96bEAKHEHKbIA
MHCTHTYT
AAEPHEX
HECREJO0BANAR

RYGHE

E10-82-136

A.Dvuredenskij, L.A.Kuljukina, G.A.Ososkov,

ON ONE PROBLEM

OF THE BUSY PERIOD DETERMINATION
IN QUEUES

WITH INFINITELY MANY SERVERS

Submitted to "Journal of Applied
Probability"




1. INTRODUCTION

As was shown in the paper’q/ a queueing system

<E,1,Ql/ o, 1> (n

may be used as a model of the streamer track in high energy
physics, where the blob length and the gap length correspond
to the busy period and the idle period, respectively, of the
system (1).

Due to the automatical scanning in track chambers we deal
with discretized values. Therefore the problem arised of exact
determination of the busy period of some queueing system with
infinitely many servers as a discretized blob length. This
problem was solved with some simplifications which are true,
for example, in systems <E,1,M/w,1>, see refs./1:2/ Determina-
tion of the nondiscretized busy period (or nondiscretized
blob length) was treated in the papers 714/,

In the present paper this problem is treated without any
simplification. We derive the formulae for the probability of
discretized system and some stability properties of the busy
and idle periods are given.

2. DESCRIPTION OF DISCRETIZED QUEUEING SYSTEM

Let on the probability space (Q,5,P) the queueing system
<E,1,G/,1> with infinitely many servers be defined. It means
that at the instants tp={y+...4f,, n=1,2,.., ty=0, the customers
arrive. The number of customers at each arrival instant is as-—
sumed to be one. Let the interarrival times {plp=1 be a se-
quence of positive independent identically distributed random
variables with the distribution function

Pl <t)=1-¢"8" ¢t50, n=1,2,.... (2)

Denote by D, the service time of the nwsth customer. We
assume that {Djlf=1 is a sequence of independent identi-
cally distributed positive random variables which are indepen-

dent also of the random variables {{ },, , and

F@W=PO_<t), n=12,... (3)

T

Those models of queues are, described, in detail, for exam-
ple, in ref.”% .

The queueing system generates a sequence of the idle pe-
riods, that is, the periods when none of the servers is ‘busy
(with the distribution function (2)), and a sequence of the
busy periods, that is, the periods when at least one server
is busy.

Our discretization of a system (1) may be presented as
a putting of the lattice with the step h on the time axis,
and setting a small time part sh, 0<8<1/2 (this restric-
tion on 8 is not important), see Fig.l. Hence we obtain a se-
quence of cells of the same length h. In this process, the
arrival instants of customers and the service times will be
changed in such a way: a customer is regarded as an arriving
in the k-—th cell, when it arrived in the time interval ((k-1-s)h,
(k-s)h> and it has the discretized service time ih, when the
service is finished in the time interval ((k+i-1+s)h, (k+i+S)h>.
The p@ysical motivation of such discretization is given in
refs. /127,

« ¥

Fig. 1

For the busy period probability determination we replace
(k-s)h by kh for any k, that 1is, the cells are shifted to
the left-hand side. Hence, the service of a customer begins
(finishes) in the k-th cell if it begins (finishes) in the
time interval ((k-1)h, kh> (((k-1+ 28) h, (k+28) h>) by the new
designation, see Fig.2.
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In this way the original queueing system (1) is transfor-
med in the discretization queue

<GLGI, G/ =, GI> 4)

with infinitely many servers where the interarrival times and
the service times are the multipliers of h.
We see that there appears here a new real practicall(ly use-

ful infinite-server queue different of those in ref.

Proposition 1. The discretization system (4) is described
by the following probabilities:

1. The probability that the interarrival times have the
lengths kh for

a. the first customer

—gh
1 1/gh(gh-1+e ), k=0,
Pl - _
! Vgh 882 4078, k1, )
b. the n-th customer, n>2,
Pl =(e B -24e™8) o7/ (g _o BY g1, 6)

2. The probability of the number of customers in the se-
ries arriving into an arbitrary cell is

PEk) = e B (g /(U - e BMkt), k> 1. (7)

3. The probability of the service time of one customer is

3 (1--s)h
P°®=1/nh [

sh

(Fthk+8) - t) ~F(h(k-1+s) —t)) dt, (8)

k>1,
The proof of the Proposition | follows from the results
of ref,’?/

3. BUSY PERIOD OF DISCRETIZED QUEUEING SYSTEM

In the discretized queueing system (4) the sequences of 'the
busy and idle periods, respectively, are formed. Our main aim
is to determine the probability of the busy period b of this
queue. We will assume that at the origine t=0 the system
(1) is idle.

T
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The busy period b essentially depends on a random variable
q(t, x) - the number of the busy servers at the instant t+X
which was busy at the instant t. Denote by R=1-F.

Theorem 2.

t+x t+x Xk
P(q(t,X) =k)=exp(~g [ R(u)du)(g [ R(uw)du) /k!
X

k=012 ...

Proof. Let X; be the number of customers arriving in the
time interval (0, t>. Let X=(x1,...,xn) be a vector fromDn(P)=
= {(xl,...,xn): 0<x <..<x < t}, and (X,t,n) be an evet.lt assign-
ing that in the time interval (0, t> n customers arrive at the
instants t;(0< t;<... <t <t) for which we have X<ty <x; +dx;,
i=1,...,n. Therefore

(9

P(qt,x) =k) =n§kP(Q(t.X) =k/(X,t,n) , Xy=n) x
x P(X,t,n) /X ;= n)PX,=n) =

"

[ P( O {x, +D >t+x}n 7
n 1 1

. {xi+Dis
D, () iGe igc

e

t+x}) nt/t" dxl...dxn.e"gt gt ¥nt
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where Cis an arbitrary permutation (i peeeriy) of k integers

of (1,..,n).
Hence .
© - k
Pt =1 = 3 e g" (1) ([RE+rx-wd) " x

x (Of (1_R(t+x-u))“'k /n!

Q.E.D.
Lemma 3.
P(a(t,x +x,) =0, qt.x,) > 1) =
- (10)
t+x1+x2 t+x1
=B (exp(g [  F(Wdu) -—exp(g [ F(u)du)).
x1+ X2 x1

Proof. The property (10) follows from Theorem 2 and from
the following simple relations:



Pla(t,xy+x5) =9) =P(a(t, x4+ x5) =0, qt, xy) >1) +
+ Pla(t,x;+%5, ) =0, q(t,x;) =0) =P(q(t, X,+%5)=0, q(t,x,) >1) +

+ P(a(t, xy) =0, 'Q.E.D.

Theorem 4. The probability P, (&), k=1.2,.., that the service
of a series of customers arr1v1ng into the first cell will e
finished in the k-th cell is

—gh,  gF gF g
Polk) =e (et k —efTk-1) | (11)
where
h(k +28)
Fo= f F(u) du. (12)
h(k—~1+2s)
The probability Py(k) for k=0 is defined as
~ e "8h
PO(O) =e . (13)

Proof. This result may be obtained from the Lemma 3 when
we put t=h, X;=(k-1+2s)h, Xg=h. Hence

Py (k) =P(qt, X +%5) =0, q(t,x;)>1).

The expression (13) follows from an observation that P (0)
is the probability of a nonarrival of customers into the first
cell. Q.E.D.
Now we will study the busy period b of the queueing system
(4). Let us denote byA the event that into the first cell
at least one customer arrives, and let B, be the length of
the busy period which begins in the first cell ahd finishes
in the n-th cell, that is, b = nh. We denote the conditional
probability in question, P(B/A), by P(n), and the joint dis-
tribution of those events, P(A,B ), by PP(n). Clearly, P() =
=PP(n)/(1-e78%), n=12,,
The probability PP(n) is obtained by the aid of the theo-
rem of total probability, and for this aim we use the tables
with two inputs. Here all possible cases of the arrivals of

customer series into the concrete cells and the service lengths

of this discrete queue are found. The indexes of cells are

shown in the right-hand corners of each cell in the table head-

ing. The integers 1-i(i=1,....n) or 0 -i(i=0,1,..,n) denote
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all possible service lengths of the series of customers ar-
riving into the given cell or nonarrival (the sign 0). The
sign *k (k=1,...,n-1) denotes that in this cell none of the
customer, which arrived into the previous cells is served,
and from' the series of customers, arriving into this cell the
busy period of the length kh is created.

Let W(,k), n=1.2,.., k=1, ...,n, be the probability that
from the series of customers arriving into the first cell
and finishing in the k-th cell, the busy period of the length
nh  be created. Then

PP(n) =kn§1W(n‘, k), n=1,2,... . (14)

In the tables below the probabilities PP@m) for n=1,2n
with recurrent relationships between them are shown in the
general form. Due to the independence of the table columns
we have the following properties

Table 1 Table 2
1-2[1] 0-1]2 3B
BE o]a " w2, nf 1 +
]w(1,1) 1 0 w(z2,2)| 2 0-1 0

W(1, 1) = Py(1) By (0) }
(15)
PP(1) = W(,1) ,
W, 1) = Py (1) PP(1) ,
WE2.2) = Po(2) (B (1) + Po(®) By (0) , (16)
PP(2) =W(2,1) + W(2.2) .
Let us put .
Sk) = 3 P, (@), k=012.., an
i=0
k
. SSk) = I 8U), k=12,.... (18)
i=0



Table 3

1-n}1 |o--1)]2 fo-a-2)[3 [ ... | To-1]n [ofari
Win,1) 1 #*{n-1)
. 0-1 2(n~-2)

W(n,2)] 2 W(n-1,2)

W(n-1,n-1)

0-2 0-1 *(n-3)
w(nsB) 3 W(H—Z,Z)

¥(n-2,n-2)

W(n-1,3) aoe

W{n~-1,n-1)
¥(n,n)] n O-(n=1) 0-(n-2) e 0-1 0

For the general case n>3 we define

Wn, 1) =P, (1) PP(-1) . (19)

As follows from tables 1-3, the table for n>2 is com-
posed of the subblocks of the tables for k=n-— 1, n—2,.,2,1.
Therefore by the recurrent formulae for

2<k<n-1
we introduce the following helpfull notations
n—k+1
B(n, k-1,1) =5(1) PP(n k) + ‘22 Win-k+1, 1), (20)
i=
and for
2<i< k-1
n—k+j (21)
B(n,k-1,j) =8(j) Bn, k-1, j-1) + I Wn-k+j,i).
1"]+
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Finally, we have

W(n, k) =Py (k) B(n, k-1, k1) } '
W(@,n) = Py()SS(n -1), (22)
P(n) = PP(n)/(1~e ~8%), (23)

and we have proved the following theorem:

Theorem 5. The probability of the busy perlod of the que-~
ueing system (4) with infinitely many servers is given by the
formulae (14)-(23).

4. STABILITY OF BUSY AND IDLE PERIODS
OF THE QUEUEING SYSTEM

The authors of the present paper regret that they do pot
know the busy period distribution of a queue <E,1 Gb%cl>,yet
in this part we prove that for any h, %0, 0<s,<1/2 the cor-
responding discretized busy period dlstrlbutlons converge we-—
akly to the one mentioned before. That is, this characteris-—
tic is stable.

Theorem 6. Let fhyl, %0, 0<5,<1/2, k=0,1,2,. (Gk)
be the corresponding probablllty distributions of the busy
(idle) period of the queueing system (1).

Then

Fsk F

kTN

8 -
G," > G @W=1-e5,t50).

Proof. Let {Bnin_l, HJH}n_l be sequence of the busy and
idle periods, respectively, of the queueing system (1).
random variables they are mutually independent and thelr pro—
bability laws do not depend on n. After the discretizations
with the steps hy, and with the time parts hys,, 0< s, <1/2,
k=0,1,..., from the above sequences the sequences of the dis-
cretized busy periods {bsk} and the idle periods {Egk}
of the systems (4) are generated

The proof of the Theorem is devided into three steps.

1. Firstly we assume that hk=h/2k, h >0, $,=0, k=0,1,2
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From Fig.3 we have b%(w) +B,(w) and ly(w) 2Ly (@), wcQ, (by b, ,
~ 8 -
7 5k

X we denote the discretized variables for hk=h/2k).
Therefore

FR(®) =P(®2<t) ~ P(B < t) = F(Y) .

2. Now let 0<s<1/2, 53 =5, hy=h/2", k=0,1,... Let B2 (w) ]
=mh/2%, yhere my be the suitable integer. Then bs(m)=nmq(2
if the By{w) finishes in the time interval ((my—~1+ 2s)h/ 2]

m0/2", and b} (=@~ if the B (w) EFinishes in the time
interval ((m - Dh/2% “(m, -1+ 2s)n/2% >,

Therefore bi(m)sgi(mh<ueﬂ,and bi-»B with the probability
one. Let us put M= b:— Bﬁ, then due to the Egorov theorem
ref./s/ we have nk—geo and

]

limF S (¢
im k()

LmP(b°< t) = imP(b°+7 <t) =
K k k-~ K ko Tk -

]

limP(b° < t) = F(t) .
k k-

3. The general case may be obtained by the similar way.
. Sk
Analogically we may prove the weak convergence of the G°,
or we may use the following Note:

Note. In paper 20 e is proved that the probability of

the discretized idle period of the queueing system (4) for
the step h and the time part sh is equal to

Pp® =(1-e ™8 g0 Q.E.D.
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IBypeuenckuii A., Kymoxuna JI.A., OcockoB T.A.
06 opHo# npobieme onpenelleHHsA IepHoOga 3aHATOCTH

B CHCTeMax o6COyXUBaHHMA C GeCKOHEYHBIM YHUCJIOM
KaHAaJIoB OOCHYXUBAHUS

E10-82-136

B pafore paccmarpuBaercs sanmaua onpeneleH’us BePOSTHOCTH
AHCKDETH30BAHHOI'O CI'YCTKAa 0 [JAHHBM CKaHHPOBAHHS CJlelOB B Tpe-
KOBbIX KamepaX. 3JTa npotneMa pemwaeTcs B paMKax TEOPHH MAaCCOBOTO
OGCIyXMBaHHUA ¢ CECKOHEUHLM YHCJIOM KAHAIO0B KaK onpejelleHHe Be-—
DPOATHOCTH AHUCKPETHOI'O TePHOMA SAHSITOCTH 3TOH CHCTEMbl. Tlosntyue—
HBl TOYHBIE BePOSATHOCTH H [OKA3LHBAETCH, YTO OHHU B npenene ciaaéo
CXOnATCA K paclHpefereHHI HeJUCKDEeTH3OBAaHHOTO CI'YCTKa IpH
YMEeHbWleHHHU mara LHUCKPeTH3aLMH.

PaGora Bmnonnena B JlaBopaTOpPHH BHIMHCIIMTENIFHON TeXHHKH
H aBToMaTtusanuu OUSIH.

Npenpunr 06veguHeHHOrO MHCTUTYTa AgepHuX uccneposawui, flybHa 1982

Dvurelenskij A., Kuljukina L.A., Ososkov G.A.
On One Problem of the Busy Period Determination
in Queues with Infinitely Many Servers

E10-82-136

In the paper the problem of the discretized blob length
probability determination based on the scanning in the track
chambers is considered. This problem is solved in the frame
of the queueing system with infinitely many servers as
a discretized busy period probability determination of this
system. The precise formulae of a probability are given and
it is proved that those probabilities converge weakly to the
probability distribution of the nondiscretized blob when the
discretization steps are diminished.

The investigation has been performed at the Laboratory
of Computing Techniques and Automation, .JINB. .
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