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1. Introduction. We consider the robust estimation of a location 
parameter'or regression coefficients in some models arising in the 
particle track recognition problems of high energy physics. We use 
the gross-error model of the contaminated distribution of errors 

f(x)=(1-E) lf(xhE.h(x) (1) 

wi th cp (x)=(2 orÕ 2)-1 /2exp (_x2/26 2) and some long-tailed noise 
distribution h(x) specified below. 

In the case of automatic scanning the experimental data obtained 
from particle track detectors consist of a useful ("good") part re­
lated to the track to be found, as well as ofsignals of background 
tracks, fiducials and other noise points. The noise points are usual­
ly uniformly distributed. This is the reason why we suppose h(x) in 
(1) to be uniform: h(x)=ho in a sufficiently large interval Ih of the 
length 1lhO» 6 and E > 1/2 (even close ,to 1). 

Th~se modela are usually exp+ored by the pattern recognit~on o~ 

clustering methods. The robust estimates are also applicable in these 
cases, but with certain modifications or auxiliary ~eans. We propose 
one of these modifications and show its high efficiency in the reg­
ression model by Monte-Carlo method. Such an approach may be useful 
for the robust estimation theory itself.

(, 

2. The choice of the weight function for M-estimation. It is 
convenient to begin with a one-parameter model of estimating the 10­
cation parameter a=Ex from a sample x1,x2, ••• ,x where x,va+n, 
+(1- ê) tp(xh E..h(x) , the functions ~ .h are described above , We use 
Huber's M-estimates /3/ 

x.-a 
~(~, ~) l;. f(~)-i~ (2) 

t 

or L WiXi 
a '0)= L::Wi 

wi.th .the weights wi:=w«xi-a)/é) , where w(t)= P'(t)/t is the V{eight 
function of ~he es~imator. The ~sual ~equirement~ on (2). ar~: ~he 

;func,tlon, ~ <'t) must be everi, C,2_smooth, not decreas;i.ng for t> O,. 
F(o )=0, 9 (t) ....... t 2/.2 as t - O (:l•.e. w(t) -1 as t.-O), the ~~pt,io;n 

~I' 
w(t)?; O and dces not increase for t>O, and the estimate (2) must be 
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shift- and scale-invariant, as well as the estimate of é if i ta va-: 

lue is unknown, 

Thp problem of the choice of the function .p (t) (ar w(t)) ia 
widely discussed in the literature on robust statistics. Unbounded 
convex functions p(t) provide the uniqueness of the estimate (2), 
i~s consistency, aSYmototic normality in some models and a certain 
~~nimax efficiency/J,7/. Bu t these estimates are practically unsuitable 
for heavy contemí.nated data models wi th E. > 1/2 and asymmetric, not 
unimodal functioI1 h(t). 

The M-estimators wi th bounded functions ..p (t) are very robust 
in these cases, but there aremany difficulties in their use. The 
first one is that there is almost no theoretical foundation for the 
use of such functions. In particular, they alI are obtained by their 
authors heuristically. In any case there are certain objectiona 
against their applicati~n - /31. 

We shall demonstrate that the maximum likelihood estimation 
in the framework of our model straightforwardly leads to a bounded 
function .p (t) in (2). Evaluating the corresponding likelihood equa­
tion 

~ i-x , a)2
,,~ (1-t _ l.-

CldãL In '~6 e 26 2 +[h) O 
V2.~o - o 

we obtain a=[wixi/L'wi, where wi=w«xi-a)/ô) with the weight func­
tion 1+c 

w(t)=wU{t)=-- , I~ (4)
1+ce 

with c= {2if- 6 h E/(1-f.) (the factor 1+c ia introduced in (4)o 
to fulfil w(0)=1 ). The weight function (4) correaponda to the bo­
unded function 

.p (t)=(1+c)ln c+1 (5) . c+e IA 

The function (4) haa no scale parameter ( w(t)~wo(t/c) ). The 
only parameter c ia the ratio of the mean number of noiae obaerva­
tiona wi thin an interval of the length ~ éS to the mean number of 
uaeful observations in the sample. It is determined by the contamina­
tion of data not in the whole range of tbe aample but within its es­
sential part where alI uaeful observations are practically concent­
rate"d (for instance, in the interval (a.-36 ,a+36 )). The value of c 
1a often approximately knovrn in experimental modela. 

2 

The upper bound of (5) (1+c)ln(1+1/c) increases without limit 
as c~O (with the noise diminiahing). Rence the boundedness of this 
function ia significant onlY,for c> 0.1 which corre'spqndsto heavy 
contamina.tion. Fig.1 shows the function (4) with c=0.2 compared to 
Tukey's bi-square weight /6/ 

wjt)= { {1-(t/c'1')2)2 for 

with cT=4. These functions are close 
preferable due to faster computation. 
in our further considerations. 

1~ 

ltl <: cT and O for ltl;? c (6)
T} 

to each other, but (6) ia more 
We shall suppose that w(t)=wT(t) 

Wu (i) 
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3. Estimation of6. Another problem caused by the use of bounded 
functiona j'(t) ia connected with the non-uniqueness of the estimate 
(2). The function L(~,6 ) often has several mínima. It is difficult 
to find them alI and to choose one of them for est~ating a. The num­
ber of minima and their location depends on the value of 6, i.e., the 
problema of M-eatimating a. and 6 are closely related. J.O.Ramsay /4/ 
also notes that separata procedures for estimating a and ô are 
unw1ae. Our approach is based upon the joint M-estirnatea of a and ~ • 

It ia a difficult problem to estimate the parameter õ in our 
modelo The common robust eatimate 6 =const·med {lxi-ai} ia unavail­
able for f, > 1/2 as well as the other estimates based on the order 
statiatica. From the likelihood equation for 6 

(~-ai 
~ L In (~ e-g i + Eh ) = Oo06 v;J.fJí 6 ­

~ ~t~n 2 
2 L Wi (~-a) 

6 = L W (7) 
, L.! i 

with wi defined in (4). This estimate ia applicable for E. > 1/2,too. 
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It was proposed by J.O.Ramsay /4/, S.A.Aivazyan et al./1/ \vith dif ­
ferent functions w(t). It also satisfies Huber's definition of M-es­
tima.te of 6 through the so LutLor; of the following equation /3/ 

x.-a 
~ ~/,l-~­ = O (8). )­ 6 

i 

with an even functionj( (t). The estimate (7) corresponds to (8) when 
j(t)=t2w(t)-w(t). Therefore it is shift- and scale-invariant. Using 
the same weight function w(t) in (3) and (7) we can consider a- and 
6-estimating as a single problem. 

4. Some special geometric properties of M-estimates (3),(7). 
Let us consider the functio~ L(a,6) in (2) as a two-parameter func­
tion. The set of local c9nditional minima of L(ª,6 ) for all fixed 
6> O form a finite collection of smooth curves in the semi-plane
 
[(a,6 ),6> o}. Denote them (1' Y2, ... ,Om. There is ó 1> O such
 

that the semi-plane { (a, 6 ), Õ > 6 1} contains only one of these 
curves which is infinite and has the asymptote a=(x1+x2+••• +~)/n 

as 6 - c:>O (we denote this curve by r1). 
In fig.2 we give two examples of the surface z=L(a,6) for 

the samples each containing 20 points grouped into three and two 
clusters, correspondingly. On these surfaces one can see "ravines" 
(sometimes quite curved), the number of which increases as b~O. 

Fig.3 represents the curves 61" 0'2' ••• ' Om which are the "bot­
toms" of these ravines (the corresponding samples are marked with 
asterisks). These curves are always disconnected except the special 
case of symmetric samples like 3b, which lead to branching r1 into 

two different curves. The upper ends of the curves 61' 0'2'··· ,(m 
usually lay on the axis ó=o, but there are some exceptions. At the 

2=0,lower ends of these curves 'O 2L/ ?J a i. e., the tangents at these 
points are parallel to the axis 6=0. 

In order to find the es t.l.mate (7) on the cur-vas 01' [2'···' Om 
consider the function M(a,6 )= 6 2Lwi-L.wi (xi_a)2. It is easy to show 
that M(a,6 ) > O for the curve D1 for large 6 ( 6> conat ) and M(a,6)< 
<: O at the endpoints of these curves on the axis 6=0. However, i t 
does not mean the existence of a solution M(a,6 )=0 in any of the 
curves 01' ••• ' Om and , morover, there are even examples of absence 
of such solutions on these curves. 

This annoying situation can be overcome if we replace (7) by 

" 
2L.wi (~-a)f1/ (9 )

L~i 

1'2 
I, 

'Jl. 
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where ~.=(l.«x.-a)/6 ) , 'Ce(t)= O"(t). The idea of substituting
~ ~ J . 

L Cf.; for L w. 
~ 

haa come up in calculating the local L(a,6) minimum. ­
by Newton's iteration method
 

L wi (xi-ao)

dL~aa = a + a = aO-'dzL Oa.2. o 

J 
L~i 

(ao ia an initial value). Replacing ~aei by ~Wi we obtain exactly 

(3). It ia easy to check tha~ ae(t)~w(t), hence the above substitu­
tion can.sligbtly increase the eatimate of 6 . Nevertheless, it will 
be still robuat because ~(t)=o if w(t)=o and Ge(t)-'1 as t--O. The 
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estimate (9) also satisfies the ~finition (8), where ]C(t)=t2w(t)­

- a: (t), hence i t is shift- and ace.Le-d.nver-Larrt , 

The estimate (9) Ls more suitable for our purpo se s, because the 
behaviour of 1.11 (a , ó )== 6 2L ( €i-Lwi (~_a)2 ia quite similiar to 
M(a, ró) mentioned above , but with the important exception: M1 (a,E? )< 

<:: O at each endpoint of the curves Ó1' .... , t"m (both for 6 =0 and 

6> O).. Therefore the 'curve, 01 contains at least one so.Lutí.on 
M.1 (8. \>6 )::::0. Moreover, there muat be the solution wi th 'OM / d6 > O 
as the necessary condition of the 6 -estimate (otherw1se 

1
the par-t of 

the sample in the interval (a-cTe) ,a+cTõ) is concentrated at the 
ends of the ccnaí.der-ed interval, where 'ée«x-a.)/õ)<O which is in 
contradiction with the normal distribution of useful observations). 

The obtained joint estimate (2),(9) can be def'ined by the set 
of equations containing the function L(a,6 ) only: 

&=0 
ô a (10)

[ '7:/L 1 'OL 
Ô a 1 + 6 '06 :: O 

wi th the following condi tions: 02L / oa 2 >O , 0/00 (o2L/ o a2 + 
+ 1/6 'O L/âõ ) >O. Note that (10) defines just the maximum likeli ­
hood estimate in the classical case of E=O and .f'(t)=t 2/ 2. 

The estimat~s obtained f'rom (10) are denoted by N1,N2, ••• in 
fig.3 .. Studying mar~ different samples simulated by the computer we 
noticed the cases of just one estimate (10) in the whole area 6 > O 
as well as the cases with many simultaneous estimates (9) on several 
curv~s 01' Q;, ••• • The multiplici'ty of solutions (10) corresponds 
to the existence of clusters in the aample x 

1 
' .... ,xn.. 

5. Remark. Some authors modif'y the function L(a,6 ) in auch a 
way that i ta minima j ui L(a, ó) would be joint M-es1;j.rnates 01' a,6 •«i,e 
For example, L1(a,6 )= Ô (L(a, E5) + const )-inf provides the joint

a,(5 

estimate (3),(8) with )C (t)::t2w(t)-JP(t)-const ~see /2/). Another 
example ia 

. 2~ 2L wix:iLWi-(Lwi~) 
L2 (a , 6 )::L(a,6 )- "2 2 +
 

26 (LW ) ­
i 

E52(LWi)2 ) 2 
+ 2 ~ - 1 -P- in!( .[wix:lLWi-(LWixi) 80,6 

wJrl.ch givee exactly the joint estimate (J), (7)" 
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One more promising way ia to generalize the likelihood function 
in the normal distribution case 2 

(n 
(Xi-a) 2 

1 - -~) I(x.-a) .tzz:
In .~ e 26 = ~ 2 + (ln6+1nv29r)n

iV2~& 26 

as follows: 

'Ç ~-a ­
L3 (a , 6 )=L P(-6 ) + (In€> +J.nV21r)Lwi -;~ . 

Unfortunately, thia estimate is not acale-invariant and ia theref'ore 
unauitable for practical use. 

6. AIgorithm for computation 01' M-estimate.The existence of at 
least one eatimate (10) on the curve ~1 suggesta the following algo­
ri thm. Starting from some point (ao' é o) on the curve t1 wi th auf'fi ­
ciently large 6 and ao~(x1+'•• +Xn)/n we move .a.Lcng the curve O; 
decreasing 6 and

0 
looking through alI aolutiona of (10). The one clo­

seat to the axis 6 cO must be choaen as the M-estimate. 
In our model (6« 1/h ' i.e. Ó ia much lesa than the range ofo 

the sample. Therefore we can aimplify our algorithm by moving along 
lr1 without looking for aolutionB 01' (10) but stopping when we reaoh 

a small threahold 6 = E5min• 

7. Monte-Carlo resulta. We atudied a linear regreasion model 
y=ax+b with a uniform contamination arising in special emulaion data 
processing in high energy phyaics /5/. The sample consisted of No 
"good" points Yi=axi+b+ E. i and N1 noise pointa uniformly distribu­

ted in the square <0,1)x(0,1). The tactor~ Xi were uniforrnly diatri ­
buted in the intervala «i-1)/No,i/No)' i=1,2; ••• ,N and E.t-N(O,f(f'J.o 
The parameters a,b were uniformly distributed in the domain (a,b): 
OC::::b <'1 , O<:a+b<::1 , [ai <tg .300 

}. 

The parameters a,b were estimated by the iterational reweighted 
leaat-square procedure 

2r a.( k)LwiZi + b(k)Lwixi =~Wi~Yi 

l a.(k)Lwi~ + b(k)Ewi ::o LWiYi 

with w = wT«1ra(k-1)Xi-b(k-1»/es(k-1» by 0=3.5. Starting with
i
 

6(0) 1 ~e diminished Õ very slowly from iteration to iteration:
 

Ó (k) (1- S)6 (k-1 ) (ScO.05), in o~der to retain the point 
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(a (k) , b (k)) in the neighbourhood of (f1. The pr-ocedur'e stopped at 

õ(k)<e>min=0.001. The obtained estimates ~,b were considered as 
correct if they differed from the "true ll values a,b by less than 
0.001. 

Fig.4 shows the percentage of the cases, of corr~ct estimating 
to the total number of simulated samples. One can note rather high 
efficiency of the algorithm even for (i.e. E =0.9 in theN1=10No 
model (1)). The efficiency increases when the sample size augments 
and remains fixed, that indicates the poss~ble consistencyN1/No 
of the obtained estimate for any E <: 0.9. 

The authors are grateful to V.K.Khoromskaya and S.V.Kunyaev for 
valuable help in preparing the manuscript. 
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8. 

~epHOB H.H., OCOCKOB f.A. EIO-86-282 
COBMecTHwe po6acTHwe oueHKH rrapaMeTpOB rronomeHHH 
H MaCillTa6a 

B pa60Te Hccnep;OBaHW po6aCTHwe OUeHKH rrapaMeTpOB B nH­
HeHHhIX perpeCCHOHHbIX Mop;enHX c BhICOKHM ypOBHeM paBHOMepHO 
pacrrpep;eneHHoro illYMa. Ha OCHOBe COBMeCTHoro aHanH9a OUeHOK 
rrapaMeTpOB rronomeHHH H MaCillTa6a MeTop;OM MaKCHManhHoro npaB­
p;orrop;o6HH C09p;aH qHCneHHWH anropHTM p;nH BWqHCneHHH perpec­
CHOHHhIX nap ar-re-r po a , MeTop;OM MOHTe - Kaprto ac cnenoaaau 
CBOHCTBa anr-o pa-n-ra B Mop;enH p;aHHbIX c pe ans aor'o lPH3HqeCKOrO 
3KcrrepHMeHTa. AnropHTM rrpop;eMOHCTpHpOBan BwcoKym 3lPlPeKTHB­
HOCTb B cnyqae, Korp;a OTHOilleHHe CHrHan/rnYM He MeHee I/lO. 

Pa60Ta BwrronHeHa B fla6opaTopHH BwqHCnHTenbHOH TeXHHKH 
H aBTOMaTH9aUMH OHHH. 

Ilpenpmrr Oõsenaneaaoro HHcTHTyra anepasix HCClIeAoaaHHH. Ilyõaa 1986 

Chernov N.l., Ososkov G.A.	 EIo-86-282 
Joint Robust Estimates of Location 
and Scale Parameters 

Robust estimates of regression parameters are studied 
in linear models for heavy contaminated distribution of 
errors with uniformly distributed noise. Maximum likeli ­
hood approach to joint estimating location and scale para­
meters leads to an algorithm for computation of regression 
parametérs~ This algorithm was tested by the Monte - Carlo 
method in experimental data models of a particle track de­
tector. lts high efficiency was demonstrated for signal to 
noise ratio greater than l/lO. 

The investigation has been performed at the Laboratory 
of C?mputing Techniques and Automation, JlNR. 
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