

1.0. FLEXIBILITY OF PROGRAMS FOR SCIENTIFIC EXPERIMENTS

The typical job of a programmer involved in a team of scien-
tific experimenters is to write very special programs, i.e.,
programs which are needed only for one user group at one experi-
mental installation for a limited time. Obviously the most im-
portant thing then is to have the programming done with minimal
human effort. Other program quality attributes as efficiency,
portability, ease of exploitation, etc., become less crucial,

The common method to achieve such programs quickly is to use
a program system that provides many of the facilities commonly
necessary. There is a number of such systems for experiment
automation/ 15?2

Another method is to make use of libraries - special lib-
raries for experiment automation and general scientific libra-
ries are available.

The users are very satisfied, when first working with a prog-
ram system suited for their tasks. They will spend much less
time in programming, because they can concentrate themselves on
the problem proper instead of concentrating on structural de-
tails of the program.

But in contrast to programs in many fields of application,
programs for scientific experiments do "live", i.e., the prog-
ram that was constructed at the beginning, will not be the final
one because the original defined problem is not the final one.
Instead of that problems become other ones step by step, so
programs become other ones step-like too.

We will call that "the problem is open'" due to uncomplete
problem analysis in advance. Openess of problems is very typical
for programs for scientific experiments.

Thus alter some time programming usually tends to become more
difficult. As a matter of fact this is often not only due to
the problems that become a little more complex but also due to
the program system that becomes much worse suited to the new
problems., So after some time of unsatisfying struggle with the
system the programmers will probably try the second way. The
programmers now construct their program without using a program
system. Instead, they write a special program very well suited
to the problem to be solved. They make maximal use of existing
(possible very good, complete) libraries,

The job is satisfying, once again. Because most of the prog-
ram modules needed were alrea the prog-

1

C)(khmunnennnn HHCTHTYT AJEepPHHX

ram system, they may just be taken and linked. Typically only

a small main program is needed to call them in a sequence. It

is very easy to overcome all the inflexibilities and ineffici-
encies of the program system.

The program obtained this way is not the final one, of course.

Modifications have to be made again. Some new options have to
be included to make the use of the program more variable. After
some time of exploitation and development the program becomes
both hard to use and hard to modify.

It becomes hard te use because the options where incorpo-
rated '"by necessity", i.e., the "syntax' of the "command lan-

guage" of the program is non-uniform. It becomes hard to modi-
fy because its original structure has been likely destroyed
by all those modifications.

What is the way out of this dilemma now? It is surely the
construction of another program system. Now we know better
where the limitation of its applicability will arise, so we

try to construct a more flexible program system.

2.0. APPLICABILITY AND MODIFIABILITY

Every program is composed of a number of different modules.
Some modules perform very special tasks, useful only in one
program. Other modules perform general tasks, It suggests itself
to construct these modules in a way to make them applicable in

as much programs as possible.

Let us consider the problem by discussing an example, to be—
gin with. The following module (written in a fictive language)
calculates and outputs the squares of the first 100 positive
integers:

for i=1...100 do output (i*i); enddo;

If the task is to output the squares of integers 50 to 200 the
module must be modified, i.e., the source text must be changed,
then the program must be recompiled. Obviously the range of ap-—
plicability of the module is very low. It becomes higher if the
module asks for the lower and upper limits of the loop:

ask 'lower limit': low;

ask 'upper limit': up;

for i=low..up do output(i*i); enddo;

The module is now applicable to calculate the squares of
arbitrary integers without modifications. On the other hand in-
put of lower limit and upper limit is necessary every time the
module is executed. '

The applicability could be increased further if other func-
tions were allowed, instead of squaring. Simultaneously the
expense in executing the program would increase - the function

2

has to be input. Besides this the expence of programming in-
creases, the program becomes longer and more complex,

Hence, it is not practicable to increase the range of ap-
plicability of the module until "infinity" (a very general case
of the module would be a formula interpreter, e.g.). The prog-
rammer rather must decide how general the program has to be,
which of the "parameters' (in the most general sence) has to
be variable and which may be considered as being constant. He
has to take into consideration the possibility that he goes
wrong in some decisions, i.e., a "constant" turns out to be
a '"variable" or vice versa. Hence, he has to work with the pa-
rameters in a way providing easy transition from "constants"
to "variables" (and vice versa).

Thus the flexibility of programs and program modules is given
by two factors:

1. Applicability: a program module is as widely applicable
as it is possible to change its inner control flow by some in-

put data in order to meet conditions not well defined or unfo-
reseen at the beginning of programming.
2. Modifiability: a program or a program module is as much

_modifiable as it is easy to change it by editing its source

text in order to accomplish unforeseen tasks. Modifiability of
a program includes the exchangeability of the modules from which
it is built.

3.0. FLEXIBILITY AS A CHARACTERISTIC OF PROGRAM QUALITY

In/3/ software quality is treated. It starts with defining
some complex characteristics. Then going into detail, a number
of basic characteristics are found establishing those more comp-
lex characteristics. In fig.l the characteristics and their de-

pendencies are shown. They
are re—arranged from/3/ in
order to better reflect the
ST R] newly introduced complex
/ characteristic "flexibility".
~ Ve see that a program is
[ass umny | [mowury | flexible if it can be variab-
R i i T ly applicated, if it is well
L&m ;utJL¢:. L;;;Jlmnf][}Wﬁ structured, selfdescriptive,
ST Y A if it easily accomodates ex-—
~/ [pansions in data require-
‘Lgyuﬁgﬂééj_ 'iw:?l ments or component computa-
= e L tional functions.

Hence, all known methods
to achieve these characteris-
tics can be used. Most worth

3

s x /
/ o

A 5 =

Fig.1. Characteristics of
Software Quality.

——r——r
LACERSTANDARLITY, TESTARLITY

mentioning is the method of structuted programming. The prog-
ramming language used also has significant influence on the
flexibility of the programs.

After having defined what flexibility means we can go back
to the original problem. How can we make programs flexible
enough to live with for a longer period of time? As we have
seen the conventional program system is not the best solution.
Also a simple module library does not satisfy. What we need
instead of that is a library of general modules which are easy
to modify and some design principals to make variable and modi-
fiable programs out of them.

Let us consider the problem of modifiable libraries to be
solved (at least it can be solved with the help of well known
methods). So we can concentrate oursclves on the design prin-—
ciples for variable programs.

A program consists of modules connected one with the other
by a call-structure. The call-structure and a part of the in-
put data determine the actual program control flow. Every mo-
dule determines its successor, thus the program control is
distributed among the modules.

Due to the already mentioned openess of the problem the
actual program control flow heavily depends on the input data.
It is usuwally influenced by decisions of the experimenter.

In very simple programs this is done by aborting the run-
ning program, modifying it, then re-compiling and re-running

it. Already taken data must be lost.

To allow prompter reaction, there should be a possibility
of controlling the program flow with the help of commands from
the terminal console. For that purpose some modules must be
able to accept commands. In the most simple way this is done
by a sequence of write and read statements in the language used
to program the module. Somewhat more convenient is the use of
a dialogue package. A dialogue package guaranties on a certain
level a uniform command syntax. Besides that some comfort is
offered to the user {parameter prompting, parameter checking,
repeated prompting in the case of illegal values, defaults).
The actual program control flow is not effected by the use of
a dialogue package. It stays distributed among the modules.

If centralizing not only the dialogue but also essential
parts of the program control we get a loose program system,
sometimes called a "software framework'"/4/. And this seems to

be exactly what we need, from the point of view of modifiability.

In a program system the user written modules merely offer
some possibilities rather than fixing the program control. The
actual sequence of execution of modules, frequency of execu-
tion, etc., is defined by the commands. Consequently it must
be possible to define commands and to logically link them to
modules, i.e., input of a certain command should activate a cer-
tain module.

SUBROUTINE HIST (IPAR)
COMMON,,. IPASS, LUNDIS, LUNLPT
INTEGER TITLE (10), BW
GO TO (1000, 2000, 3000)

G
C¥= PASS 1 COMMAND DEFINITION
R i i e i e s B A e e
1000 CONTINUE
CALT DECLR(HIST, 'define',5,1)
CALL DECLR(HIST, 'show',1.2)
~—— CALL DECLR(HIST,'print',1,2)
RETURN
C
C*= PASS 2 COMMAND EXECUTION
(D i s o i i g e e s 1 g i
2000 CONTINUE
GO TO (2100,2200)IPAR ~— 42300
C define
2100 CALL GETI('hist-nb,',NRH)
CALL GETC('title', TITLE, 10)
CALL GETI('nb. of bins', NRBIN)
CALL GETI('lower edge', LOW)
CALL GETI('bin width', BW)
CALL BOOKH(NRH, TITLE, NRBIN, LOW, BW)
RETURN
C show
2200 LUN = LUNDIS
2210 CALL GETI ('hist-nb.', NRH)
CALL SHOWN(NRH, LUN)
RETURN
C print ~
2300 LUN = LUNLPT -~
GO TO 2210 -
C
C*= PASS 3 ACTIONS
3000 CONTINUE

ese 111 the histograms

END

Fig.2. Modul HIST (in FORTRAN).

P
T

See fig.2 for example. A module is to be programmed for
simple histogram manipulation. Input of a command DEFINE will
define a new histogram, SHOW will present a histogram on a disp-—
lay screen. The module is composed of three passes. In pass |1
all the commands to be logically linked to that module must be
declared. This is done by the CALL DECLR statement. Parameters
are (1) the name of the module, (2) the command identifier,

(3) the number of parameters and (4) the sequential number of
the command {counted inside of this module). The first pass
has to be executed once after program start.

The second pass has to be executed every time one of the
commands logically linked to the module was input. After having
- identified the command the frame calls the module with parame-
ters IPASS=2 and IPAR equal to the sequential number of the
command. Control branches to label 2100 or 2200, respectively.
Then the parameters have to be input. Finally the module calls
subroutine HBOOK that will book the histogram {one of the wva-
rious histogram packages available is used).

A third pass is necessary, of course, to fill data into the
histograms. But this is not interesting from our point of view.
The module provides manipulation of an arbitrary number of

histograms of different size, contents, etc.

If the modules are constructed prospectively and carefully,
then not only many 'through—-away" modules come into being but
also some modules usable in other applications. A command lib-
rary arises in the course of time.

In general the modules are not ideally designed from the
beginning. They have to be refined. In our example it turns
out that histograms have to be presented on a printer too. We
must add the command PRINT. This is a triffle. We have to de-
clare another command in pass | and to code its execution in
pass 2 (see fig.2 right side). Besides that we have to ensure
only that the command is not defined elsewhere already. Upda-
ting any lists elsewhere in other program parts is not neces-
sary.

This way it has to be. Declaration of additional commands
must be easy to perform.

The method used to program module HISP was sugpgested by the
class concept of languages like Simula or Concurent Pascal.

In contrast to these languages the instantation of a class is
not initiated by the program text but by commands via the ter-
minal.

The formal translation of the class concept into a FORTRAN
subroutine goes along with some insufficiencies.

1. There are some identical statements obligatory in all
modules (COMMON, branches to the passes, parameter IPAR in the
subroutine declaration). These compulsory statements reflect
the standard of interaction of the modules in the program sys-
tem. In the process of coding they are burdensome only.

2. The introduction of the "sequential number of the com-
mand" is obviously more pragmatic then elegant.,

3. The passes of the module have to be executed at different
times: pass | must be executed once after program start, pass 2
every time a command was input, pass 3 every time a value is
integrated into a histogram. If the program runs on a computer
with small main memory, we would like to define an overlay
structure and to distribute the passes to different overlay
segments. This is not practicable if all three passes are loca-

+ action HIST

+ command define

NRH: hist-nb,: int
TITLE: title: char (10)
NRBIN: nb, of bhins: int
LOW: lower edge : int
BW: bin width: int

+command show; NRH::
+command print; NRH ::
+pass?
define: CALL BOOKH(NRH, TITLE, NRBIN, LOW, BW)
RETURN
show LUN = LUNDIS
10 CALL SHOWN (NRH, LUN)

RETURN
print: LUN = LUNLPT

GO TO 10
+pass 3

see fill the histograms
+end

Pig.3. Module HIST (in a fietive language).

ted in one FORTRAN subroutine. Alternatively we can code the
three passes in three subroutines. Unfortunately we will lose the
unity of function and form, this way. Programming and modifying
become harder to survey.

We can try to overcome these insufficiencies by the use of
a precompiler 5/. The module may be input to the precompiler
in a special language suited to the problem. Example module HIST
thus obtains an easy to survey form (fig.3). The precompiler per-
forms the translation into the form wanted by the program sys—
tem. It translates the program text from fig.3 to the FORTRAN
subroutine of fig.2 if there is sufficient main memory at the
target computer or into three single subroutines if not, respec-
tively.

On the other hand using a precompiler brings along some unfore-
seen side effects if a module is more complex, so it cannot be
recommended in general.

7

http:pro)~r.lm
http:ll\)plic.1t

4.0. PROGRAM SYSTEM AND PROGRAMMING METHODOLOdY

We discussed general problems of controlling programs for
experiments by the commands. By introduction of simple stan-—
dards we got solutions on a comparatively low level of integ-~
ration. There is no uniform programming methodology supported
by the program system. Instead, we have a collection of methods,
standards to be followed, programming languages and commands.
All that must be learned by the user. In detail it is necessa-

ry to learn the following steps when writing and using a program:

1. design: design methodology, possibly a design language;

2. coding: general programming language, system calls, stan-
dards, if a precompiler is used: special language;

3. Linking: command language of the linker program of the
operating system, standards for linking the user modules with
the frame;

4. execution: dialogue package, 'command language' of the
program;

5. test: command language of the debugger.

To perform all these steps knowledpge of an editor is neces-—
sary too. To go from one step to another also minimal knowledge
of the command language of the operating system is necessary.

The multiplicity of these demands to the user is a substan-—
tial barrier. A new user has to learn too much and makes too
many errors until he feels some progress in programming effi-
ciency at last. Hence the system should be developed in order
to reduce this barrier. One way is the unification of all the
languages mentioned above. There should be a programming metho-
dology that is supported by the languape to be constructed.

Thus the way we have to go is somewhat analogue to the cur-
rent tendency in the field of data base systems. While in ol-
der data base systems the user modules were written in a gene-
ral programming language thus demanding all the steps mentioned
above, modern data base svystems integrate one or even more lan-
guages to perform them uniformly.

The tendency to integrated software tools is also obser-
vable in other fields, especially in the field of persomnal com—
puter application. In the field of experiment automation this
way is gone by FORTH-applications/6/. Another possibility is
presented in/7/.

5.0. SUMMARY

Software frameworks (loose program systems) seem to provide
a suited structure for flexible programs. The program flow must
be controlled by commands. Command modules (command driven
classes) lead to a modifiable set of commands.
8

The multiplicity of demands to the user of a software frame-
work has to be overcome by the construction of integrated soft-
ware tools providing a uniform language for all steps of prog-
ramming.

The author wishes to express thanks to V.J.Zhiltsov and
B.G.Shchinov for some useful discussions.

REFERENCES

1. OC-DEC On-Line Data Acquisition Manual. CERN, Geneva, 1982.

2. Bartelett J.F. et al. TFermilab MULTI User”s Guide, FNAL,
PN-97.5, 1979.

3. Boehm B.W. et al. Characteristics of Software Qaulity.
North-Hlolland Publ.Co., Amsterdam - New York - Oxford, 1978.

4. Williams G. Software Frameworks. Byte vol.9{(13), 124-127,
394-410, December, 1984.

5. Pfeiffer Gi. A Flexible Command Generation Technique for
Application in Diagolue Systems. Software - Practice and
Experience, vol.14(5), 484-489, May, 1984.

6. Hogan T. Discover FORTH. Learning and Programming the FORTH

Language, Osborn/ Mc.Graw-Hill, Berkeley, 1981.
7. Schenk J., Wegner P., Winde M. JINR,E10-85-541, Dubna, 1985.

Received by Publishing Department
on July 12,1985,

