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1« Introduction. We consider the robust estimation of a location
parameter or regression coefficients in some models arising in the
paerticle track recognition problems of high energy physics. We use
the gross—-error model of the contaminated distribution of errors

£(x)=(1-€) Px)+Eh(x) (1)

with (P (x)=(20rg2)”" /zexp(—x2/2 62) end some long-tailed noise
distribution h(x) specified below.

In the case of automatic scanning the experimental data obtained
from particle track detectors congist of a useful ("good") part re-
lated to the track to be found, as well as of signals of background
tracks, fiducials and other noise points. The noige points are usual~-
ly uniformly distributed. This is the reason why we suppose h(x) in
(1) to be uniform: h(x)=h; in a sufficiently large interval I, of the
length 1/hy>» @& and £ > 1/2 (even close to 1).

These models are usually explored by the pattern recognition or
clustering methods. The robust estimates are also applicable in these
cases, but with certain modifications or auxiliery meens. We propoge
one of thege modifications and show its high efficiency in the reg-
resgion model by Monte-Carlo method. Such an approach may be ugeful
for the robust estimation theory itself,

2. The choice of the weight function for M-egtimation. It is
convenient to begin with a one-parameter model of estimatiné the lo-
cation parameter a=Ex from a sample XysXpreoesX, s where x~a+
+(1—€)Lp(x)+ Eh(x) , the functions Kf’ h are described above. We use
Huber's M-estimates /°/

(e,8) = Z 9 (2)

or ' *
Z wixi ,

= = (3)

with the weights w,=w( (xi-a)/é% , where w(t)= P'(t)/t is the weight
function of the estimator. The usual requirementg on (2) are: the
function P (%) must be even, 0,2—amooth, not decreaging for t>0,.
P(o)uo, P (4)~ t2 /2 as t=0 (i.e. w(t)~1 as t->0), the function
w(t)> 0 and ddes not increase for t>0, and the estimate (2) must be
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shift- and scale-invariant, as well as the estimate of & if itas va-
lue is unknown.

The problem of the choice of the function P (t) (or w(t)) is
widely discussed in the literature on robust statistics. Unbounded
convex functions §>(t) provide the uniqueness of the egtimate (2),
its congistency, asvmptotic normality in some models and a certain
minimax efficiency 3’7/.But these egtimates are practically unsuitable
for heavy contaminated data models with £ > 1/2 and agymmetric, not
unimodal function h(t).

The M-estimators with bounded functions j)(t) are very robust
in these cages, but there are many difficulties in their use. The
first one is that there is almost no theoretical foundation for the
use of such functions. In particular, they all are obtained by their
authors heurigtically. In any case there are certain objections
against their application - °

We shall demonstrate that the maximum likelihood estimation
in the framework of our model straightforwardly leads to & bounded
function f)(t) in (2), Evaluating the corresponding likelihood equa-

tion 2
X. -8
) 1= & - K?%g_l_
ﬁzln(gm—é ¢ ForERg) =0

we obtain a=2:wixi/22wi,where wy=w((x;-a)/6 ) with the weight func~
tion 1+¢
W(t)=wU(t)=ﬁ§_ (4)

+ce

with c= 20T & hOE/(‘l-E) (the factor 1+c¢ is introduced in (4)
to fPulfil w(0)=1 ). The weight function (4) corresponds to the bo-
unded function

c+1
(t)=(1+c)1
P 1+c IW ] (5)

The function (4) has no scale parameter ( w(t)%wo(t/c) )e The
only parameter c¢ is the ratio of the mean number of noise observa~-
tions within an interval of the length \ﬁiﬁiﬁf to the mean number of
useful obgervations in the sample. It is determined by the contamina-
tion of data not in the whole range of the sample but within its es-
sential part where all useful observations are practically concent-
rated (for instance, in the interval (a-3& ,a+36 )). The value of ¢
is often approximetely known in experimental models.

o

The upper bound of (5) (1+c)ln(1+1/c) increases without limit
as c-»0 (with the noise diminishing), Hence the boundedness of this
function is significant only for ¢>0.1 which corregponds to heavy
contemination. Fig,1 shows the function (4) with c¢=0.2 compared to
Tukey's bi-gsquare weight /°/

w(t)= {(1—(t/cT)2)2 for |t/ < oy and 0 for [t] > c,r} (6)

with cp=~4. These functions are close to each other, but (6) is more
preferable due to faster computation. We shall suppose that w(t):wT(t)
in our further conasiderations.

Fig. 1

3. Egtimation ofé . Another problem caused by the use of bounded
functions P(t) is connected with the non-uniqueness of the estimate
(2). The function L(e,8 ) often has seversl minima. It is difficult
to find them all and to choose one of them for estimating a, The num-
ber of minime and their location depends on the value of &, ie.eq, the
problems of M-estimating & and & are closely related. J.O.Remsay /%/
algo notes that separate procedures for estimating a and & are
unwise. Our approach is based upon the Joint M-eatimates of a and & .

It is & difficult problem to estimmte the paremeter ¢ in our
model. The common robust estimate g=conrst~med {[xi—af} is unavail~-
able for £ > 1/2 as well as the other estimates based on the order
statistica. From the likelihood equation for &

2
P) 1= - -(?gTL-a
— 1 =
e Z n (Tm_?ﬂl—é e +£ho) 0
we obtain ZZ 2
2 wi(xi-a)
6" = = &

with Wy defined in (4), This estimate is epplicable for £ >1/2,to0.



It was proposed by J.O.Ramsay /4/, SeA.Aivazyan et a.l./1/ with dif-
ferent functions w(t)e It also satisfies Huber's definition of M-es-
timate of & through the solution of the following equation /3/

2 X(%—) =0 (8
z

with an even fu.nctionx (t)e The estimate (7) corresponds to (8) when
f(t):tzw(t)—w(t). Therefore it is shift- and scale-invariant., Using

the same weight function w(t) in (3) end (7) we can consider a~ and v
G-estimating as a single problem.

4, Some special geometric properties of M-estimates (3),(7).
Let us consider the function L{(a,® ) in (2) as a two-parameter func-
tion. The set of local conditional minima of L(a,6 ) for all fixed
& > 0 form a finite collection of smooth curves in the semi-plane
{(a,é ), &> 0}. Denote them X1, Xz,...,fm. There is 61> 0 such

that the semi-plane {(a,é ), 6 >68 1} contains only one of these
curves which igs infinite and has the asymptote a=(x1+x2+...+xn)/n
as © — o< (we denote this curve by 6}).

In fig.2 we give two examples of the surface z=L(a,B8 ) for
the sampleg each containing 20 points grouped into three and two

clugters, correspondingly. On these surfaces one can see "ravineg"
(sometimes quite curved), the number of which increases as & -0,

Fig.3 represents the curves ), XE""’ Xm which are the "bot-
toms" of these ravines (the corresponding samples are marked with
asteriskg). These curves are always digconnected except the gpecial
case of gymmetric samples like 3b, which lead to branching X“I into
two different curves. The upper ends of the curves 2{1, XZ"“’Xm
usually lay on the axis & =0, but there are some exceptions. At the . 6
lower ends of thege curves ’BzL/’a a2=0, i.e.y the tangents at these Fig. 3
points are parallel to the axis & =O.

In order to find the estimate (7) on the curves 2{}, Xz,..., Xm .,
consider the function M(a,6 )= 622wi-Zwi(xi-a)2. It is easy to show where .= 2((x;-a)/6) , E(t)= P (t). The idea of substituting
that M(a,& )> 0 for the curve Y, for large & ( 6>const) and M(a,6)< Zzi forzwi has come up in calculating the local L(a,& ) minimum
<0 at the endpoints of these curves on the axis 6=0. However, it s .
does not mean the existence of a solution M(a,6& )=0 in any of the f by Newton's iteration method
curves E}o..., Xm and, morover, there are even examples of absence = a _OL/3a _ o+ Zwi(xi'ao)
of such solutions on these curves. o PL/paz ~ o0 N

This annoyi gituation can be overcome if we replace (7) b
ying . P Y ¢ (ao is an initial value). Replacing Za?_i by Zwi we obtain exactly

5w 2)2 , (3). It ias eamy to check that 2(t)<w(t), hence the above substitu-
62 - _ii_, (9) tion can_slightly increase the estimate of 6 . Nevertheless, it will
Z®; be still robust because 2(t)S0 if w(t)30 and 28(t)—~1 as t-~0. The




estimate (9) also satisfies the definition (8), where X(t)=t2w(t)~
~&(t), hence it is shift- and scale-invariant.

The estimate (9) is more suitable for our purposes, because the
behaviour of M, (2 ,6 )= 622321—Zwi(xi—a)2 is quite gimiliar to
M(a, & ) mentioned sbove, but with the important exception: M1(a,6 )<
<0 at each endpoint of the curves XV'“'XIH (both for &=0 and
& > 0). Therefore the -curve ‘X1 containg at least one solution
My (2,0 )=0, Moreover, there must be the solution with 8M1/36 >0
as the necessery condition of the G-~estimate (otherwise the part of
the sample in the interval (a—cTé ,a+cT6) is concentrated at the
ends of the congidered interval, where 2 ((x~-a)/& )<0 which is in
contradiction with the normal distribution of ugeful obsgervations).

The obtained joint estimate (2),(9) can be defined by the set
of equations containing the function L(a,& ) only:

9L
’a&

L 1 9L
5af 8 B = °

=0
(10)

al,

with the following condtions:?zL/352>O , a/'as (’521-/3&2 +
+1/6 OL/96 )>0. Note that (10) defines just the maximum likeli-~
hood estimate in the classical case of £=0 and Q(t)=t2/2,

The estimates obtained from (10) are denoted by NysNppeee in
fige 3. Studying many different samples simulated by the computer we
noticed the cases of just one estimate (10) in the whole area & > O
as well as the cases with many simultaneous estimates (3) on several
curves b’}, Xz,... o The multiplicity of solutions (10) corresponds
to the existence of clusters in the semple XyreaeyKpo

5. Remark. Some authors modify the function L(e,8 ) in such a
way that its minima ;ng L(a,®) would be joint M-estimates of a,& .
*
For example, L,(s,6)=6(L(a,6) + const)-—gné provides the joint
9

estimate (3),(8) with X (t)=t%w(t)= O(t)~const (see /2/)s Another
example is

> wix_?L 2w ~(Z w_,LJ;:,_)2 .

L ( 96 )=L( ,6 )—
2% ® 262(Zwi)2

. 62(Zwi)2 1) 2 ot
Zwix§ Zwi—(Zwixi)é " ae

which gives exactly the joint estimate (3),(7).

o~
C—
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One more promising way is to generalize the likelihood function

in the normal digtribution case
X; ~a

‘ 2
1 S ez (x;~a)
- 1n (Um e 6 ) =Z-2—g~§— + (ln6+1nv29r)n

ag follows:

Iy(a,8)=) P

-f) ——
) + (ln@+1nV2Tr) ) w, — inf .

] L a,6

Unfortunately, this estimate ig not scale-invariant and is therefore

unsuitable for practical uge.

6. Algorithm for computation of M-egtimate.The existence of at
least one estimate (10) on the curve suggests the following algo-
rithm, Starting from some point (a ,&,) on the curve X1 with suffi-
ciently large 60 and aoz(x1+...+xn)/n we move along the curve X;
decreasing 6 and looking through all solutions of (10). The one clo-
sest to the axis ©=0 must be chosen as the M-egtimate.

In our model 6<<1/h° s iee. & is much less than the range of
the sample. Therefore we can simplify our algorithm by moving along
5} without looking for solutions of (10) but stopping when we reach
a small threshold =6, .

7. Monte-Carlo resultg. We studied a linear regression model
y=ax+b with a uniform contamination arising in speciel emulsion data
processing in high energy physics /5/. The semple consisted of I\IO
"good" points yi=a.xi+b+ Ei and N1 noige poimts uniformly distribu-

ted in the square (0,1)%(0,1). The Pactors x; were uniformly distri-
buted in the intervals ((i=1)/N_,i/N,) , 1=1,2,...,N, and & ~N(00°)
The parameters a,b were uniformly distributed in the domain {_(a,b):
0<b<1 , 0<a+bg1 , [al<tg 30°f.

The parameters a,b were estimated by the iterational reweighted

leagt=square procedure

a(k)z‘”ixi + b(k)zwixi = Zwix-"iyi

a(k)Zwixi + b(k)Zwi = Zwiyi

with wy = wp((yrax 1)), gk=1)y 1y cozl5, starting with
3°)u1 we diminished @ very slowly from iteration to iteration:

6(k)n(1-8)6(k—1) (& =0.05), in order to retain the point

7 4
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(a(k),b Gc)) in the neighbourhood of ﬁh1. The procedur®® stopped at

6(k)< 6 min=0-001. The obtained estimates 4,5 were considered as
correct if they differed from the "true" values a,b by less than
0,001,

Fig.4 shows the percentage of the cases of correct estimating
to the total number of simulated samples. Oné can note rather high
efficiency of the algorithm even for N1=1ON° (i.e. £ =0.9 in the
model (1)), The efficiency increases when the sample size augments
and N1/No remains fixed, theat indicates the possible consistency
of the obtained estimate for any £ < 0.9.

The guthors are grateful to V.K.Khoromskaya and S.V.Kunyaev for

valugble help in preparing the manuscripte.
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CoBMecCTHhle pO6GAaCTHHE OI@HKH NapaMeTpoB HOJIOXEeHHS
u macmraba

E10-86-282

B pa6oTe ucciemoBaHb poOacCTHBIE OIEHKH NapaMeTpoB B JIH~
HEeHHbX perpecCHOHHBIX MOJENsiX C BHICOKMM YPOBHEM DaBHOMEpHO
pacnpejeneHHoro myma. Ha OCHOBE COBMECTHOI'O aHallH3a OIEHOK
napaMeTpoOB IIOJIOXEeHHSI M Macmrafa MeTOJOM MAaKCUMAalbHOT'O NpaB-—
Jonono6usa Cos3ldaH YHCJIeHHBIE alrOpPHTM [N BRYHCIIEHHs perpec-—
CHOHHBIX mapaMeTpoB, MeromoM MoHTe - Kapno HccliemoBaHbI
CBOHCTBA anropHTMa B MoAeNnu HaHHHX C peallbHOTO ¢GH3HUYeCKOro
3KCIepHMeHTa. AJIFOPUTM MPOIEMOHCTPHPOBAN BhICOKYl sddekTuB—
HOCTb B Cily4ae, KorZa OoTHOmeHue cHI'Han/myM He MeHee 1/10.

PaGoTa BrimonHeHa B JlaGopaTopHH BHYHUCIIMTEIIbHON TEeXHHKH
u aBToMarusauuu OUAHU,

Hpenpunt O6beAMHEHHOTO MHCTHTYTa ANEPHBIX Hccnedopanuil. y6ua 1986

Chernov N.I., Ososkov G.A.
Joint Robust Estimates of Location
and Scale Parameters

E10-86-282

Robust estimates of regression parameters are studied
in linear models for heavy contaminated distribution of
errors with uniformly distributed noise. Maximum likeli-
hood approach to joint estimating location and scale para-
meters leads to an algorithm for computation of regression
parametérs. This algorithm was tested by the Monte - Carlo
method in experimental data models of a particle track de-
tector, Its high efficiency was demonstrated for signal to
noise ratio greater than 1/10.

The investigation has been performed at the Laboratory
of Computing Techniques and Automation, JINR.
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