KOH-
KPDETHbIX CXeM C NOMOMBI aHAMHTHUYECKHX BbIUHCIeHHI1 Ha 3JBM.

PaGora BunmonHeHa B JlabopaTopuu BbiICOKHUX sHeprui OUAU.

Ipenpuut O61eAMHEHHOrO HHCTHTYTA AAEPHALIX uccnenoBaHuii. [lyGHa 1988

Gaidamaka R.I., Nikityuk N.M. E10-88-53
Application of Analytical Transformations

and Calculations on Computer for Synthesis

of Switching Functions and Solution of the

Problem of Devising Universal Dynamically

Programmed Logic Modules

The questions of calculation of switching functions
by means of computers are considered. The input and out-
put variables are elements of the Galois field GF (2™
that allows to present any switching function as a poly-
nomial to power 2™-1. The examples of the calculation of
the schemes in each particular case are presented.

The investigation has been performed at the Laboratory
of High Energies, JINR.
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