
! ... 3

0 ~ b e A M H e H H bl M
MHCTMTYT
HlU PHbl X

MCCnBAOBaHM~

AYtiHa

E 1 0-82-79:3

A.Leich, A.D.Polyntsev

THE IMPLEMENTATION

OF TWO-DIMENSIONAL

TUANSFORMATIONS

ON THE ARITHMETICS MODULE

OF AN INTELLH;I<~NT GRAPHICS

TERMINAL

Submitted to the Conference on Computer
Graphics'83 (CSSR, 1983)

1982

I. ARCHITECTURE OF THE ARITlli~TICS MODULE

The arithmetics module (LEI82] contains two special arith
metic processing units (APU), which provide fixed and floating
point arithmetic and a variety of floating point trigonometric
and mathematical operations. The APUs (Am951l) have no means
to fetch operands and operation codes, therefore these func
tions are performed by a control processor (CPU) - INTEL 8080.
The arithmetics module is connected with the IGTs [LEIS!] com
mon memory via the counnon bus.

The arithmetics module's local memory consists of 8K byte
PROM and a 2K byte RAM. A part of the RA}1, the control memory,
may be accessed from the common bus of the IGT as well as from
the CPU of the arithmetics module. The control memory is used
as a mailbox ior messages to be transferred to/from the arith
metics module.

2. PROGRA}MING THE ARITHMETIC PROCESSING UNIT

Prior to performing an operation on the Am9511 operands have
t~ 1e loaded (pushed) into its internal stack memory. A command
iss aed from the CPU causes operations on the data in the stack
to 1e performed. The result is then available to be retrieved
fr• 1 the stack, or additional data or commands may be entered.
All transfers including operand, result, status and counnand in
formation take place over an 8-bit data bus.

Some experLence from applications of the Am9511 illustrating
how to use the Am95ll's internal stack for storing intermediate
results and the employment of two APUs for simultaneously com
puting symmetric expressions is given in [STAUl. It was shown,
that using two APUs instead of one may lead to a speed-up of 36%.

3. THE TRANSFORM SUBROUTINE

The main computations necessary for two-dimensional transfor
mations [NEW] are given by:

x' a*x + b*y + c,
~ " -= • • Dl:"" -r.:-rr·~~~

~ .. . -
' '
a :.~.l ~ y' d*x + e*y + f.

, ~ ·;,j ,;t.' .
-~-~-~-~---..,.. -- ... l

As these calculations are applied to a set of world coordi
nate pairs (x,y) it is important to perform them by means of an
optimal subroutine in terms of execution time. The values of
a,b,c,d,e and f are to be defined in the arithmetics module in
accordance with transformation parameters like displacement va
lues, scaling factors, rotating angle, window and viewpoint
boundaries only once for a desired transformation and are avai
lable in floating point format. The coordinates may be given
in one of the following formats: 16- or 32-bit fixed point or
32-bit floating point.

The simplified algorithm of the subroutine for performing
these computations on coordinates in floating point format using
two APUs is shown below:

STEP OPERATION STACK OF 1st APU STACK OF 2nd APU

push x
to I and 2 X X

2 push a to I a; x X

3 push d to 2 a; x d; X

4 multiply
I and 2 a*x d*x

5 push y
to I and 2 y; a*x y; d*x

6 push b to I b; y; a*x y; d*x

7 push e to 2 b; y; a*x e; y; d*x

8 multiply
I and 2 b*y; a*x e*y; d*x

9 add
I and 2 b*y + a*x e*y + d*x

10 push c to l c; b*y + a*x e*y + d*x

II push t to 2 c; b*y + a*x f; e *y + d* x

12 add
I and 2 . .

X y

In this subroutine the push operations represent subroutine
CALLs to fetch '•-byte operands from the memory and push it onto
the APU's stacks. The operations multiply and add represent ope
ration code transfer (I byte) to the APUs and performing\of
floating point arithmetic operations in the APUs.

The push operations in step 5 and 10 may be performed par
tially in parallel to step 4 and 9 if the whole operand is ini
tially fetched from the memory into the CPU's internal registers

2

.~

"
~' I•

(\

v
p

and transferred to the APU afterwards. This leads to a speed
up of 18% for the transform subroutine.

During steps 4,5,9 and 10 both APUs operate in parallel.
This contributes a gain of 35.6% of execution time assuming
worst case values for operand depending execution time in the
APUs. The average execution time of the subroutine is 780 micro
seconds with .a clock frequency of 2MHz for CPU and APUs.

Similar subroutines perform the same computations on input
data given in the 16- or 32-bit fixed point format. They con
tain an additional step for format conversion of the source
data x and y after steps I and 5. For 16-bit operands the push
subroutine will transfer only two bytes.

4. CLIPPING AND TRANSFORMATION

No pop operations for retrieving the results are required
for the described transform subroutine, as a clipping algorithm
may be performed after the transformation. In this case the out
put values of the transform subroutine are kept in the APU's
stacks as input variables for the clipping subroutine. The clipp
ing algorithm for single points merits from the concept of two
APUs too. The algorithm for vector clipping follows the descrip
tion given in [NEWl and does not contain symmetric expressions
for the x- and y-components of a coordinate pair.

Clipping is not required if the range of coordinate values to
be transformed (RANGE) lies within the window boundaries. If
RANGE is given as input parameter, the arithmetics module deter
mines after a comparison of WINDOW and RANGE whether clipping has
to be performed or not.

An additional analysis is performed for points whether the
transformation contains a rotation or not. If no rotation is re
quired then clipping occurs before transformation and the trans
form operations for points outside the window have not to be
performed.

5. INTERFACE

The array of world coordinates to be transformed as well as
the result coordinates are to be stored in the common memory of
the IGT. Buffer address, length and format for input data (x,y)
as well as for output data (x' ,y') and also the transfotmation
parameters are specified in the mailbox. Thus it is possible to
use the arithmetics module also in other configurations indepen
dently from the IGT.

3

---------'

6. CONCLUDING REMARKS

The algorithms.for transformation and clipping have been
tested at the initial stage by means of writing a FORTRAN prog
ram on INTELLEC MDS. After the preliminary evaluation the prog
ram has been rewritten in INTEL 8080 Assembly language, thus
increasing program performance in the given hardware environ
ment of the arithmetics module. The final version of the prog
ram has a length of about SK byte.

REFERENCES

[LEI81] Leich H., Levchanovsky. The Structure of a Multi
Microprocessor System for an Intelligent Graphic Terminal.
JINR, E11-81-297, Dubna, 1981.
[LEI82] Leich H. The Architecture of an Arithmetics Module
for the Intelligent Graphics Terminal. To appear in: Almanac
of Conference on Computer Graphics~83. Bratislava, 1983.
[NEW] Newman W.M., Sproull R.F. Principles of Interactive
Computer Graphics. McGraw-Hill, 1973.
[STAU] Stauffer M.K. Math.Processor Chips Boost ~C Computing
Power. EDN, August 20, 1980, pp.113-120.

4

Received by Publishing Department
on November 22,1982.

Lll

L ..
l. /

II

;
;

' I

I
I

I
~

(·

- Jlafix A., IloJibiHIJ;eB A . .[l. E10-82-793
PeaJIH3aiJ;HH ABYMepHb~ rrpeo6pasoBaHHH apH¢MeTHqecKHM MOAYJieM
HHTeJIJieKTYaJibHoro rpa¢HqecKoro TepMHHaJia

MyJibTHMHKporrpou;eccopHbiH HHTeJIJieKTyaJibHbiH rpa¢H<recKHH Tep
MHHaJI /Hf'T/, paspa6oTaHHbiH B OIDIH, .[ly6Ha, aBTOHOMHo BbiiTOJIHHeT
ABYMePHble rrpeo6pa30BaHHH MHPOBbiX KOOPAHHaT. OrrepaiJ;HH THrra CMe
~eRHe, MaCWTa6HpOBaRHe, Bpa~eRHe, rrpeo6pa30BaRHH AJIH Bb~eJieHHH
OKRa gaRHb~ H OKRa 3KpaHa ocy~eCTBJIHIDTCH TIOCpegCTBOM CITeiJ;HaJib
HOro apH¢MeTHqecKoro MOAYJIH Hf'T. B rrpegcTaBneHROH cTaTbe o6-
CYJKAaiDTCH HeKOTOpbie acrreKTbl HCITOJib30BaHHH Tpexrrpou;eccopROH
apXHTeKTypbl AJ1H rrapaJIJieJibROH o6pa60TKH MHPOBbiX KOOpgHHa T.

Pa6oTa BbiiTOJIHeHa B J1a6opaTopHH BbNHCJIHTeJibHOH TeXHHKH
H aBTOMaTH3aiJ;HH OHRH.

npenpHHT 06oeAHHCHHOro HHCTHTYTa RAePH~X HccneAOBaHHH. Ay6Ha 1982

Leich A., Polyntsev A.D. EI0-82-793
The Implementation of Two-Dimensional Transformations
on the Arithmetics Module of an Intelligent Graphics Terminal

The multi-microprocessor based Intelligent Graphics Ter
minal - IGT developed at JINR, Dubna, autonomously performs
two-dimensional transformations of world coordinates. Opera
tions like displacement, scaling, rotation, window/viewport
transformation and clipping are implemented on a dedicated part
of the IGT, the microprocessor based arithmetics module. This
paper outlines some topics of using a three processors archi
tecture for parallel processing of world coordinate pairs.

The inve~tigation has been performed at the Laboratory
of Computing Techniques and Automation, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1982

