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INTRODUCTION 

The experimental data obtained from particle track detectors consist 
of a good "useful" part, and of bad "noisy" part. In many cases the con- 
taminated distribution of errors is 

where N (0, 0 2  ) is a normal distribution, r C ( 0 , l )  determines the back- 
ground level, G (x )  is an arbitrary distribution. 

The new "robust" theory suggests new "robust" methods of estimation 
for the distributions, given above. The main idea of different authors is 
to decrease the influence of the points, where the experimental deviations 
are considerable. The classics are Box (1953), Tukey (1960), Huber (1964), 
Andrews / l  * 21. 

"ROBUST" is insensitive to  small departures from the idealised as- 
sumptions. 

Here are two different interpretations: 
1 )  either fractionally small departures for all data points. (N is not 

normal distribution, 6 = 0) , 
2) or else fractionally large departures for a small number of data 

points, r > 0). 
This interpretation, leading to the case of "outlier" points, is generally 

the most important for statistical procedures in high energy physics expe- 
riments. 

First interesting a proaches to  physics applications have been done in 
Ososkov et  al. papers ' S * 4 ' 5 f ,  especially to regression parameters in models, 
arising in the particle track recognition problems. 

The aim of this paper is to compare the possibilities of some old and 
robust methods to determine the linear regression parameters (and corres- 
ponding physical parameters) of charged particles for modelled and real 
tracks data. 

METHODS 

When 6 = 0 and N is a normal distribution, the optimal estimation is 
given by least square methou (LSM). For No points and M parameters we 
have to minimize. I 
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After differentiation we receive M normal equations: 

After substitution 

The (2) is 

where 

We prefer to use the Tukey's bi-square robust function for our noisy dis- 
tribution/3/ . 

ESTIMATION OF THE PARAMETERS OF A STRAIGHT LINE 
and the (3) is 

where 

then 

In robust methods we have to  minimize 

And the normal equations are: 

Let us consider the case of estimation of the parameters of tracks, mea- 
sured in wire chambers. To be able to  compare different estimation methods 
(5 and 5')' we generated a sample, consisting of 2500 tracks, by the Monte- 
Carlo method. The deviations of the signal from the position of the track 
hit in any plane are generated using an experimental distribution, measu- 
red in the experiment BIS-2'". In this experiment multiwire proportional 
chambers with spacing of 2 mm are used. The distribution, shown in Fig.1, 
consists of a sharp peak and long tails due to misidentification of clusters 
in the pattern recognition stage. 

In 
The signals in the different 2 A 
planes are generated indepen- 
dently and thus no correlations 3 
between the measurements are 
taken into account (in the con- 
sidered case the amount of mat- 
ter is so small that multiple scat- 

1 

tering and energy losses of par- 
ticles are not very important). - 

First we consider the exarn- 
ple of estimation of the parame- 
ters of a straight line (X=A +BZ), 

Fig. 1 .  
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1 using the equidistant planes for Z from -180 to +I80 cm. The results for the 
LSM and the method of Tukey ( c  = 4,o = 0.62 rnm) are shown in Table 1. 

Table 1 
Estimation o f  the parameters of a straight line (X = A  + BZ) 

Method o ( ,A)  ImmI a ( B )  I m a I  fi iterations 

LST 0.53 0.47 1 
Tukey 0.36 0.36 4.2 

- 

The accuracy of the robust 
method is clearly better than 
the results from the LSM. In Fig.2 
the number of signals with w < 
< 0.1 *wmax as a function of 

the deviation of the signal from 
the true position (known in Mon- 
te-Carlo) is shown for an inner 
and one of the end chambers. 
Clearly, the robust method is 
performing nicely for the inner 
chambers (small loss of the "true" 
signals and total rejection for 
deviations more than 40). For 
the most difficult case of end 
chambers (extrapolation) the re- 
sults are also good (the rejec- 
tion power here is not so big). 

Fig. 2. 
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I ESTIMATION OF THE PARAMETERS OF MODELLED TRACKS 

As a next step we consider the estimation of track parameters in the 

( case of two blocks of wire chambers, located before and after an analyzing 

magnet with constant and homogeneous magnetic field. Each block con- 
tains five chambers placed equidistantly between -340 and -180 and +I80 
to +340 cm in Z (beam direction). The magnetic field of 1,4 T is in the Y 
direction with length in Z of 150 cm. 

The tracks are parametrized as follows 

before or after the magnet. 

1 From the eight parameters quoted above only five are independent due to 
the fact that the two semitracks belong to the same particle. The fits perfor- 
med take into account these relations between the track parameters (itera- 
tive linearization procedure described in detail in17 ). 

Again a sample of 2500 tracks generated by the Monte Carlo method 
as described in the previous paragraph is used. The momenta of the tracks 
are disturbed uniformly from 3 to 35 GeV/c. 

Four different estimation strategies are compared: 
1) LSF as described in I 7  (equal weights of all accepted signals); 
2) Signals which lie outside of a given distance from the fitted track 

are dropped (w = 0) and the fit is performed again, 
3) If X 2  of the fit is not good, the signal with greatest contribution to 

X2is dropped; the fit is performed again until an acceptable x2 or 
a maximum number of dropped signals per track is reached; 

4) Robust estimation (Tukey's method with c = 4, o = 0.62 mm). 
The results of the fits are shown ~ I I  Table 2. 

Table 2 

Estimation o f  the pammeters of tmcks by different methods 

Method 0 (AX) a (BX) o(AY) (BY) oipz)  [ % I 
i mml I mrad 1 i m m l  [ mradl Pz 

AX,  BX, A Y,  BY - pammeters o f  the semitrack before the magnet, P, - Z component 
of the momentum of the tmck. 



The robust method reaches the greatest precision, especially in the 
XZ-projection (the most important for measurement of the momenta of 
tracks as they are bent in this projection). 

ESTIMATION OF THE PARAMETERS OF REAL TRACKS 

As a final step we tested two different methods (1 and 4) on real data , 

from the experiment BIS-2. Because the parameters of individual tracks 
are not known exactly, we focussed our attention on the parameters of vO- 

events (22800 decays A --, p T and 8500 decays K , -+ n+ n- selected 
from lo7  np-interactions). We compared d (the distance of the closest 
approach between the two charged tracks), which should be zero in the 
absence of measurement errors, and the deviation of the effective mass of 
the two-particle system from the known particle mass (Fig. 3 and Fig. 4). 
It can be seen that for the robust method: 

1) the distribution in d is sharpening towards zero; 
2) the distributions in effective mass are sharpening towards the mass 

of both A and K O .  

The price which we have to pay is doubling of the computing time 
for decoding the experimental information and fitting the track parame- 
ters. For a robust estimation about 4 iterations and 0,014 s per track 

on a NORD 100/500 system 
are needed. 

CONCLUSION 

A variety of methods for estimating the parameters of trajectories of 
charged particles in wire chambers is compared. It is shown that robust es- 
timation (Tukey's method) is superior to more standard (and widely used) 
methods. 
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