
trt <;f'IO

w?J¥o
M.Winde

COOfiUlBHMR
OfiltBAMHBHHOrO

MHCTMTYT8
RABPHbiX

MCC18AOB8HMI

AYfiHa

EI0-85-540

EXPERIMENT AUTOMATION DEMANDS
FOR FLEXIBLE PROGRAMS

1985

1.0. FLEXIB iLITY OF PROGRAMS FOR SCIENTIFI C EXPERIMENTS

The t yp j cal job of a programmer i nvolved in a team of s c i en­
tific experimenters i s to wr ite very s pec i a l programs , i.e.,
programs which ine ne ed e d on l y for one user group a t one experi­
mental in sta 'I'l ilLlon for a l imite d t ime. Obv i ous l y t he most i m-­
portant Lh i np. 1hen is to have the programming done with min i ma l
human e(foTI . 0 1 he r program qua l ity a t tribu t es a s ef fi c ienc y,
portabi li ty, V.:J~C of exp l oi t a tion, e t c., bec ome less c ru r i~ l.

The- ('ommnl1 m<'ti1od t o achi eve su ch pro gram s qu i ck ly is t o use
a program sys l l'm t hat provides ma ny o f the f a d t ities common ly
neces sar y . There is a number o f su c h s ystems for experiment
au tomllllon /1,2/.

Anotller met hl)d is to make u s e o f l ibraries - spec i a l lib­
raries r(lr pXlwri ment au tomat i on and general scientific libra ­
ries ar0 av~ j lnble .

The users ~re very sa t i sfied , when f irst working with a pro g­
r am system suited for their task s. They will spend much less
time in prol',r' ll1un ing , because they can concentrate themse l ves on
the prohlpm pn)per i n stead of concentrating o n structura l de ­
tails o[LIll' prt)!?,r am.

But in <.: on l rast to program s i n many f ields of application,
pr ograms fur scient ific experiments do "live", i.e., the pr og­
ram r hat Wil6 c rmstruct ed a t the beg i nni ng, wil l not be the fina~
one he t:allsc Lilt: o riginal de f ined prohl em is nor the f i na 1 one .
Instead or IIUll rroblems become other ones s t ep by step . so
programs lH'cnme other one s step- l ike too.

'~e will (,Il l that "the probll:!m is open" due to uncomplete
problem analysis in advance. Openess of problems is very typical
for programs ror scientific exper iments.

Thus arter some time progralllTling usually lends to become more
d ifficult . As a matler o f fact this i s of l rn no t on l y due to
Lhe problpms lhat become a little more compl~x but also due to
tIl(' program ::;ystem that becomes much worst· 611 i ted to the new
problem::; So aftl'r some time of unsatisfying strugg l e with the
system tht:' programmers wi 11 probably try Ilw second way. The
prograrnrn(!rs now construct their program withou t using a program
system . ~1stead, they write a special program very well suited
to the prohlem to be solved. They make maximal use of existing
(possihle very guod, complete) librari es .

The job is satisfying, once t h e prog­
ram modules needed were alrea~ t he prog­

© 06t.~emIYA IIBC:THTYT llAepma 1

ram system, they ma y just be taken and linked. Typically onl y
a small main program is needed to call them in a sequence. It
is very easy to overcome all the inflex ibilities and ineffici­
encies of the program system.

The program obtained t h i s \.Ja y i s no t the fin al one, of cour se.
Modifications have to be mad e again. Some new options have to
be included to make the use of t he program more variable. After
some time of exploitation and development t h e program becomes
both hard to use and hard to modiry.

It becomes hard t o us e because the op ti ons where incorpo­
rated "by necessity", i. e., t h e " synt ;J x " l)f the "corrnnand lan­
guage" of the progr am is non-uni form . J l bec omes hard to modi­
fy because its or i gina l s t ructun' 1111:3 heen l ikely destroyed
by all those modif i ca t ions.

What is the tJay out of thif: (I i 1('nullo !lOw? It is surely the
construction of another pn)g1"; II1J l-lyp.LI:m. N(")w we know better
where the limi ta tion of i t~ app l icnbi l iLy will ari~e, so we
try t o construc t a more fl exi hl t: p rf'l l'.rilJn sys tem.

2.0. APPLICABILITY AND ~10nrr I AB IL I . 'I' Y

Every program i s composed or 11 nUl1lb '~ r Cl r different modules.
Some modul es perform very sp£'d n I I .I Hks, use f ul only in one
program. Other mod ul <.!. s perform gem.: r n l Ll sks . It suggests itself
to construc t these modu les i_n a w~l y I. '" lIIake them appllcable in
as much programs a s possi ble.

Let us consider the p1"ob lem by d iscuss in~ a ll example, to be­
gin with. The following module (wr i t t en i ll n r i c tive language)
calculates and output s the squares of th e [f r Rt 100 positive
integers:

for i=l ... 100 do output(i*i); enddo ;

If the task is to output the squares of i ntege rs 50 t o 200 the
module must be modified, i. e. , the source t ext must be changed,
then the program must be recompiled. Obv i ous l y t he r ange of ap­
pl i cability of the module is very low. It becomes hi gher if the
mod ul e asks fo r the lower and upper limits of the loo p:

ask 'l ower limit ': l ow ;
ask 'upper l imit ': up;
for i=low .. up do output(i*i); enddo;

The mod u le is now appl icable t o calculate the square s of
arbitrary i ntegers without modifications. On the othe r hand ~n­

put of lower limit and uppe r limit is necessary every time the
module is executed.

The applicability could be increased further if other func­
tions were allowed, instead of squaring. Simultaneously the
expense in executing the ~rogram would increase - the function

has to be input. Besides this the expence of programming ~n­
crease s, t he program bec ome s longer and mor e complex .

Hence, it is not pract i c able to increas e the r ange of ap­
pl i ca b i l i t y of the module un ti l' " i nf ini t y " (a very general case
o f t he module would be a f ormul a i nterpre t er, e.g.). The prog­
raImller rather mu s t dec i de hOly gener a l t he progr am has to be,
whi ch of the "parameters" (in t he most genera l s ence) has t o
be variable and whic h may be con s idered a s be i ng constan t . He
has t o take into consider ation the poss i bili t y tha t he goe s
wrong in s()m~ dec ts i ons, i.e., a "constant" tu r n s ou t to be
a "variab le" I)r v i ce versa. Hence , he ha s to ,,'ork wi th the pa­
rame ters in a way providing easy t rans ition from "c onstants"
to ''variahles '' (and v ice ver sa).

Thus t he flcx j b i lity of programs and program modules is given
by two [aclnrs :

I. Appl i c:t ld lit y : a pr ogram mod ule is a s widely applicable
as it is possihle to c hange i ts i nner cont1"ol flow by some i n­
put data in order to meet cond it i ons no t wel l def i ned or unfo­
reseen at lhe begi nning of programming.

2. Hodifinblli ty: a pr og ram or a program modul e is as mu c h
modifiable ns i l i s ea sy t o cha nge it by edi t ing i t s sou r c e
tex t in order Lo accomp l i sh unfores een tasks . Modi f iab i l ity of
a program includes the exc hangeab i lity of t he modu les from whic h
it is buill.

3.0. FLEXIBILITY AS A CHARACTERI STIC OF PROGRAM QUALITY

In/3/ sottware qua l ity is trea ted. It starts wi th defi ning
some complex c hnrac t er i s tics. Then going into de t a il , a number
o[basic c llilrac.ter i stic s are f ound establ ishing those more comp­
lex character i stics. In fig .1 the characteristics and t he i r de­

pendencies are shown. They
are re- arranged from/3 / in

/

order to be tter ref lect the
newly i~~roduced complex
characteristic " flexib il ityll.

{.1(' see that a program is
flexible if it can be variab­
ly applicated, if it is wel l
structured. selfdescript ive,
if it easily accomodates ex­
pansions in data require­
ments or component computa­
tional func t ions.

~1~,¥. ~"""rl'1' Hence, all known methods
Fig. 1. Characteristics of to achieve these characteris­
Software QuaZity. t ics can be used . Most worth

2 3

mentioning is the met110d of struc t uted pr ogramming. Th e prog ­
ramming language u sed also ha s s i gn if icant infl uence on the
f lexibility of the programs.

After hav i ng def ined what fl ex i bil i ty means we can go bac k
to the or iginal pr obl em. How can we make program s f l exible
enough to l ive wi t h f or a longer pe r iod of t i me ? As we have
seen t he convent ional program sys t em i s not the best solut ion.
Also a simple mod ule library do e s not sat isf y. Hha t we need
i nst ead of that is a l ibra r y o f general modules wh ic h ar e e a s y
t o modify and some de s ign principals to make variab le and modi ­
fiab l e programs out of them.

Le t us consid er the problem of modifiable librar i es to be
solved (a t least it ca n be solved wi th the help of we ll known
method s). So we can c oncen trate ou rselve s on the de s i gn pr in­
ciple s for var i abl e programs .

A program c ons i st s of modules connected one with the other
by a call-st r uc ture. The ca l] -struC'turt! and a part of t he in­
put data determine the ac tua l pror,r,lIn C'o nL Tt1 l fl ow. Ev er y mo­
dule determi nes its successor, thus the program control is
d i s t r ibu ted among the modules.

Du e t o the al r eady ment ioned openc~s of the prob lem the
actua l program control f l ow heavi l y depends on the input data.
It is u sually i nflu enced by dec i s ions o f the ex pe rimenter.

In v ery simp l e pro p;rams this i!; done by aborting t he run­
ning program, mod ifying it. then re - compi l ing and rc-r unning
it. Al ready t aken dat a must be lo st .

To al low prompt er r eaction. there shou ld be a poss ib il ity
of controlling t he program flow wi th the help of commands from
the t erminal console. For that purpose some modules must be
able to accept commands. In the most simple way this is done
by a s equ enc e of wr i te and read statements in the languag e used
t o program t he module. Somewhat mor e con':enient is the use of
a dialogue package. A dialogue package guarant ies on a certain
l evel a uniform command syntax . Besides that some comfort is
of f er ed to the user (parameter prompting, parameter check i ng,
repeat ed prompting in the case of illegal value s , defaul t s).
The actua l program control flow is not e f fec ted by the u s e o f
a dialogu e package . It stays distr i buted among the modules .

If central iz ing not only the dia logue bu t also es senti al
parts of the program control we get a loos e program s ystem,
some time s c al l ed a "software framework"/4/. And this seems to
be exactly what \.e need, from the point of v iew of modifiabi lity.

In a pr ogram system the user writt en modu le s merely offer
some possibi l it i es rather than fixing the pr ogram contro l. The
actual sequence of execut i on of modules, f requency of exec u ­
tion, etc., is defined by the commands. Consequentl y it must
be possible to define commands and to logically link them to
modules, i.e., input of a certain c ommand should activate a cer­
tain module.

SUBROUTINE HIST (IPAR)
COMMON ••• IPASS, LUNDIS, LUNLPT
INTEGER TITLE (10), BW
GO TO (1000, 2000, 3000)

c
C*= PASS 1 	 COMMAND DEFINITION
C---­
1000 	 CONTINUE

CALI DECLR(HIST, 'define',5 l 1)
CALL DECLR(HIST, 'show' ,1,2)

__ CALL DECLR(H],ST, 'print', 1 ,2)
RE'l'URN

C
C *~ PASS 2 COMMAND EXECUTION
c---­2000 CONTINUE

C define
GO TO (2100,2200)IPAR ~ ,2300

2100 CALL GETI('hist-nb.',NRH)
CALL GETC('title', TITLE, 10)
CALL GETI('nb. of bins', NRBIN)
CALL GETI('lo~er edge', LOW)
CALL GETI ('bin width', BVI)
CALL BOOKH(NRH, TITLE, NRBIN, LOW,
RETURN

BW)

C s how
2200 LUN '" LUNDIS
2210 CALL GETI ('hist-nb. "

CALL SHOWN(NRH, LUN)
RETURN

NIDI)

C print
2300 LUll =

GO TO
LUNLPT
2210

of­

.. ­--­C
C*= PASS J ACTIONS
C--­
3000 CONTINUE

fill the histograms

END

Fig. 2. Modul HrST (in FORTRAN).

See f ig.2 f or example. A module is to be programmed f or
s imp le hi s t ogr am manipulation. Input of a conunand DEFINE will
de f i ne a new hi stogram, SHm.J wi ll pres ent a histogram on a disp
l ay sc reen. The module is compo s ed of t hree pa s ses. In pass 1
all t he commands to be logica l l y linked t o that module must be
dec lar ed . 111i s is done by th e CALL DECLR statement. Parameter s
a re (I) the name of the modu l e . (2) the command identifier.
(3) t he number of paramet ers and (4) the sequential number of
the conrna nd (counted inside of th i s module). The first pass
has to be executed once af t e r program start.

5 4

•••

+ action HISTThe second pass has t o be executed every t i me one of the
commands l ogically linked t o t he module was i npu t. Af t er having
i d en ti f ied the c omma nd the f rame calls the module wi t h par ame ­
t er s IPASS=2 and IPAR equa l t o the sequential number of t he
command. Control branc hes to label 2 100 or 2200, respectively,
Then t he parame ter s have to be input. Finally the module calls
subrout ine HBOOK t hat wi l l book the histogram (one of the va­
r iou s hi s togram packages ava i lable is used).

A third pass is nece s sa ry, of course, to fjll da ta into the
histograms. Bu t this is not interesting [rom our point of Vie\L

The modu le provid es mani pulation of an arbi t rary number o f
histograms of different size, contents, etc. ­

If the modules are constructed prospectively and caref u l ly.
then no t on ly many "through-away" modules l:ome i nto be ing bu t
a lso some module s usabl e in other ll\)plic.1t io ns . A command lib­
rary ar i ses in the cou rs e of time.

In general t he modules are nOl ideally desi~ned fr om the
beginn i ng. They have to be refined. I n our exampl e i t turns
ou t that h i stograms have to be pres~nlcu on a pr int er too. We
mu st add the c ommand PRI NT . This is [l Lrirne. \ve have t o de ­
clar e a no t her command in pass I and lo code j t s execu t ion i n
pass 2 (s ee f ig .2 right s id e) . Besides thal we hav e t o ensure
onl y that the command i s not de[i ned c l sewhere al r eady . Upda­
ting any list s el sewher e in other pro)~r.lm p'lrts is not nec es­
sary .

Thi s wa y it has t o be. Dec l arat io!1 q(' add i tional command s
must be easy to per f or m.

The me thod used t o pro ~ram TIlodu 1 c Ill SI' W:1S sugge sted by t he
class conc ep t of lanp,uages 1 i ke Simuln tl r Co nc. u re nt Pa sca l.
In con trast t o these l anguage.'> tlw instnn LlJtio n of a c l a ss i s
not i nit iat ed by t he program text but h y c()mma nds via t he ler ­
mi na l .

The fo rmal transla t io n of the c 1.1S!,; ("\Jncc pL into a FORTRAN
subroutine goes a lon g with some insuf f i"il'm' iE's.

I. There are some i dentical statements obl i gatory in all
modu l es (COMMON. branche s t o the passes. p,1raml'Ler IPAR in the
subroutine declaration). These compulsory statemen t s ref l ec t
t he standard of interaction of the modules in r he program sys­
tem. I n tbe proce s s of cod ing they are burdensome on l y.

2. The introduct ion of t he "sequ ential numbe r of
mand" i s obviou sly more pr agmatic then e1egant ,

3. The passes or the module have t o be executed
times: pass 1 must be execu t ed once after program
every time a command wa s i nput. pa ss 3 every time a
in t egrated int o a histogram. If the program run s on

the com­

a t different
start . pass 2
value is
a compu t er

~

+ command def i ne

NRH: hist-nb.:
TITLE : title:
NRBIN: nb. of bins:
LOW: lower edge
BW: bin width :

+cornmand
+command
+pass2
define:

show:
10

print:

+pass J

+end

show; NRH ::
print; NRH : :

CALL BOOKH(NRH,
HETURN
LUN = LUNDIS
CALL SHOWN (NRH,
RE1'URN

LU1~ = LUNLPT
GO 'PO 10

int
char (10)

int

i n t

int

TITLE, NRBIN, IIJW, BW)

LUN)

••• fill the hi stograms

Fia .:L Nodule HI ST (in a .fictive Zanguane) .

ted in one FORTAAN suhroutine . Al t e rnative l y we can code t he
t hree passes j n three subroutines. Un f ortunately we wi ll l ose the
unity of [unction and form, t.his way. Programm i ng and modifying
become harder to survey .

We c~n t ry to overcome the~e insuffic iencies by the use of
a precompiler/ 5 /. Th e mod ule may br input to lhe precompi l er
in a s pecial language suiled to the problem. Example modu l e HIST
thus obtains an easy t o survey form (rig. 3) . The precompiler per­
f orms the translRtit'l1 into the t arm wanted by the program sys­
tem. It translates llll' prngram teXl rrom fig.3 to the FORTRAN
subr~u tine of fig. 2 if (111"'r(> ; s su r ficient main memory at the
target computer or int o three sillt',le subroutines if not, respec­
tively .

~

with small main memory. we would l ike to def i n e an overlay 	 On the other hand usin~ a precompiler brings along some unfore ­
s tructure and to dis tr ibu t e t he pas ses to di f f erent over lay 	 seen side efrects ir a module is mor e complex, so i t cannot be

recommended in general.s egment s. This is no t pr a c t icable if al l three passes are l oc a ­

6 7

http:pro)~r.lm
http:ll\)plic.1t

4.0. PROGRN1 SYSTEM AND PROGRAMHING HETHODOLOGY

He discussed general probl ems o f controlling programs for
experiments by the commands. By i ntroduc tion of simple stan­
dards we got solut ions on a comparatively low level of integ­
ration. There is no uniform progralIun i ng methodology supported
by the program sys tem. Inst ead , we have a collection of methods,
standard s to be fo 110l"ed , programmi ng l anguage s and c ommand s .
All that must be learned by the u ser . I n deta i l it is neces s a ­
ry to learn the foll owing s t eps whe n \"riting and using a prog ram:

I . 	 des i gn : design me thodology, pos s ibly a design language;
2 . coding: general programming l a nguage , system calls, stan­

dards, if a precompiler is u sed: s pecia l l anguage ;
3 . Linking : command l anguap,e or th l! linker program of the

operating system, stand ards [or l i nk ing the user modules with
the frame;

4. execution: dialogue pac k;]g!', "('ommand language" of the
program;

5 . 	 test: command language of t he d ebugger .
To perform all these steps knowl edge of an editor is neces­

sary too. To go from one ste p to nnclt he r also minimal knowledge
of the command language of the oper .::lL i ng system is necessary.

The multiplicity of the s e dema nd s t o the user is a substan­
tial barrier. A new user has to learn t oo mu ch and makes too
many errors until he feels s ome prop,re s::; in programming effi ­
ciency at last. Hence the Sys t ~lll s hnu ld be developed in ord er
to reduce this barrier. One way i s the unification of all the
languages mentioned above. There s hou ld be a programming metho­
dology that is supported by t he ' a n ~u age to be const ructed.

Thus the way we have to go is somewha t analogue to the cur­
rent tendency in the fi e ld of dat a ba se sys tems. Hhile in ol­
der data base systems the user modul es wer e written in a gene ­
ral programming language thu s demanding a ll the steps mentioned
above, modern data base s ys t ems integra te one or even more lan­
guages to perform them un iforml y.

The tendency to integra t ed software t ools is also obser ­
vable in other f i e ld s, especial l y in the f ie ld of personal com­
puter application. In the f ield of exper i ment automat i on th i s
way is gone by FORTH- app l i ca tions/6 /. Ano ther possibility is
presented in/7 I.

5 • O. SU!1}-1ARY

Software frameworks (loose program systems) seem to prov ide
a suited structure for flexible prog rams. The program flow must
be controlled by commands. Command modules (command dr iven
classes) l e ad to a modifiabl e set of commands.

The multip l ici l y of demands to t he user of a software fr ame ­
\~o rk has to he QVL.!rcomc by the const r uc tion of i n t egrated sof t ­
ware t ools providing a unifo rm language f or all steps of prog­
r amming.

The au t hor w i sl 1 ~S t o express t hanks to V.J .Zhil t sov and
B.G.Shchi nov fur some useful discussions.

REFERENCE S

I. 	DC-D EC Dn-L jIH~ D3ta Acqu is i tion Hanual . CERN, Geneva, 198 2 .
2. 	 BarLeletl .1.F. I! l a l . Fermilab l'1ULTI User # s Gu i de , FNAL,

PN-97 . 5 , I q7~ .

3. 	 Boehm B.\~. t>l 01. Chara c teristics of Software Qaulit y .
No rt h- Ik)ll nl1d Pub l. Co . , Amsterdam - New York - Oxford, 1978 .

4. 	 Ih ll iams G. Su f t wa re Frameworks. Byte vo1.9(1 3), 124-1 27 ,
394-410, Decemher , 1984.

5. 	 Pfeiffer r. . A Flexible Command Generat i on Tec hn i que for
Application i n Di agolue Systems. Softwa r e - Practice and
Experi ence , vo l . 14(5), 484-489, Hay, 1984.

6 . 	 Hogan T. Di sc over FORTH. Learning and Programming the FORTH
Language , Os born/ Hc.Graw-Hill, Berkeley, 1981.

7. 	 Sc henk J . , \~egner P., Hinde M. J INR, EIO-85-54 1, fubna, 1985.

Reel.: i v~d b y Pu bl il:i hing Department
tin Ju ly 12 , 1985.

8 9

BHH,IJ,e M. · EIQ-85-540
ABToMaTH3a~HH 3KcnepHMeHTOB TpeoyeT rH5KHe nporpaMMbi

TipH pa3pa5oTKe nporpaMM AflH HayqHb~ 3KcnepHMeHToB, oco-
5eHHO ,IJ,nH on-line c5opa ,IJ,aHH~, KaK npaBHno HeB03MO~Ho npe­
AYCMOTpeTb BCe ,IJ,eTanH 3apaHee . Il03TOMY nporpaMMbl ,IJ,OJD!(Hbl 5b1Tb
rH5KHMH, T. e. ,IJ,OTIYCKaiO~HMH HaCTpOHKY Ha pa3nHqHble ycnOBHH,
H nerKO MO,IJ,H~H~HpyeMbWH. B CTaTbe BBO,IJ,HTCH ITOHHTHe rH5KOCTH
KaK xapaKTepHCTHKa Ka:qecTBa nporpaMM. 06c~aiOTCH HeKOTOpble
06~He MeTO,IJ,bl ,IJ,OCTID!{eHHH rH5KOCTH rrporpaMMHOrO o5ecrreqeHHH.
TioKa3aHo, qTo 11 3CKH3HOe rrporpaMMHpOBaHHe 11 /He TIOTIHOCTbiO orrpe­
p;eneHHble nporpaMMbi/ ~ MO~eT ooecrreqHTb CTPYKTYPY, ,IJ,aiO~YIO Heo6-
XO,IJ,HMyiO rH5KOCTb. PeanH3a~HH KOMaH,IJ, B BH,IJ,e MO,IJ,yneft o5ecrreqH­
BaeT MO,IJ,H~H~HpyeMOCTb Ha6opa KOMaH,IJ,. IloKa3aHa He05XO,IJ,HMOCTb
C03,IJ,aHHH 11 HHTerpHpOBaHHOrO nporpaMMHOrO ,HHCTpYMeHTa 11 ,IJ,TIH
o6ecneqeHHH c6opa ,IJ,aHHb~ B 3Kcnep.HMeHTe, KOTOpbrn ,IJ,on~eH o5ec­
neqHBaTb YHH<!JH~HpOBaHHblH H3b!K ,IJ,TIH BCeX 3TanOB nporpaMMHPOBa­
HHH H npHMeHeHHH nporpaMM TIOTib30BaTenH.

Pa5oTa BbmonHeHa B OT,IJ,ene HOBb~ MeTo,IJ,OB ycKopeHHH OHJ'IH.
Coo6~eHHe 06beAMHeHHOrO HHCTHTyTa RAepHNX HCcneAOBaHHA. lly6Ha 1985

Winde M. EI0-85-540
Experiment Automation Demands for Flexib}e Programs

When writin& pro?,rams for scientific experiments, es­
pecially for on-line data acquisition, i~ is usually not prac­
ticable to complete the detail ed problem analysis in advance.
This demands for flexible programs which can be variably app­
licated and easely modified. The paper introduces flexibility
as characteristic of program quality. Some general methods to
achieve flexible programs are discussed. Software fr~meworks
(loose program systems) seem to provide a suited structure for
flexible programs. Command modules (command driven classes)
lead to a modifiable set of commands . The necessity to const­
ruct an integrated software tool for on-line experiment data
acquisition is shown. It should provide a uniform language
for all steps of programming and applicating of the user prog-
ram.

The investigation has been performed at the Department
of New Acceleration Methods, JINR.

Coumunication of the Joint Institute for Nuclear Research. Dubna 1985 I c:

