


1.0. INTRODUCTION

When writing programs for scientific experiments, especially
for on-line data nvquisition, the detailed analysis of prohlems
is typically not completed in advance. This demands for fle-
xible programs/|/ The COSMIC system supports flexible program-—
ming in on—-line experiment data acquisiton.

The COSMIC system w/2/ runs on PDP-11-like computers under
control of the RSX-=1IM or RT-11 operating systems.

COSMIC provides a simple and very flexible language COSMICRO
to perform essential steps of program design, coding and exe-
cution control by commands uniformly.

COSMICRO:

- supports top-down design;

= allows programming of the user program until a certain
level by stepwise refinement. Below that level the user
program is coded in FORTRAN subroutines (the so-called
"action routines") which are called from COSMICRO. There
are action routines for many typical tasks programmed
in advance;

- is used as the command language of the user program;

- provides means for user program test at the source lan-

guage level;

- provides means for program maintenance.

The COSMIC system provides dynamic management of memory
for data. It is highly overlayed. Thus it is possible to per-
form even bigger tasks with few memory (min. 20 K). Using
COSMICRO dramatically reduces the development time for many
common tasks in experiment automation.

The COSMICRO user program part is executed by an interpreter.
This results in execution times consider ab]y higher compared
with programs written in FORTRAN.

2.0. SOLVTNG A PROBLEM WITH COSMIC

A simple example demonstrates how COSMIC principially works,
The values of two analogue-to-digital converters (ADC) connec-
ted to the computer via CAMAC are to be read out. The values
are filled into two histograms. The histograms are presented
to the user on a display or a printer optionally.

mnguum mm’m

QALRULIT §0C prxuaC 1
EL‘L)D: s | . illz

W




All programs are developed top-down and stepwise refined
using the COSMICRO language. Our problem may be divided into
three steps:

- initialisation UNIT
- data taking TAKE
- presentation SHOW

We denote each of the steps by an alphanumeric string, the
so—called "micro".

RUN = INIT TAKE SHOW

What must be done in the steps in detail is unknown for the
time being. It has to be refined now. In the initialisation
step information units of the dynamically manages memory area
must be booked for storing data and histograms. The ADC must be
initiated. We use micros, once mocre.

UNIT = BANKBOOK HISTBOOK CAMACINIT

In the data taking step the ADCs must be read out. The values
must be filled into the histograms. The following has to be per-—
formed:

- wait for a signal of the trigger WAITTRIGGER
— read-out of ADCs READADC

- histogram values HISTVALUES
- clear ADCs CLEARADC

A number of events shall be executed, i.e., the process is
to be performed NTAKE times. We get:

TAKE = NTAKE [EVENT |
EVENT = WAITTRIGGER READADC HISTVALUE CLEARADC

The program is very general until now. Even the number of
ADCs to be treated is not specified. This is done now:

READADC = READADC| READADC?
CLEARADC = CLEARADCI CLEARADC2
HISTVALUES = HISTI HIST2

SHOW = SHOWI SHOW2

If further refinement in COSMICRO is unwise or even impos—
sible the micros undefined until now are defined as action rou-
tine calls:

BANKBOOK = IBOOK(2,10)

(a bank in the dynamic storage area for storing the ADC values
is booked).

HISTBOOK = HIBOOK(101,BIN1, TITLE!) HIBOOK(102,BIN2,TITLE2)

(Two histograms are booked).
The treatment of the ADCs is done by two action routines.

Routine ADCINI initiates an ADC:
CAMACINIT = ADCINI(NADC]1) ADCINT (NADC2)

Further treatment is by routine ADC, which may be called
with a variable number of parameters:

WAITTRIGGER = ADC (WAIT, NADCI)

{as both ADCs will be ready for read out on the same trigger
signal, the program must wait only for one of them)

READADCI = ADC(READ, NADCI,#ADC))
READADC2 = ADC(READ, NADC2,#ADC2)

CLEARADCI = ADC(CLEAR, NADCI)

CLEARADC2 = ADC(CLEAR, NADC2)
Filling and representation of historgams are defined:

HISTVI = HIFILL(101, @ADC])

HISTV2 = HIFILL(102, @ADC2)

SHOWI = HISHOW(101, DEVICE)

SHOW2 = HISHOW(102, DEVICE)
All action routines are defined now. It remains to define the
variables used.

We will process 100 value pairs, for the moment:

NTAKE = 100

Number of bins, lower bound and bin width of the histograms
must be defined, the titles have to be defined:

BINI = 100,0,10

BIN2 = 100,0,10

TITLEI = "SEV1, HV=1.8 kV"'

TITLE2 = 'SEV2, HV=1.8 kV'

The CAMAC station numbers of the ADCs are fixed:
NADC| = 12
NADC2 = 13

Locations for storing the ADC values must be fixed, they are
in the bank:
ADCI = 2.1
ADC2 = 2

NN
<

The devices foreseen for histogram presentation must be speci-
fied:

DEVICE = DISPLAY
DISPLAY '
PRINTER

3

6



Last we have to define the function identifiers WAIT,READ
and CLEAR of action routine ADC in a form suitable for passing
them to the FORTRAN written action routine. We use integers:

WAIT = 1

READ = 2

CLEAR = 3

At this point we have defined the necessary action routines.
Also their interface to the COSMICRO propgram part is established.
We are going to code the action routines.

In our example some very general action routines are used.
We can take them out of the library of action routines prog-—
rammed in advance. These are I1BOOK, HIBOOK, HIFILL, H1SHOW.
Routines ADCINI and ADC control the work of a given CAMAC module
in a general way. If that module was used with COSMIC before,
these routines probably exist. Otherwise thev must be coded,
then compiled.

When all action routines exist in object code form, we de-
fine an overlay structure and write it to a disc file. We also
write the micro definitions to a disc file. The figure summa-
rizes all definitions in an easy Lo survey format {as they
should be written to the file).

Using this information a special service program links the
runable COSMIC program (with the help of the linker of the ope-
rating system used). The program is started.

Now we can control the run ol the user program in a very
flexible way by typing commands to the console terminal. To
form commands all defined micros or other COSMICRO language
elements may be used.

If the command ‘RUN is typed, ¢.p., it is first translated
(i.e., expanded and somewhat compacted) then executed. The

micro apparatus proceeds the expansion exactly as the human
user just now when developing the program.

The micre apparatus finds the elementary component INIT,
to begin with. INIT is defined as a micro. Thus it is expanded
according to its definition giving BANKBOOK HISTBOOK CAMACINIT.

Next BANKBOOK is found, identified as a micro and expanded to
IBOOK{2,10). This expression does not contain any further mic—
ro, thus it is taken over unchanged. Expansion continues with
HISTBOOK, etc., until the whole command is expanded.

Afterwards the expanded expression is somewhat compressed
then executed by an interpreter. If errors are Found during
translation or execution, they will be messaged to the user
via the terminal display.

In our example no errors were found. The histograms presen-—
ted seem to be all right, but we need a number of events in ad-
dition. We type the commands

NTAKE = 900

TAKE SHOW

RUN = INIT TAKE SHOW

IRIT = BANKBOOK HISTBOOK BANKBOOK CAMACIEIT

HISTBOOK = H1BOOK(101,BIN1,

TITLE1) H1BOOK(102,BIN23;TITLE?2)

CAMACINIT = ADCINI(NADC1) ADCINI (NADC2)

BANKBOOK = IBOOK(2,10)
TAKE = NTAKE [EVENT]

EVENT = WAITTRIGGER READADC HISTVALUE CLEARADC

WAITTRIGGER = ADC (
READADC = READADCI1
READADC1 =
READADC2 =
HISTVALUE = HISTV1
HISTV1

HISTV2

il

WAIT, NADC1)

READADC2

ADC (READ,,NADC1, #ADC1)
ADC (READ, NADC2, #4DC2)
HISTV?

H1FILL (101, €ADC1)
H1FILL (102, @ADC2)

CLEARADC = CLEARADC1 CLEARADC?

CLEARADC1
CLEARADC?2
‘SHOW = SHOW1 SHOW2

ADC (CLEAR, EADC1)
ADC (CLEAR, EADC2)

SHOW1 = H1SHOW (101, DEVICE)
SHOW2 = H1SHOW (102, DEVICE)

NTAKE = 100
BIN1 = 100,0,10
} BIN2 = 100,0,10

| TITLE1 = 'SEV1, HV=1.8 kV'

o

Example of a

TITLE2 = 'SEVZ2, HV=1,8 kV!

RADC1 =12
NADC2 =13
ADC1 = 2,1
ADC2 = 2,2
WAIT=1
READ=2
CLEAR=3
‘ DEVICE = DISPLAY
DISPIAY = 5
PRINTER = 6

COSMICRO program.


http:01111',"wi.HC
http:gcner.1L

and get histograms with 1000 events at all. The same result
we would have got by typing

900 [EVENT] SHOW
or also by
9 [TAKE] SHOW

Which of the possible commands is actually typed by the
user, typically depends on that, which one comes to his mind
first or, more seldomly, by which one the task to be performed
can be expressed most compactly.

Other possible actions: The histogram of ADC 1 values shall
be presented on the printer. This may be done by typing

DEVICE = PRINTER
SHOW I

or, alternatively by
H1SHOW(101,PRINTER)

Now we change a hardware parameter. We note this in the histo-
gram title:

TITLElI = 'SEVI, HV=1.35 kV'

Now we start a new data taking run. We want to get 10.000
events. After every 200 events we want to have presented the
histogram of ADC | on the display. At the end of the run we
want both histograms on the printer:

DEVICE = PRINTER

DIS = HISHOW(101,DISPLAY)

TAKE = 50 [200 [EVENT] DIS| SHOW
RUN

This example gave a glance how COSMICRO works. All demands
could be fulfilled without modifying action routines, i.e.,
without time wasting compiler and linker runs. The user simply
typed the commands at the console, the system executed them
instantly.

Data already taken stayed disposable after performing prog-
ram modifications, if required.

The flexibility of the program was not exhausted in our
example. Other usefull modifications may be:
changing the definition area of a histogram:

BINI = 80, 40, 2
using a different ADC:
NADCI = 18

3.0. LANGUAGE ELEMENTS FOR DESIGN,
CODING AND COMMANDS

In detail there are the following elements for design, coding
and commands:

-1. Micros

The user may define text strings of arbitrary length and
content as micros

micro—name = micro—expansion
"Micro-names" are arbitrary alphanumeric strings. During trans-
lation every "micro-name" is replaced by its "micro-expansion".
Actions, sequences of actions, parameters, etc., may be denoted
by micros. Micros are nestable.

Example: READ = VISUALIZE THINK

2. Repetitions

repeat—number |actions]
The "actions' are executed "repeat-number" times.

Example: 2 |READ]
The "actions" may contain expressions of the form
WHEN logical-variable EXIT

at possibly several passages. Each of them causes termination
of the repetition if the "logical-variable" yields the value
true. If the "repeat-number" is omitted, the "actions" are
performed an unlimit number of times. Those repetitions are
terminated by WHEN-EXIT expressions only.

Example: [READ WHEN CAUGHT EXIT]

3. Branches

CASE variable OF
casel: actions!
case2: actions2

caseN: actionsN
ENDCASE

The value of '"variable" is compared with the value of
"ecasel". If they are equal, "actionsl" are executed. Next the
value of "variable" is compared with the value of "case2". If
they are equal "actions2" are executed, etc. Finally the value
of "variable" is compared with the vaiue of '"caseN". If they
are equal "actionsN" are executed.



As the 'cases' may be variables too, zero, one or more
"actions'" may be executed.

Example: CASE CAUGHT OF
TRUE: THINK-AHEAD
FALSE: READ
UNCERTAIN: AQXBR (READ, 3, "24, ASK)
ENDCASE

4. Action Routine Calls
actionroutinename (parameterl,...parameterN)

A FORTRAN coded part of the user program (a subroutine) is
going to be executed. The parameters are submitted to the ac-
tion routine.

There are several possibilities to denote a variable (re-
peat—-number, logical-variable, variable, case, parameter).
Variables may be
1. decimal or octal integer constants, real constants

(examples: 10, "12, 10.000)

2. addresses or contents of bank elements

(examples: #2.1, @2.1)

3. text strings

(example: 'THIS IS A STRING')

Variables or parts of variables may be denoted as micros
(examples: '"OCTALVALUE, @ BANK.3)

4.0. MEANS TO SUPPORT THE TEST

By the use of tracing commands the user asks COSHMIC to in-
form him about the succession of action routine executions.

Some or all action routines can be selected for tracing. A mes-
sage is given every time an action routine selected for tracing
is executed.

Furthermore the test is facilitated by error recognition and
messages by the COSMIC system during transiation (syntax er-
rors) or program execution (wrong use of information units,
wrong number of parameters of an action routine call).

COSMIC supports the bottom-up test. It is a pood practice
first to test the function of single action routines by typing
the corresponding commands, then to test the cooperation of
those action routines united to micros at the lowest level, etc.,
until the command is typed that will finally start the whole
process. )

Special test micros can be included in some micro definitions
too. They may be defined as empty after all tests are fulfilled.
Thus they are without effect and even do not waste execution
time then.

These simple but powerfull means provide the test of the
COSMICRO user program part on the source language level.

5.0. INTERVENTIONS

The user has two possibilities to intervene when a user
program runs:

1. By typing the command ECR (End COSMIC Run) execution of the
actual command string is aborted after the currently active
action routine has finished. COSMIC asks for the next command.
All information units (banks, histograms) and their contents
remain unchanged. Defined micros remain.

2. By typing the command ICR (Interrupt COSMIC Run) execution

of the actual command string is interrupted after the current-
ly active action routine has finished. COSMIC asks for a command
to perform the so-called "foreground action'". Information units
booked in the backpround may be used by the foreground action.

Commands for forepround actions have the same syntax as
commands for background actions. All micros defined are at the
user s disposal. After the end of the foreground action the
background action continues immediately.

Foreground actions are typically used to present some data
or histograms "on the fly", sometimes also to change some va-
riables. Tt is possible to change tracing conditions as a fore-
ground action, thus allowing especially flexible testing of the
background program.

6.0. CRITICISM OF THE SYSTEM

Using COSMIC spares about 50 to 807 of program development
time. Great flexibility is provided to the user by the ease of
utilization and modification of the user programs. This is es-
pecially usefull in on-line experiments, where new questions
arise often.

The syntax of the COSMICRO language should be extended. Most
worth mentioning is the lack of arithmetical and logical expres-—
sions. Flexibility can be further increased by passing micros
(without parameters) to macros (with parameters) or similar more
powerfull expansion techniques.

The most important weakness of the system is the low exe-
cution time efficiency of the programs. Execution time of a prog-
ram is typically 20 to 500. higher compared with programs writ-
ten entirely in FORTRAN. For most applications this is not cru-
cial. On the other hand there were real time applications where
one had to find a compromise to the debit of flexibility. For
that purpose some parts of the user program originally written

9



|

in COSMICRO had to be re-written as FORTRAN action routines.
To overcome this weakness we intent to include a COSMICRO-
compiler into the system. The compiler will generate machine
code programs thus giving maximal efficiency.

Another important weakness is the necessity to work with
two languages to achieve flexibility (COSMICRO) and to denote
the details of the program (FORTRAN). Obviously it would be
very much better to use a uniform language for the whole user
program. Such a uniform language or its compiler, respectively,
muct provide the following attributes:

1. The syntax of the language must provide a maximum of the
syntax elements known from modern high level language (program
modules, abstract data types, elements for structured coding,
probably multi-tasking possibilities). On the other hand there
must be a subset of the language that can be used easily and
quickly in order to meet its function as a command language.
Finally it must be easy to learn and easy to use (at least
there must be an easy subset) becauvse it will be used especial-
ly by scientists not being software engineers.

2. The language must provide possibilities for interactive
influence to program continuation. Especially there must be
commands to present data "on the fly".

3. There should be a dynamic memory management.

4. There must be a compiler that generates effective programs.

None of the widely spread languages fulfills all of these
demands. For that, systems are necessary which integrate com—
pilers, interpretes and linkers. One of several ways may be
gone:

System A

The system includes a compiler-linker and an interpreter.
The user selects the program parts to be compiled.

System B

A compiler translates all smallest defined program compo-
nents (in COSMIC these would be all micros). Every time a com-
mand was typed the linker forms a runable program out of the
components used by that command.

System C

The program is completely compiled and linked. The table of
"global" defined symbols remains at disposal after that. Every
command typed is interpreted until an entry point into the com-
piled program is found. From that the compiled program is exe-
cuted until it returns to that entry point. Then interpretation
continues, etc.

10

Each of the proposed systems has superiorities as well as
drawbacks if compared with the others. System A calls the user
for additional decisions in situations often hardly to decide.
System B will need long commandexecution times hecause the lin-
ker must run after every command. System C reacts promptly on
commands, but the whole program must be linked another time
after every program modification.

7.0. CONCLUSION

The COSMIC program system for experiment automation provides
for flexible programming. Its most important weakeness are the
low efficiency of programs and the necessity to program in two
distinct languages. Better efficiency will be achieved by the
construction of a COSMICRO-compiler in near future. It should be
possible to overcome the two-languages-problem by defining
a language that is a command language as well as a general prog-
ram language. The programs must be executed by a compiler-lin-
ker—interpreter system to be constructed.

The authors want to express their acknowledgement to Prof.
H.Schiller for his permanent interest to the investigations
underlying this paper.

REFERENCES

1. Winde M. Experiment Automation Demands for Flexible Prog-
rams. JINR, E10-85-540, Dubna, 1985.

2. Wegner P., Winde M. COSMIC-Programmdokumentation. Institut
fur Hochenergiephysik der AdW der DDR, Berlin-Zeuthen, 1983.

Received by Publishing Department
on July 12, 1985,

11






