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I . INTRODUCTION 

Let ~s suppose that the customers arrive at the instants 
r 1 ,r2 , ... ,rn•···• where r1 <r2 < ... <oo. Welassume.thatr 1 is 

an arbitrary positive random variable and the interarival 
times Tn = rn -r 11_1> n = 2;3, ... , are identically distributed 
independent positive random variables which are independent 
also of T1=r 1 . Let us have 

F(t) = P(Tn :S t), n = 2,3, ... , (I . I) 

F(t) = P(T 1 :': t). (I. Z) 

The queueing system is assumed to have the infinitely many 
servers with a fixed time p > 0. Denote by Bn the duration of 
the busy period of order n, that is, the time when at least n 
sustomers has been served (not necessarily simultaneously). 
The duration 9f the period between two neighbouring busy pe
riods of order n, In, is called the idle period of order n. 

The busy period of other kind has been defined by Glaz 111 

In his sense it is a period when at least n servers are simul
taneously busy.He derived bounds for the distribution and ex
pected value of the number of customers served during that peri
od, and the bounds for expected length of that busy period. 
For the special M/D/~ queue he derived the exact distribu
tion of Bn . 

These two notions are the same for n., 1, and our busy peri
od is always longer than the Glaz period, in general. Hence 
our moments are upper bounds for the moments of Glaz's period. 

As follows from the paper of Dvure2enskij et al. 121 the 
queueing system with infinitely many servers may be used as 
a model for description of blob length measurements in the 
track chambers in high energy physics. The blob length cor
responds to the busy period of the first order. The other pa
pers dealing with the blob length determination are, for 
example, papers by Dvurecenskij 12~Gllickstern131, Kuljukina et. 
al. 141 

In Section 2 of the present paper the busy period of the 
first order is studied. The number of customers served in that 
period, integral equation, distribution, characteristic func
tion and all moments are derived. 
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In Section 3 the same characteristics as in Section 2 are 
given for higher orders and the relationships between them 
are shown. 

Finally, in Section 4 the waiting time for the first pe
riod of order n and the idle period of order n are investi
gated. We derive the probability la~ and the generating func
tion of the indexes of customers arrived at that time, and 
the Laplace transform of the idle period of order n. 

2. THE BUSY PERIOD OF THE FIRST ORDER 

We assume that for the quantity 

I = P(T2 > p) (2. I) 

we have O<l<l.The case 1=0 corresponds to the infinitely 
long busy period and l= 1 corresponds to a sequence of the 
busy period when one customer is served. Define 

F (t) = P(T 2 ~ t/T 2 ~ P) , 

Fct) = P(T 2 ::;t/T 2 >p). 

Let N n, n-=1,2, ... , b.e the index of customer from 
busy period of order n begins, and v n , n= 1,2, ... , be 
of custo~ers served during that period. Let 

G (t) = P(B < t). 
n n -

be the distribution function of Bn• n = 1, 2, .... 

Lemma 2.1. There hold 

N 1 "'1, 

P(v
1 

= k) = 1(1- I) k- 1 

E (v 
1 

) = 1/ I. 
k = 1,2, ... ' 

(2.2) 

which the 
the number 

(2.3) 

(2.4) 

(2.5) 

Proof. It obviously holds that P(v1 = k) = P(T2 5p, ... , 
Tk ::;-p, Tk+l > p). Q.E.D. 

Theqrem 2.2. For the distribution function of B1 we ~ave 
00 k-1 - (k-1) 

0 1(t) = I. 1(1- I) F"' (t- p), (2.6) 
k= 1 

where F*~denotes the k-th iterated convolut;ion of f with 
itself, F"' 0 (t)=((t), ((t) -= 1 if t>O, else ((t) =0. 

l
-0 ~~~~·- .;.~.~·.-- -·~~-· 

~·· ,_{ .., A t', ,)_ 
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Moreover G 1 N. satisfies the linear integral. eq,uation 

a 1 (t) = It{t- p) + (1 +I) fa 1 (t- x) dF(x) • (2. 7) 
0 

Proof. Since we hav~ P(B 1s t/v 1 = 1) = ((t -p) and P(B 1_:S t/v1 =k)= 
- (k-1) p . -

=F": (t-p) = {P(B 1 ~ t-x/v 1 =k-1)dF(x), k = 2,3, ••• , 
0 ' 

Q.E.D. 
the formulae (2.6) and· (2. 7) are proved. 

We use the following notations 

"" its -if> 0 (s) = J e dF(t), s c; R 1 , 
0 

(2.8) 

0 "" q -
m q = f t dF(t), q = 0, 1,2, ••. • 

0 
(2.9) 

Theorem 2.3. For the characteristic function ¢ 1 of B 1we have 

isp/ if> 1(s) = Ie (1-(1-1)¢ 0 (s)), s ~ R 1 • (2. I 0) 

The moments E(Bi). q=0,1,2, ... , are finite and they can 
be evaluated from the following relations 

E(B 1 ) = p + (1 + I) m1J1 , 

q q -1 q-1 j 
E(B 1 ) = p + (1-I)I I E(B 1 )m0q-J , qc2,3, •••• 

j= 0 

(2. II) 

(2. 12) 

Proof. Multiplying the formula (2. 7) by elst and then ~n-
tegrating both sides, the formula (2. 10) can be obtained. Ana~ 
logically we proceed with the moments replacing e 18 t by 
tq, q = 0,1,2,... • Q.E.D. 

The similar results valid for the case M/D/ oo can be 
find in refs. 12•41• In ref. 131 the moments of B 1 in M/0/"" queue 
are evaluated by a known way of a derivation of the Laplace 
transform of B 1 which is, of course, more complicated than the 
formula (2. 12). 

3. THE GENERAL CASE 

In this section we will study the same characteristics as 
~n Section 2 for the busy period of order n. For the number 
of customers served in that period we have the next theorem. 

Theorem 3.1. We have 

k-n 
P(vn =k) =1(1-I) , k=n,n+1, •.• , n=1,2, ••• , (3. I) 
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But 

E(v n ) = n - 1 + 1/1, n = 1,2, ••• (3. 2) 

Proof. Due to the theorem of total probability we have 
00 

P(v n = k) = I P (v n = k/N n = j) P(N n = j ) • 
.J = 1 

P(v n = k/N n =j) = P(T1+1 S p , ... , T j+k-l _:S p, Ti+k ;::p/f 1(T2 , ... , T j ) , 

TJ+l~ p, .... ,Tj+n-t~P) =1(1-I)k-n, 

where f j is a some suitable function of T
2 

, ••• , T. and p. Hence 
this conditional probability does not depend oh j. 

Q.E.D. 

Theorem 3.2. The distribution function Gnof Bn is of the 
form 

Gn(t) 
oo k-n - (k-1) 
I 1J1-I) F* (t-p), 

k=n 
t3. 3) n = 1,2, .... 

and for the characteristic function we have 

rf>n(s) =1e
18

P¢;-
1

(s)/(1-(1-1)¢ 0 (s)), s~R 1 , n=1,2, .... (3.4) 

Proof. The theorem of total probability implies that 

00 "" 

P(Bn _:S t) = I I P(B < t/N = j , v 
j>= 1 k=n n- n n 

= k)P(v =k/N =j)P(N =j) = 
n n n 

I F* (k-1(t- p) 1(1- I) k-n 
k=n 

The formula (3.4) results from a multiplication of (3.3) 
by eist and an integration. Q.E.D. 

Theorem 3.3. We have 

G n "' G 0 _ 1 * F , n· = 2,3, ... , 

G- = G * F*(n-1) 
n 1 ' 

· n = 2,3, ... , 

Gn(t) = IF*(n- 1) (t-p)+(l-I} J Gn(t-x)dF(x) 
0 

n = 1,2, ... , 
-1 -1 

Gn+ 1 (t) = (1- I) G n (t) - 1(1- I) F * (n-1\t- p) ' 

n=1,2, ... , 

(3.5) 

(3. 6) 

(3. 7) 

(3.8) 
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1-n 
0 0 (t) "" (1- I) 

n=1,2, .••• 

n-1 _. _ 
G1(t)- i!o 1(1-I) J F*(n-D(t-p), (3. 9) 

Proof. The formulae (3.5), qnd (3.6) may be obtained, for 
example, from the forms of the character'istic functions (3. 4) 
and (2.10). The formula (3.7) follows from (3.3). The last 
proved, formula and (3.5) give us (3.8). The successive rep,e-
tition of (3.8) implies the formula' (3:9). Q.E.D. 

Theorem 3.3. The expected length of B 0 is finite and there 
hold 

E(B 
0

) = p + mj((n -2)1 + 1)/1, n = 1,2, .... (3. I 0) 

Proof. The above formulae can be proved by using the for-
mulae (3.4) or (3.6) and (2.11). Q.E.D. 

Now, multiplying the formula (3.9) or (3.7), by tq, 
q = 2, 3, .... . we can derive the following expressions for E(B~): 

Theorem 3.4. All the moments or B0 are finite and we, have 

1 n-1 n-1 q 
E(B

0
q) = E(B { )(1 -.I)n- - I. l l l (1-1)-J ( r )p q-r 

)'=0 r=O C · n,J 

· ( ) ·o· o xpr 1 , ... ,r j m , .• m 
n- r 1 r n-j 

q=, L2, .... 

X 

(3. II) 

q 
,E(B:) = I . I 

r= 0 C n,n-1 
q q-r ) o o + 

( ) .p p(r 1 ' .. • ' r n -1 m r ••• m r 1 
r · . 1 n-

-1 q-1 q r ) o 
+ (1 -1) I l ( r ) E(B n m q-r • 

r=O 
(3. 12) 

q = 2,3, .... 

where Cn,j de~10tes the set of nonnegative integers r 1 , .... r n-J 
such that r 1 + ... +r n-j = r, and 

p(r 1 '··· • r n-j ) = (r 1 + ··· +r n-j ) ! /(r 1 ! •·• r n -j ! ) • (3. 13) 

j = 0,1, ... , n- 1. 

Example. Let the customers arrive to the setvice facility 
according to a Poisson process with a rate g. Then 

E(B n) = (n -1)(1 - gpe -gp- e -gp) g - 1 (1- e -gp ) - 1 + 

(3.14) 
+(egp_1)g- 1 • 
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4. IDLE PERIOD OF ORDER 

T~e idle period of order n, In, is defined as· a period 
between two neighbouring busy periods of order n. It is strong
ly connected with the waiting time I~ for the first period .of 
order n. 

.Dn,k 

x(I/(1-I))k 1+ ... kn- 1 , if k:> n, 

where Dn,k denotes the set of nonnegative integers k 1, ••• , k 
0

_ 1 
such that k 1 +2k 2 +. .. +(n-1)k

0
_ 1 =k-1. 

Proof. Let k>n. From the definition of N n we have that from 
the first k-1 served customers k 1 periods must be f9rmed from 
a service of one customer, k

2 
periods must be formed frpm ser

vices of two customers, etc., k
0

_ 1 periods must be formed 
from services of n-1 customers, where k 1+ 2k 2 + ... +(n -1)k

0
_..:.. 1 =k-1. 

Let A (k 1 , ... ,k n-t) be just described event. Hence we have 

k 1 k n-1 
P(A(k 1 , ... ,k

0
_ 1 ))=p(k 1 , ... ,k 0_~P (v

1 
=1) ... P (v

1 
=n-1), 

and P(v 1 =1)=1(1-I) 1-1 by (2. 4). 
Q.E.D. 

If n=2, then from whqt we said above. we have 

k-1 P(N 2 = k) = (1 - I)l , IC = 1,2, .... (4.2) 

Now for n>3 we define 

Ak"' !Tk+t:5 p, ... ,Tk+n-1 -s_pl, k = 1,2, .... '(4. 3) 

00 k 
Theorem 4.2. Let h 0 (z) = I z P(N 0 =k), [z[<1,be the gene

k= 1 
rating function of N

0
,n::_3.Then 

h 0 (z) =g 0 (z)/(1-Z+Z 0
-

2 g 0 (z)), (4.4) 
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where 

00 

g n (z) = ~ .a z i 
I= 1 i 

n-2+1 . i 
a 1 = (1 - I) ~ . (-1) , 

k 1 ••• kj-1 ,I 
(4.5) 

where the summation is over all integers k
8 

such that 

0<k 1 -l~n-2, O<k 2 -k 1_:;:n-2, ... ,0<kj_ 1 -kj_2 < 

:;.. n-2, 0< i-kj_1 .::;n-2. 
Moreover 

E(N 0 ) = g;;:-1 (1) -n +2. 

- -
(4. 6) 

_ Proof. It is evident that P(N n = k) = P(A 1 ••• Ak-tAJ), where 
A denotes the complement of A. The sequence of depenf!7nt events 
{Aklk=1 fulfils the Solov#ev c-onditions from ref. 1 with 
m =n-2 .• Using his combinatorial identity we can prove the iden-
tity (4.4). Q.E.D. 

As particular cases we have 

h 2 (z) = (1- I)z/{1-lz) , 

-1 
E(N2 -) = (1 - I) , 

(4. 7) 

( 2 /( 2 2 2 h 3 (z) = 1 - I) z 1 - Iz - Iz + I z ) ~ 

E(N 3) -2 
(2 - I)(l - I) - 1. 

(4. 8) 

Theorem 4.3. For the distribution function of I~ we have 

P(I~ .s t) = F(t) • 

P(I 0 < t) = (1- I)n-l F(t) + 1(1- I) 0
-

1 l (F*F* (n-2 ) *.F)(t) + 
n - k =2 

00 

+ k=;+l Dl: p2 (kt ,. •• ,kn-1) X 
n,1t 

k1+ ... +k 1 A - (k 
x (I/(1- I)) n- (F * F' * L+ ... +k n-1> * 

* F* (k2 +2kg+ ... +(n-2)kn-1 ) ) (t) , 

n ~ 2. 

(4. 9) 

Proof. By aid of the theorem of total probability it suf
fices to prove the following. Let k>n~2. then 

8 
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't < 

H' r 
t!' . ~ 
tl 

P(I?nst/A(k 1 , ... ,kn_1 )) ... P(T 1 + ... +Tk :St/A(k1 , ... ,k
0

_ 1 )) 

(k 
,., =* k = k 

=p l''''•kn-1)(F*F 1 *F* 2 
- * k2 =* k 1 *F * ... *F n-* 

* F * (n-2)k n-1) (t) . 
Q.E.D. 

Theorem 4.4. For the distribution function of the idle • period In we have 

p (I 1.:: t) = F (t + p) ' 

n-1 = n-1 n = 
P(I < t) = (1-I) F(t+p) + 1(1-1) ~ (F* 2 * 

k =2 

* F*(k-2))(t+P)+ £ ~ p(kl, ... ,kn-1 )2 x (4.io) 
k=n+l Dn,k 

x (I/(1-I))kt+ ... +kn-l(F* (l+kl+ ... +kn-1)* 

* F * (k 2+ 2k g+ ... +(n-2)kn-t). (t + p)' 

n >2. 

Proof. This theorem follows from Theorem 4.3 if we replace 
I~ by In, F by F, and t by t+p in the right-hand side of (4. 9) 

Q.E.D. 
-sTL . -sT2 Theorem 4. 5. Let a 1 (s) = E(e J , a(s) = E(e ) , s ?. 0, g~(s) 

be the function from (4.5) corresponding to 

-1 P -st 
I = I(s) = 1 - a(s) I e dF(t) . ( 4. 1 1) 

0 

Then the Laplace transform of 1° ,.H 0 for n >3, is of the form 
n-2 n n ' - . ·. 

a1 (s) a(s) g ~ (a (s)) 
H~ (s) = --------- , s ~ 0. (4. 12) 

1-a(s) + a(s) n-2 g*(a(s)) 
n 

"" 00 

Moreover, if a== .f tdF(t) < "" , a1= ftdF(t)<oo, then 
0 0 

E(I~) = a 1 + a/gn (1). (4. 13) 

Proof. There holds 

00 A 

H 0 (s) = E(exp(-1° s))= ~ { ... J exp(-(t 1 +- ... +tk )s)dF'(t 1 ) x 
n n k= 1 I I 

N0 =k 

x dF(t 2 ) ... dF(tk+n-l ) . 
9' 



Now we define the distribution function 
-1 t -sx 

F*(t, s) = a(s) J e dF(x) 
.o . . 

and let N ~ be a random van.able correspondl.I'lg to F*(t,s) for 
1=~~ from (4.11). Using the Solov'ev method and analogical 
reasonings as in the proof of Theorem 4.2 we conclude 

00 
n+ k-2 

H~ (s) = a 1 (s\~ 1 a(s) P(N~ = k). Q.E.D. 

Let us put 

a
2 

(s) = F e-stctF(t) 
0 

and 
00 

a
2 

= It dF(t). 
0 

Then by a similar way as in the two last theorems we may prove 
the next theorem. 

Theorem 4.6. The Laplace transform of the idle period of 
order n, Hn , is of the form 

H
2

(s) = (1...., I)e 8 P /(1- Ia
2 

(s)), 

sp n-2 
e a 2 (s) a(s) g * (a(s)) 

H n (s) = -·--- __ , ·-
1- a(s)+a(sJ n-2 g* (a(s)) 

n 
Moreover, if a< oo, then 

E(I
2

) = a
2 

/(1 -I) - p, 

E(I
0

) = a 2 - p + a/g
0 

(1), n > 3. 
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,[lnype<reHCKHH A. E10-82-312 
IIepHop; 3aHHToc TH rropHp;Ka n B GI/D/"" oqepep;H 

B pa6oTe HCCJiep;yiOTCH 3ap;aqa orrpep;eJieHHH ¢YHKL\HH pacnpe
p;eJieHHH, xapaKTepHCTH'!eCKOH tPYHKL\HH, HHTerpaJibHble ypaBHeHHH 
H nee MoMeHThl nepHop;a 3aHHTOCTH nopHp;Ka n, T.e. nepuop;a, Korp;a 
3aHHTbl ITO Kpaji:HeH Mepe n H3 6eCKOHetrHOPO tiHCJia 06CJIYJKHBaiO~X 
ycrpoi1cTB CHCTeMbi Macconoro o6CJIYJKHBaHHH GI/D/oo, TaKJKe H3y
qaeTcH nepHO,JJ; npOCTOH nOpHp;Ka n, T,e, rrepHO,!l; MeJKp;y ,JJ;BYMH CO
cep;HHMH nepHop;aMH ITOpHp;Ka n. 3TH np06JieMhl B03HHKaiOT ITPH OITpe
,JJ;eJieHHH ,IJ;.TIHHbl CPYCTKOB B TpeKOBb!X KaMepaX B tPH3HKe Bb!COKHX 
3Heprm1:. 

Pa6oTa BbliTOJIHeHa B fla6opaTopHH Bbl'IHCm·!TCJibHOH TeXHHKH 
H aBTOMaTH3al\HH OHHH. 

npenpHHT 06~eAMHeHHOrO HHCTHTyTa ~AePHWX HCCfieAOBaHHA. ay6Ha 1982 

Dvurecenskij A. EI0-82-312 
The Busy Period of Order n in the GUD/oo Queue 

In the paper we investigate the problem of determination 
of the distribution function, integral equation and all mo

.ments 9f the busy period of order ~.that is, the period when 
at least n servers are busy from infinitely many servers of 
the GUD/"" queueing system. We are studying nlso the idle 
period of order n, i.e., the period between two neighbouring 
busy periods of order n. Those problems arise in tl1c blob 
length determination in track chambers in high uncrgy physics. 

The investigation has boon potfotmud 111: tho LnboratGry 
of Computing Techniques nnd Automation, .rtNH. 
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