
trt <;f'IO

w?J¥o
M.Winde

COOfiUlBHMR
OfiltBAMHBHHOrO

MHCTMTYT8
RABPHbiX

MCC18AOB8HMI

AYfiHa

EI0-85-540

EXPERIMENT AUTOMATION DEMANDS
FOR FLEXIBLE PROGRAMS

1985

1.0. FLEXIB iLITY OF PROGRAMS FOR SCIENTIFI C EXPERIMENTS

The t yp j cal job of a programmer i nvolved in a team of s c i en
tific experimenters i s to wr ite very s pec i a l programs , i.e.,
programs which ine ne ed e d on l y for one user group a t one experi
mental in sta 'I'l ilLlon for a l imite d t ime. Obv i ous l y t he most i m-
portant Lh i np. 1hen is to have the programming done with min i ma l
human e(foTI . 0 1 he r program qua l ity a t tribu t es a s ef fi c ienc y,
portabi li ty, V.:J~C of exp l oi t a tion, e t c., bec ome less c ru r i~ l.

The- ('ommnl1 m<'ti1od t o achi eve su ch pro gram s qu i ck ly is t o use
a program sys l l'm t hat provides ma ny o f the f a d t ities common ly
neces sar y . There is a number o f su c h s ystems for experiment
au tomllllon /1,2/.

Anotller met hl)d is to make u s e o f l ibraries - spec i a l lib
raries r(lr pXlwri ment au tomat i on and general scientific libra
ries ar0 av~ j lnble .

The users ~re very sa t i sfied , when f irst working with a pro g
r am system suited for their task s. They will spend much less
time in prol',r' ll1un ing , because they can concentrate themse l ves on
the prohlpm pn)per i n stead of concentrating o n structura l de
tails o[LIll' prt)!?,r am.

But in <.: on l rast to program s i n many f ields of application,
pr ograms fur scient ific experiments do "live", i.e., the pr og
ram r hat Wil6 c rmstruct ed a t the beg i nni ng, wil l not be the fina~
one he t:allsc Lilt: o riginal de f ined prohl em is nor the f i na 1 one .
Instead or IIUll rroblems become other ones s t ep by step . so
programs lH'cnme other one s step- l ike too.

'~e will (,Il l that "the probll:!m is open" due to uncomplete
problem analysis in advance. Openess of problems is very typical
for programs ror scientific exper iments.

Thus arter some time progralllTling usually lends to become more
d ifficult . As a matler o f fact this i s of l rn no t on l y due to
Lhe problpms lhat become a little more compl~x but also due to
tIl(' program ::;ystem that becomes much worst· 611 i ted to the new
problem::; So aftl'r some time of unsatisfying strugg l e with the
system tht:' programmers wi 11 probably try Ilw second way. The
prograrnrn(!rs now construct their program withou t using a program
system . ~1stead, they write a special program very well suited
to the prohlem to be solved. They make maximal use of existing
(possihle very guod, complete) librari es .

The job is satisfying, once t h e prog
ram modules needed were alrea~ t he prog

© 06t.~emIYA IIBC:THTYT llAepma 1

ram system, they ma y just be taken and linked. Typically onl y
a small main program is needed to call them in a sequence. It
is very easy to overcome all the inflex ibilities and ineffici
encies of the program system.

The program obtained t h i s \.Ja y i s no t the fin al one, of cour se.
Modifications have to be mad e again. Some new options have to
be included to make the use of t he program more variable. After
some time of exploitation and development t h e program becomes
both hard to use and hard to modiry.

It becomes hard t o us e because the op ti ons where incorpo
rated "by necessity", i. e., t h e " synt ;J x " l)f the "corrnnand lan
guage" of the progr am is non-uni form . J l bec omes hard to modi
fy because its or i gina l s t ructun' 1111:3 heen l ikely destroyed
by all those modif i ca t ions.

What is the tJay out of thif: (I i 1('nullo !lOw? It is surely the
construction of another pn)g1"; II1J l-lyp.LI:m. N(")w we know better
where the limi ta tion of i t~ app l icnbi l iLy will ari~e, so we
try t o construc t a more fl exi hl t: p rf'l l'.rilJn sys tem.

2.0. APPLICABILITY AND ~10nrr I AB IL I . 'I' Y

Every program i s composed or 11 nUl1lb '~ r Cl r different modules.
Some modul es perform very sp£'d n I I .I Hks, use f ul only in one
program. Other mod ul <.!. s perform gem.: r n l Ll sks . It suggests itself
to construc t these modu les i_n a w~l y I. '" lIIake them appllcable in
as much programs a s possi ble.

Let us consider the p1"ob lem by d iscuss in~ a ll example, to be
gin with. The following module (wr i t t en i ll n r i c tive language)
calculates and output s the squares of th e [f r Rt 100 positive
integers:

for i=l ... 100 do output(i*i); enddo ;

If the task is to output the squares of i ntege rs 50 t o 200 the
module must be modified, i. e. , the source t ext must be changed,
then the program must be recompiled. Obv i ous l y t he r ange of ap
pl i cability of the module is very low. It becomes hi gher if the
mod ul e asks fo r the lower and upper limits of the loo p:

ask 'l ower limit ': l ow ;
ask 'upper l imit ': up;
for i=low .. up do output(i*i); enddo;

The mod u le is now appl icable t o calculate the square s of
arbitrary i ntegers without modifications. On the othe r hand ~n

put of lower limit and uppe r limit is necessary every time the
module is executed.

The applicability could be increased further if other func
tions were allowed, instead of squaring. Simultaneously the
expense in executing the ~rogram would increase - the function

has to be input. Besides this the expence of programming ~n
crease s, t he program bec ome s longer and mor e complex .

Hence, it is not pract i c able to increas e the r ange of ap
pl i ca b i l i t y of the module un ti l' " i nf ini t y " (a very general case
o f t he module would be a f ormul a i nterpre t er, e.g.). The prog
raImller rather mu s t dec i de hOly gener a l t he progr am has to be,
whi ch of the "parameters" (in t he most genera l s ence) has t o
be variable and whic h may be con s idered a s be i ng constan t . He
has t o take into consider ation the poss i bili t y tha t he goe s
wrong in s()m~ dec ts i ons, i.e., a "constant" tu r n s ou t to be
a "variab le" I)r v i ce versa. Hence , he ha s to ,,'ork wi th the pa
rame ters in a way providing easy t rans ition from "c onstants"
to ''variahles '' (and v ice ver sa).

Thus t he flcx j b i lity of programs and program modules is given
by two [aclnrs :

I. Appl i c:t ld lit y : a pr ogram mod ule is a s widely applicable
as it is possihle to c hange i ts i nner cont1"ol flow by some i n
put data in order to meet cond it i ons no t wel l def i ned or unfo
reseen at lhe begi nning of programming.

2. Hodifinblli ty: a pr og ram or a program modul e is as mu c h
modifiable ns i l i s ea sy t o cha nge it by edi t ing i t s sou r c e
tex t in order Lo accomp l i sh unfores een tasks . Modi f iab i l ity of
a program includes the exc hangeab i lity of t he modu les from whic h
it is buill.

3.0. FLEXIBILITY AS A CHARACTERI STIC OF PROGRAM QUALITY

In/3/ sottware qua l ity is trea ted. It starts wi th defi ning
some complex c hnrac t er i s tics. Then going into de t a il , a number
o[basic c llilrac.ter i stic s are f ound establ ishing those more comp
lex character i stics. In fig .1 the characteristics and t he i r de

pendencies are shown. They
are re- arranged from/3 / in

/

order to be tter ref lect the
newly i~~roduced complex
characteristic " flexib il ityll.

{.1(' see that a program is
flexible if it can be variab
ly applicated, if it is wel l
structured. selfdescript ive,
if it easily accomodates ex
pansions in data require
ments or component computa
tional func t ions.

~1~,¥. ~"""rl'1' Hence, all known methods
Fig. 1. Characteristics of to achieve these characteris
Software QuaZity. t ics can be used . Most worth

2 3

mentioning is the met110d of struc t uted pr ogramming. Th e prog
ramming language u sed also ha s s i gn if icant infl uence on the
f lexibility of the programs.

After hav i ng def ined what fl ex i bil i ty means we can go bac k
to the or iginal pr obl em. How can we make program s f l exible
enough to l ive wi t h f or a longer pe r iod of t i me ? As we have
seen t he convent ional program sys t em i s not the best solut ion.
Also a simple mod ule library do e s not sat isf y. Hha t we need
i nst ead of that is a l ibra r y o f general modules wh ic h ar e e a s y
t o modify and some de s ign principals to make variab le and modi
fiab l e programs out of them.

Le t us consid er the problem of modifiable librar i es to be
solved (a t least it ca n be solved wi th the help of we ll known
method s). So we can c oncen trate ou rselve s on the de s i gn pr in
ciple s for var i abl e programs .

A program c ons i st s of modules connected one with the other
by a call-st r uc ture. The ca l] -struC'turt! and a part of t he in
put data determine the ac tua l pror,r,lIn C'o nL Tt1 l fl ow. Ev er y mo
dule determi nes its successor, thus the program control is
d i s t r ibu ted among the modules.

Du e t o the al r eady ment ioned openc~s of the prob lem the
actua l program control f l ow heavi l y depends on the input data.
It is u sually i nflu enced by dec i s ions o f the ex pe rimenter.

In v ery simp l e pro p;rams this i!; done by aborting t he run
ning program, mod ifying it. then re - compi l ing and rc-r unning
it. Al ready t aken dat a must be lo st .

To al low prompt er r eaction. there shou ld be a poss ib il ity
of controlling t he program flow wi th the help of commands from
the t erminal console. For that purpose some modules must be
able to accept commands. In the most simple way this is done
by a s equ enc e of wr i te and read statements in the languag e used
t o program t he module. Somewhat mor e con':enient is the use of
a dialogue package. A dialogue package guarant ies on a certain
l evel a uniform command syntax . Besides that some comfort is
of f er ed to the user (parameter prompting, parameter check i ng,
repeat ed prompting in the case of illegal value s , defaul t s).
The actua l program control flow is not e f fec ted by the u s e o f
a dialogu e package . It stays distr i buted among the modules .

If central iz ing not only the dia logue bu t also es senti al
parts of the program control we get a loos e program s ystem,
some time s c al l ed a "software framework"/4/. And this seems to
be exactly what \.e need, from the point of v iew of modifiabi lity.

In a pr ogram system the user writt en modu le s merely offer
some possibi l it i es rather than fixing the pr ogram contro l. The
actual sequence of execut i on of modules, f requency of exec u
tion, etc., is defined by the commands. Consequentl y it must
be possible to define commands and to logically link them to
modules, i.e., input of a certain c ommand should activate a cer
tain module.

SUBROUTINE HIST (IPAR)
COMMON ••• IPASS, LUNDIS, LUNLPT
INTEGER TITLE (10), BW
GO TO (1000, 2000, 3000)

c
C*= PASS 1 	 COMMAND DEFINITION
C---
1000 	 CONTINUE

CALI DECLR(HIST, 'define',5 l 1)
CALL DECLR(HIST, 'show' ,1,2)

__ CALL DECLR(H],ST, 'print', 1 ,2)
RE'l'URN

C
C *~ PASS 2 COMMAND EXECUTION
c---2000 CONTINUE

C define
GO TO (2100,2200)IPAR ~ ,2300

2100 CALL GETI('hist-nb.',NRH)
CALL GETC('title', TITLE, 10)
CALL GETI('nb. of bins', NRBIN)
CALL GETI('lo~er edge', LOW)
CALL GETI ('bin width', BVI)
CALL BOOKH(NRH, TITLE, NRBIN, LOW,
RETURN

BW)

C s how
2200 LUN '" LUNDIS
2210 CALL GETI ('hist-nb. "

CALL SHOWN(NRH, LUN)
RETURN

NIDI)

C print
2300 LUll =

GO TO
LUNLPT
2210

of

.. --C
C*= PASS J ACTIONS
C--
3000 CONTINUE

fill the histograms

END

Fig. 2. Modul HrST (in FORTRAN).

See f ig.2 f or example. A module is to be programmed f or
s imp le hi s t ogr am manipulation. Input of a conunand DEFINE will
de f i ne a new hi stogram, SHm.J wi ll pres ent a histogram on a disp
l ay sc reen. The module is compo s ed of t hree pa s ses. In pass 1
all t he commands to be logica l l y linked t o that module must be
dec lar ed . 111i s is done by th e CALL DECLR statement. Parameter s
a re (I) the name of the modu l e . (2) the command identifier.
(3) t he number of paramet ers and (4) the sequential number of
the conrna nd (counted inside of th i s module). The first pass
has to be executed once af t e r program start.

5 4

•••

+ action HISTThe second pass has t o be executed every t i me one of the
commands l ogically linked t o t he module was i npu t. Af t er having
i d en ti f ied the c omma nd the f rame calls the module wi t h par ame
t er s IPASS=2 and IPAR equa l t o the sequential number of t he
command. Control branc hes to label 2 100 or 2200, respectively,
Then t he parame ter s have to be input. Finally the module calls
subrout ine HBOOK t hat wi l l book the histogram (one of the va
r iou s hi s togram packages ava i lable is used).

A third pass is nece s sa ry, of course, to fjll da ta into the
histograms. Bu t this is not interesting [rom our point of Vie\L

The modu le provid es mani pulation of an arbi t rary number o f
histograms of different size, contents, etc.

If the modules are constructed prospectively and caref u l ly.
then no t on ly many "through-away" modules l:ome i nto be ing bu t
a lso some module s usabl e in other ll\)plic.1t io ns . A command lib
rary ar i ses in the cou rs e of time.

In general t he modules are nOl ideally desi~ned fr om the
beginn i ng. They have to be refined. I n our exampl e i t turns
ou t that h i stograms have to be pres~nlcu on a pr int er too. We
mu st add the c ommand PRI NT . This is [l Lrirne. \ve have t o de
clar e a no t her command in pass I and lo code j t s execu t ion i n
pass 2 (s ee f ig .2 right s id e) . Besides thal we hav e t o ensure
onl y that the command i s not de[i ned c l sewhere al r eady . Upda
ting any list s el sewher e in other pro)~r.lm p'lrts is not nec es
sary .

Thi s wa y it has t o be. Dec l arat io!1 q(' add i tional command s
must be easy to per f or m.

The me thod used t o pro ~ram TIlodu 1 c Ill SI' W:1S sugge sted by t he
class conc ep t of lanp,uages 1 i ke Simuln tl r Co nc. u re nt Pa sca l.
In con trast t o these l anguage.'> tlw instnn LlJtio n of a c l a ss i s
not i nit iat ed by t he program text but h y c()mma nds via t he ler
mi na l .

The fo rmal transla t io n of the c 1.1S!,; ("\Jncc pL into a FORTRAN
subroutine goes a lon g with some insuf f i"il'm' iE's.

I. There are some i dentical statements obl i gatory in all
modu l es (COMMON. branche s t o the passes. p,1raml'Ler IPAR in the
subroutine declaration). These compulsory statemen t s ref l ec t
t he standard of interaction of the modules in r he program sys
tem. I n tbe proce s s of cod ing they are burdensome on l y.

2. The introduct ion of t he "sequ ential numbe r of
mand" i s obviou sly more pr agmatic then e1egant ,

3. The passes or the module have t o be executed
times: pass 1 must be execu t ed once after program
every time a command wa s i nput. pa ss 3 every time a
in t egrated int o a histogram. If the program run s on

the com

a t different
start . pass 2
value is
a compu t er

~

+ command def i ne

NRH: hist-nb.:
TITLE : title:
NRBIN: nb. of bins:
LOW: lower edge
BW: bin width :

+cornmand
+command
+pass2
define:

show:
10

print:

+pass J

+end

show; NRH ::
print; NRH : :

CALL BOOKH(NRH,
HETURN
LUN = LUNDIS
CALL SHOWN (NRH,
RE1'URN

LU1~ = LUNLPT
GO 'PO 10

int
char (10)

int

i n t

int

TITLE, NRBIN, IIJW, BW)

LUN)

••• fill the hi stograms

Fia .:L Nodule HI ST (in a .fictive Zanguane) .

ted in one FORTAAN suhroutine . Al t e rnative l y we can code t he
t hree passes j n three subroutines. Un f ortunately we wi ll l ose the
unity of [unction and form, t.his way. Programm i ng and modifying
become harder to survey .

We c~n t ry to overcome the~e insuffic iencies by the use of
a precompiler/ 5 /. Th e mod ule may br input to lhe precompi l er
in a s pecial language suiled to the problem. Example modu l e HIST
thus obtains an easy t o survey form (rig. 3) . The precompiler per
f orms the translRtit'l1 into the t arm wanted by the program sys
tem. It translates llll' prngram teXl rrom fig.3 to the FORTRAN
subr~u tine of fig. 2 if (111"'r(> ; s su r ficient main memory at the
target computer or int o three sillt',le subroutines if not, respec
tively .

~

with small main memory. we would l ike to def i n e an overlay 	 On the other hand usin~ a precompiler brings along some unfore
s tructure and to dis tr ibu t e t he pas ses to di f f erent over lay 	 seen side efrects ir a module is mor e complex, so i t cannot be

recommended in general.s egment s. This is no t pr a c t icable if al l three passes are l oc a

6 7

http:pro)~r.lm
http:ll\)plic.1t

4.0. PROGRN1 SYSTEM AND PROGRAMHING HETHODOLOGY

He discussed general probl ems o f controlling programs for
experiments by the commands. By i ntroduc tion of simple stan
dards we got solut ions on a comparatively low level of integ
ration. There is no uniform progralIun i ng methodology supported
by the program sys tem. Inst ead , we have a collection of methods,
standard s to be fo 110l"ed , programmi ng l anguage s and c ommand s .
All that must be learned by the u ser . I n deta i l it is neces s a
ry to learn the foll owing s t eps whe n \"riting and using a prog ram:

I . 	 des i gn : design me thodology, pos s ibly a design language;
2 . coding: general programming l a nguage , system calls, stan

dards, if a precompiler is u sed: s pecia l l anguage ;
3 . Linking : command l anguap,e or th l! linker program of the

operating system, stand ards [or l i nk ing the user modules with
the frame;

4. execution: dialogue pac k;]g!', "('ommand language" of the
program;

5 . 	 test: command language of t he d ebugger .
To perform all these steps knowl edge of an editor is neces

sary too. To go from one ste p to nnclt he r also minimal knowledge
of the command language of the oper .::lL i ng system is necessary.

The multiplicity of the s e dema nd s t o the user is a substan
tial barrier. A new user has to learn t oo mu ch and makes too
many errors until he feels s ome prop,re s::; in programming effi
ciency at last. Hence the Sys t ~lll s hnu ld be developed in ord er
to reduce this barrier. One way i s the unification of all the
languages mentioned above. There s hou ld be a programming metho
dology that is supported by t he ' a n ~u age to be const ructed.

Thus the way we have to go is somewha t analogue to the cur
rent tendency in the fi e ld of dat a ba se sys tems. Hhile in ol
der data base systems the user modul es wer e written in a gene
ral programming language thu s demanding a ll the steps mentioned
above, modern data base s ys t ems integra te one or even more lan
guages to perform them un iforml y.

The tendency to integra t ed software t ools is also obser
vable in other f i e ld s, especial l y in the f ie ld of personal com
puter application. In the f ield of exper i ment automat i on th i s
way is gone by FORTH- app l i ca tions/6 /. Ano ther possibility is
presented in/7 I.

5 • O. SU!1}-1ARY

Software frameworks (loose program systems) seem to prov ide
a suited structure for flexible prog rams. The program flow must
be controlled by commands. Command modules (command dr iven
classes) l e ad to a modifiabl e set of commands.

The multip l ici l y of demands to t he user of a software fr ame
\~o rk has to he QVL.!rcomc by the const r uc tion of i n t egrated sof t
ware t ools providing a unifo rm language f or all steps of prog
r amming.

The au t hor w i sl 1 ~S t o express t hanks to V.J .Zhil t sov and
B.G.Shchi nov fur some useful discussions.

REFERENCE S

I. 	DC-D EC Dn-L jIH~ D3ta Acqu is i tion Hanual . CERN, Geneva, 198 2 .
2. 	 BarLeletl .1.F. I! l a l . Fermilab l'1ULTI User # s Gu i de , FNAL,

PN-97 . 5 , I q7~ .

3. 	 Boehm B.\~. t>l 01. Chara c teristics of Software Qaulit y .
No rt h- Ik)ll nl1d Pub l. Co . , Amsterdam - New York - Oxford, 1978 .

4. 	 Ih ll iams G. Su f t wa re Frameworks. Byte vo1.9(1 3), 124-1 27 ,
394-410, Decemher , 1984.

5. 	 Pfeiffer r. . A Flexible Command Generat i on Tec hn i que for
Application i n Di agolue Systems. Softwa r e - Practice and
Experi ence , vo l . 14(5), 484-489, Hay, 1984.

6 . 	 Hogan T. Di sc over FORTH. Learning and Programming the FORTH
Language , Os born/ Hc.Graw-Hill, Berkeley, 1981.

7. 	 Sc henk J . , \~egner P., Hinde M. J INR, EIO-85-54 1, fubna, 1985.

Reel.: i v~d b y Pu bl il:i hing Department
tin Ju ly 12 , 1985.

8 9

BHH,IJ,e M. · EIQ-85-540
ABToMaTH3a~HH 3KcnepHMeHTOB TpeoyeT rH5KHe nporpaMMbi

TipH pa3pa5oTKe nporpaMM AflH HayqHb~ 3KcnepHMeHToB, oco-
5eHHO ,IJ,nH on-line c5opa ,IJ,aHH~, KaK npaBHno HeB03MO~Ho npe
AYCMOTpeTb BCe ,IJ,eTanH 3apaHee . Il03TOMY nporpaMMbl ,IJ,OJD!(Hbl 5b1Tb
rH5KHMH, T. e. ,IJ,OTIYCKaiO~HMH HaCTpOHKY Ha pa3nHqHble ycnOBHH,
H nerKO MO,IJ,H~H~HpyeMbWH. B CTaTbe BBO,IJ,HTCH ITOHHTHe rH5KOCTH
KaK xapaKTepHCTHKa Ka:qecTBa nporpaMM. 06c~aiOTCH HeKOTOpble
06~He MeTO,IJ,bl ,IJ,OCTID!{eHHH rH5KOCTH rrporpaMMHOrO o5ecrreqeHHH.
TioKa3aHo, qTo 11 3CKH3HOe rrporpaMMHpOBaHHe 11 /He TIOTIHOCTbiO orrpe
p;eneHHble nporpaMMbi/ ~ MO~eT ooecrreqHTb CTPYKTYPY, ,IJ,aiO~YIO Heo6-
XO,IJ,HMyiO rH5KOCTb. PeanH3a~HH KOMaH,IJ, B BH,IJ,e MO,IJ,yneft o5ecrreqH
BaeT MO,IJ,H~H~HpyeMOCTb Ha6opa KOMaH,IJ,. IloKa3aHa He05XO,IJ,HMOCTb
C03,IJ,aHHH 11 HHTerpHpOBaHHOrO nporpaMMHOrO ,HHCTpYMeHTa 11 ,IJ,TIH
o6ecneqeHHH c6opa ,IJ,aHHb~ B 3Kcnep.HMeHTe, KOTOpbrn ,IJ,on~eH o5ec
neqHBaTb YHH<!JH~HpOBaHHblH H3b!K ,IJ,TIH BCeX 3TanOB nporpaMMHPOBa
HHH H npHMeHeHHH nporpaMM TIOTib30BaTenH.

Pa5oTa BbmonHeHa B OT,IJ,ene HOBb~ MeTo,IJ,OB ycKopeHHH OHJ'IH.
Coo6~eHHe 06beAMHeHHOrO HHCTHTyTa RAepHNX HCcneAOBaHHA. lly6Ha 1985

Winde M. EI0-85-540
Experiment Automation Demands for Flexib}e Programs

When writin& pro?,rams for scientific experiments, es
pecially for on-line data acquisition, i~ is usually not prac
ticable to complete the detail ed problem analysis in advance.
This demands for flexible programs which can be variably app
licated and easely modified. The paper introduces flexibility
as characteristic of program quality. Some general methods to
achieve flexible programs are discussed. Software fr~meworks
(loose program systems) seem to provide a suited structure for
flexible programs. Command modules (command driven classes)
lead to a modifiable set of commands . The necessity to const
ruct an integrated software tool for on-line experiment data
acquisition is shown. It should provide a uniform language
for all steps of programming and applicating of the user prog-
ram.

The investigation has been performed at the Department
of New Acceleration Methods, JINR.

Coumunication of the Joint Institute for Nuclear Research. Dubna 1985 I c:

