соовщения
ОБЪЕДИНЕННОГО инСТИТУТА яДЕРных ИССЛЕДОВАНИЙ дубна

G.I.Makarenko, V.I.Móroz, I.S.Saitov, A.P.Stelm akh
DETERMINATION OF THE INITIAL APPROXIMATION FOR THE KINEMATICAL PARAMETERS OF A CHARGED PARTICLE 1969

E10-4287

G.I.Makarenko, V.I.M oroz, I.S.Saitov, A.P.Stelmakh

DETERMINATION OF THE INITIAL APPROXIMATION FOR THE KINEMATICAL PARAMETERS OF A CHARGED PARTICLE

In order to obtain the optimal estimates of the kinematical parameters $P, \beta, \tan \alpha \quad(P$ is the momentum, β is the angle between the axis $O X$ and the tangent to the track projection in the XOY plane, a is the angle between the plane XOY and the tangent to the track) it is necessary to have their initial approximations as precise as possible without spending much computer time.

The kinematical parameters of a particle are determined from the coefficients of the parabola which approximates the track projection, taking into account the ionization losses and the nonuniformity of the magnetic field.

By integrating over the equation of motion of a charged particle in a nonuniform magnetic field with the account of the energy losses /1/

$$
\begin{equation*}
\frac{d \vec{P}}{d t}=\frac{e}{c}[\vec{v}, \vec{H}]+\frac{\vec{P}}{P} \frac{d P}{d t}, \tag{1}
\end{equation*}
$$

(\vec{H} is the magnetic field, \vec{v} is the velocity, e is the charge, c is the velocity of light, t is the time) one obtains an expression for the angle $\beta=\beta(s)$ in the form of expansion in $s \quad(s$ is the plane arc) as follows:

$$
\begin{equation*}
\beta(s)=\beta_{0}+\beta_{1} s+\beta_{2} s^{2}+\beta_{3} s^{3}, \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& \dot{\beta}_{0}=-\left(\frac{1}{2} \beta_{2} 0_{0}+\frac{1}{3} \beta_{2} s_{2}^{2}+\frac{1}{4} \beta_{3}{ }_{0}^{s}\right) \text {, } \tag{3}\\
& \beta_{1}=\left.\frac{\mathrm{d} \beta}{\mathrm{ds}}\right|_{\mathrm{s}=0}=\frac{1}{\cos \alpha} \frac{0.3}{\mathrm{P}} \mathrm{H}, \tag{4}\\
& \beta_{2}=\left.\frac{1}{2} \frac{d^{2} \beta}{d^{2}}\right|_{s=0}=\frac{1}{2 \cos ^{2} \alpha} \frac{0,3}{P}\left\{H^{\prime}+\frac{1}{P}\left[-H \frac{d P}{d S}+0,3 B\left(\frac{D}{\cos ^{2} \alpha}+2 H \tan a\right)\right]\right\}, \tag{5}\\
& \beta_{8}=\left.\frac{1}{6} \frac{d^{8} \beta}{d s^{8}}\right|_{s=0}=\frac{1}{6 \cos ^{3} \alpha} \frac{0,3}{P}\left\{H^{\prime \prime}+\frac{1}{P}\left[-H \frac{d^{2} P}{d S^{2}}-2 H^{\prime} \frac{d P}{d S}+\right.\right. \\
& \left.+0,3\left(\left(3 \mathrm{~B}^{\prime} \mathrm{H}+4 \mathrm{BH}\right) \tan a+\frac{1}{\cos ^{2} a}\left(2 \mathrm{BD}^{\prime}+\mathrm{B}^{\prime} \mathrm{D}\right)\right)\right]+\frac{1}{\mathrm{P}^{2}}\left[2 \mathrm{H}\left(\frac{\mathrm{dP}}{\mathrm{dS}}\right)^{2}\right]+ \tag{6}\\
& +\frac{0,3}{P^{2}}\left[\left(-7 H \tan a-\frac{3 D}{\cos ^{2} \alpha}\right) B \frac{d P}{d S}+0,3\left(\frac{H}{\cos ^{2} a}\left(-D^{2}+\left(9-6 \cos ^{2} a\right) B^{3}+2 D \tan \alpha\left(\frac{3 B^{2}}{\cos ^{2} \alpha}-H^{2}\right)\right)\right],\right. \\
& B=H_{y} \cos \beta-H_{x} \sin \beta, \\
& \mathrm{~B}^{\prime}=\frac{\mathrm{dH}_{\mathrm{y}}}{\mathrm{dS}} \cos \beta-\frac{\mathrm{dH}_{\mathrm{x}}}{\mathrm{dS}} \sin \beta, \\
& \mathrm{D}=\mathrm{H}_{\mathrm{x}} \cos \beta+\mathrm{H}_{\mathrm{y}} \sin \beta \quad \text {, } \\
& \mathrm{D}^{\prime}=\frac{\mathrm{dH}_{\mathrm{x}}}{\mathrm{dS}} \cos \beta+\frac{\mathrm{dH}_{\mathrm{y}}}{\mathrm{dS}} \sin \beta \text {, } \\
& \mathrm{H}=-\mathrm{H}_{\mathrm{z}}+\tan a\left(\mathrm{H}_{\mathrm{x}} \cos \beta+\mathrm{H}_{\mathrm{y}} \sin \beta\right) \text {, } \\
& H^{\prime}=-\frac{\mathrm{dH}_{x}}{d \mathrm{~S}}+\tan a\left(\frac{\mathrm{dH}_{\mathrm{x}}}{\mathrm{dS}} \cos \beta+\frac{\mathrm{dH}_{y}}{\mathrm{dS}} \sin \beta\right), \\
& H^{\prime \prime}=-\frac{\mathrm{d}^{2} \mathrm{H}_{z}}{\mathrm{dS}^{2}}+\tan a\left(\frac{\mathrm{~d}^{2} \mathrm{H}_{\mathrm{x}}}{\mathrm{dS}^{2}} \cos \beta+\frac{\mathrm{d}^{2} \mathrm{H}_{\mathrm{y}}}{\mathrm{~d} \mathrm{~S}^{2}} \sin \beta\right), \\
& \text { (} \mathrm{P}-\mathrm{MeV} / \mathrm{c}, \mathrm{H}-\mathrm{kg}, \mathrm{~S}, \mathrm{~s}-\mathrm{cm} .) \text {. }
\end{align*}
$$

x) s. is the total length of the track projection.

The equation of the particle trajectory in the coordinate system of fig. 1 can be written as follows /2/:

$$
x(s)=\int_{0}^{s} \cos \beta(s) d s, \quad y(s)=\int_{0}^{s} \sin \beta(s) d s
$$

One can approximate the trajectory by the parabola $/ 2 /$

$$
\begin{equation*}
y(s)=a(x(s)-\ell / 2)^{2}+c, \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\ell=\sqrt{x^{2}(s)+y^{2}(s)} . \tag{9}
\end{equation*}
$$

and find the minimum of the functional

$$
\begin{equation*}
Q^{2}=\int_{0}^{s_{0}}\left[y(s)-a(x(s)-\ell / 2)^{2}-c\right]^{2} d s . \tag{10}
\end{equation*}
$$

The conditions of the minimum for the functional Q^{2} are

$$
\left\{\begin{array}{l}
\frac{\partial Q^{2}}{\partial a}=0, \\
\frac{\partial Q^{2}}{\partial c}=0, \tag{11}
\end{array}\right.
$$

hence

$$
a=\left[s_{0}^{s} \int_{0}^{s} y(s)(x(s)-\ell / 2)^{2} d s-\int_{0}^{s} y(s) d s \int_{0}^{s}(x(s)-\ell / 2)^{2} d s\right]\left[s_{0}^{s} \int_{0}^{s}(x(s)-\ell / 2)^{4} d s-\left(\int_{0}^{s_{0}} x(s)-Q / 2(2)(12)\right)^{2}\right.
$$

Putting into (12) the expressions for $x(s)$ and $y(s)$ from the formula (7) one obtains

$$
\begin{equation*}
a=\frac{1}{2}\left[\beta_{1}+\beta_{2} s_{e}+\left(\frac{6}{7} \beta_{3}+\frac{3}{56} \beta_{1}^{3}\right) s_{9}^{2}\right] . \tag{13}
\end{equation*}
$$

The weight of each interval "ds" is the same; it means that in this formula we use the approximation of equidistant points.

By means of the least squares method, using the experimentally measured points, one constructs the parabola of the form (8). As the result of the approximation one obtains

$$
\begin{align*}
& a_{0}=\left[N \sum_{i=1}^{N} y_{i}\left(x_{i}-\ell / 2\right)^{2}-\sum_{i=1}^{N} y_{i} \sum_{i=1}^{N}\left(x_{1}-\ell / 2\right)^{2}\right]\left[N \sum_{i=1}^{N}\left(x_{1}-\ell / 2\right)^{4}-\left(\sum_{i=1}^{N}\left(x_{1}-\ell / 2\right)^{22}\right]^{-1},\right. \tag{14}\\
& c_{0}=\left[\sum_{i=1}^{N} y_{i} \sum_{i=1}^{N}\left(x_{1}-\ell / 2\right)^{4}-\sum_{i=1}^{N}\left(x_{i}-\ell / 2\right)^{2} \sum_{i=1}^{N} y_{i}\left(x_{i}-\ell / 2\right)\right]\left[\sum_{i=1}^{N}\left(x_{1}-R / 2\right)^{4}-\left(\sum_{i=1}^{N}\left(x_{1}-\ell / 2\right)^{2}\right)^{2}\right]^{-1} . \tag{15}
\end{align*}
$$

If the measured points are spaced in the track, equidistantly enough, and the nonuniformity of the magnetic field and the relative mopentum due to the ionization losses are small, then, without great error, we can assume

$$
a_{\theta}=a,
$$

i.e.

$$
\begin{equation*}
a_{0}=1 / 2\left[\beta_{1}+\beta_{2} s_{0}+\left(\frac{6}{7} \beta_{3}+\frac{3}{56} \beta_{1}^{3}\right) s_{\mathrm{e}}^{2}\right] . \tag{16}
\end{equation*}
$$

The right part of (16) 'is a function of P_{o}. Solving this equation one denives

$$
\begin{align*}
& P_{0}=P_{e}+\left\{\frac{0,15}{\cos ^{2} \alpha}\left(H^{\prime} R_{0}+\frac{1}{\cos a} \frac{B D}{H}+2 B \sin a\right)-\frac{1}{2 \cos \alpha}\left(\frac{d P}{d S}\right)\right\} s_{0}+ \\
& +\frac{0,3}{7 \cos ^{2} \alpha} \int \frac{2}{\cos ^{2} \alpha} \frac{\mathrm{BD}^{\prime}}{\mathrm{H}}+\frac{1}{2} \tan \alpha \frac{\mathrm{BH}^{\prime}}{\mathrm{H}}+3 \mathrm{~B}^{\prime} \tan \alpha+\frac{1}{\cos ^{2} \alpha} \frac{\mathrm{~B}^{\prime} \mathrm{D}}{\mathrm{H}}-\frac{5}{6}\left(\frac{\mathrm{dP}}{\mathrm{dS}}\right) \frac{\mathrm{H}^{\prime}}{\mathrm{H}}+ \\
& +\frac{25}{9} \frac{\cos \alpha}{R_{\mathrm{e}}}\left(\frac{\mathrm{dP}}{\mathrm{dS}}\right)^{2} \frac{1}{\mathrm{H}}-\frac{10}{3} \frac{\mathrm{~d}^{3} \mathrm{P}}{\mathrm{dS} 2}-\frac{7}{4} \frac{1}{\cos ^{3} \alpha} \frac{\mathrm{BDH}^{\prime}}{\mathrm{H}^{2}}+\frac{\mathrm{H}_{\mathrm{e}}}{\cos \alpha} \mathrm{H}^{\prime \prime}-\frac{1}{\mathrm{H}_{\mathrm{e}} \cos \alpha} \frac{\mathrm{D}^{9}}{\mathrm{H}}+ \tag{17}\\
& +\frac{1}{R_{\theta}}\left(\frac{2}{\cos a}+\cos a\right) \mathrm{B}^{2} / \mathrm{H}-\frac{7}{4} \frac{1}{\mathrm{R}_{\mathrm{e}} \cos ^{3} \alpha} \frac{\mathrm{~B}^{2} \mathrm{D}^{2}}{\mathrm{H}^{3}}-\frac{\tan \alpha}{\mathrm{R}_{\mathrm{g}} \cos a} \frac{\mathrm{~B}^{2} \mathrm{D}}{\mathrm{H}^{2}}-\frac{2 \sin a}{\mathrm{R}_{\mathrm{e}}} \mathrm{D}+ \\
& \left.+\frac{3}{8} \frac{\cos a}{R_{a}} H+\frac{5}{3 R_{6}} \frac{5}{\cos \alpha} \frac{B D}{H^{2}}\left(\frac{d P}{d S}\right)\right\} s_{0}^{2},
\end{align*}
$$

where

$$
\begin{gathered}
P_{\theta}=\frac{0,3 R_{e}}{\cos a}\left[-H_{z}+\tan a\left(H_{x} \cos \beta+H_{y} \sin \beta\right)\right], \\
T_{0}=\frac{1}{2 a_{\theta}}
\end{gathered}
$$

while calculating the P_{0} momentum according to the formula (17) one should keep in mind that the values of $\frac{d P}{d S}$ and $\frac{d^{2} P}{d S^{2}}$ are to be taken at the real value of the P_{0} momentum which is still undetermined.

One knows only the value of P_{0}. Therefore the following iteration procedure should be applied:

1. Calculate $\frac{d \bar{P}}{d S}$ and $\frac{d 2 P}{d S^{2}}$ for the momentum value being P_{e} and calculate $P_{0}^{(1)}$ according to formula (17).
2. Calculate $\frac{d P}{d S}$ and $\frac{\mathrm{d}^{2} P}{\mathrm{~d}^{2}}$ for the momentum value being $P_{0}{ }^{(1)}$ and calculate $P_{0}^{(2)}$ according to formula (17), etc, until the following inequality is satisfied:

$$
\left|P_{0}^{(1)}-P_{0}^{(1-1)}\right| / P_{0}^{(1)}<\epsilon,
$$

where ϵ is a certain small number.
Practically, it is sufficient to make one or two iterations. The expressions for the values of the angles α and β which are contained in (17), can be obtained according to the formulae:

$$
\begin{gather*}
\tan \alpha=\left[N \sum_{i=1}^{N} z_{i} s_{i}-\sum_{i=1}^{N} z_{i} \sum_{i=1}^{N} s_{i}\right]\left[N \sum_{i=1}^{N} s_{i}^{2}-\left(\sum_{i=1}^{N} t_{s}\right)^{2}\right]^{-1}, \tag{18}\\
\tan \beta=-\frac{l}{2\left(R_{e}+c_{e}\right)} \tag{19}
\end{gather*}
$$

The initial estimate of the β_{0} angle at the first point (see fig. 1) can be determined more precisely according to formula (3) using the P_{0} momentum value calculated according to (17).

Now one can improve tine initial estimate of the dip angle $\left(\tan \alpha_{0}\right)$ at the first point. The expansion of $\tan a$ in the neighbourhood of the first point is

$$
\begin{equation*}
\tan a=\left.\tan a\right|_{s=0}+\left.\frac{\partial \tan a}{\partial s}\right|_{s=0} s+\ldots \tag{20}
\end{equation*}
$$

Taking into account that $\tan a=\frac{d z}{d s}$, one has from (20)

$$
\begin{equation*}
z_{1}=z_{0}+\left.\tan a \cdot\right|_{s=0} s_{1}+\frac{1}{2}-\left.\frac{\partial \tan a}{\partial s}\right|_{s=0} s_{1}^{2} . \tag{20}
\end{equation*}
$$

Now one can construct the functional

$$
\begin{equation*}
\theta^{2}=\sum_{i=1}^{N}\left(z_{i}-z_{i \theta}\right)^{2} \tag{22}
\end{equation*}
$$

and from the minimum conditions which are

$$
\begin{equation*}
\frac{\partial \theta^{2}}{\partial z_{0}}=0, \quad \frac{\partial \theta^{2}}{\partial \tan a_{0}}=0, \quad\left(\tan \alpha_{0}=\left.\tan a\right|_{s=0}\right), \tag{23}
\end{equation*}
$$

one obtains

$$
\begin{equation*}
\tan a_{0}=\overline{\tan \alpha}+\left[1+(\overline{\tan \alpha})^{2}\right]^{3 / 2} a_{0}^{\prime} \mathrm{s}_{e}, \tag{24}
\end{equation*}
$$

where

$$
a_{0}^{\prime}=\left.\frac{d a}{d S}\right|_{s=0}=\frac{0,3}{H} \mathrm{~B},
$$

S is the space track length, and $\overline{\tan \alpha}$ is calculated according to formula (18). One can get some idea on the accuracy of the method from Table 1.

The initial estimates of the momentum and the angles were checked by means of test tracks (protons) which were generated in the 2 -metre propane bubble chamber, $/ 3 /$ with the account of the ionization losses and the nonuniform magnetic field, but without the ac count of the measurement errors and multiple acattering. The magnetic field of the chamber $/ 4 /$ has a considerable nonuniformity, which is represented in Table 1 by the values of D, H and H^{\prime}.

Formula (17) for the effective value of the magnetic field differs from the expression previously obtained in ref. $1 \mathrm{~b} /$. The difference arises because we approximate the track by means of the least squares method using a great number of points, while in ref./5/ the expression for the effective value of the magnetic field is derived for the case when one determines the curvature of the track projection in the XOY plane using only three points.

The initial data for the generator $\left\{\mathrm{P}_{\mathrm{o}}, a_{0}, \beta_{0}, X_{0}, Y_{0}, Z_{0}\right.$ are related to the first point of the track) and the results of the calculations $\mathbf{P}_{\mathrm{o}}, \tan \boldsymbol{a}_{\mathrm{o}}$ and β_{o} are listed in Table $1^{\text {. The values } \mathbf{P}_{0}}$ and $\tan a_{0}$ are determined according to formulae (17) and (24), respectively. The angle β_{0}, which is calculated in the coordinate system of the track according to formula (3), is recalculated for the coordinate system of the chamber. The tracks were generated using 21 equidistant points in each track.

From the analysis of the Table 1 it is seen that the maxamum displacement in the momentum value is not larger than 2.4% and in
β_{0} value it is not larger than 0.009 rad., while the displacement in $\tan a_{0} \quad$ value is not larger than 0.008.
References

1. G.A.' Emelianenko, K.P. Lomov, G.I. Makarenko, V.I. Moroz, I.S. Saitov, A.P. Stelmakh. Preprint P-2829, Dubna, 1966.
2. N.F. Markova, V.I. Moroz, V.I. Nikitina, A.P. Stelmach, G.N. Tentyukova. Preprint P1O-3768, Dubna, 1968.
3. A.D. Makarenkova, V.I. Moroz, A.P. Stelmakh, G.N. Tentyukova. Preprint P10-3526, Dubna, 1967.
4. S.A. Averichev, L.N. Belyaev, A.G. Balashov et. al. Preprint 13-3724, Dubna, 1968.
5, R.J. Plano, D.H. Tycko. Instrumentation for High-Energy Physics. Proc. of the 1962 Conf, on Instr. for High-Energy Physics, held at CERN, Geneva, July, 1962. Amsterdam, 1963, p.458-460.
[^0]TABLE I
Comparison between the generated test track parameters and their initial approximation determined according to the described method.

N	GENERATOR		characteristics of the magnetic field	determined inftial approximation
	$\begin{array}{ll} P_{0} & \alpha_{0} \\ \text { Mav/c } & \text { rad } \end{array}$	$\begin{gathered} \mathrm{S} \\ \mathrm{~cm} \end{gathered}$	$\begin{array}{\|ccc\|} \hline D & H \\ \mathrm{kgs} & \mathrm{kgs} & \mathrm{H}^{\prime} \\ \mathrm{kgs} / \mathrm{cm} \end{array}$	$p-\rho_{0} \tan \alpha-\tan \alpha_{0} \beta-\beta_{0}$
I	800	30	2,6197-21,8443	3 0,0005
2	800	30	2,2262-14,5271 0,0155	I $-0,00020,0002$
3	800 3	30	3,8721-3,8471 -0,	190,0001
4	800-2/8	50	3,0185-19,0134 0,0920	5
5	800	50	2,2254-14,5302 0,0220	0-0,001 0,0008
6	800 2/8	50	4,7367-8,3430 $-0,1851$	-2,3 0,0033 0,0006
7	$800-1 / 8 \pi$	80	2,6203-16,6213 0,0624	$-10,0 \quad 0,0040 \quad 0,0054$
8	800	80	2,2289-14,5227 0	1,5 0,0008 0,0035
9	800 1/8	80	3,9754-11,8114-0	$\begin{array}{llll}-0,2 & 0,0041 & 0,0015\end{array}$
10	800	100	1,8757-14,7540 0,0046	7,4-0,0056 0,0094
I	2000	100	2,2257-14,5297 0,0094	3,1-0,0007-0,0001
12	10000	0	2,2252-14,5335 0,0089	7,0-0,0001 0,0000
13	800-3/8	30	0,0004-17,0109 0,10	$\begin{array}{llll}5,8 & 0,0039 & 0,0001\end{array}$
14	800	30	0,2009-15,9535-0	3,6-0,0021 0,0002
15	800 3 18	30	I,8554-10,0536-0,	I,5-0,005I-0,0006
16	$800-2 / 8$	50	0,0008-17,4192	I, $9-0,0024$ 0,00II
17	800	50	0,2803-15,6828-0,	0,5-0,0041 0,0010
18	800 2/8x	50	2,1287-II,0105-0,3053	$\cdot 9,3-0,0066$ 0,0002
19	800-1/8	80	0,0051-16,8903-0,	$-0,1-0,0043-0,0013$
20	8000	80	0,0118-15,0034-0,0675	5,4-0,0083 0,0020
2	800 1/8	80	0,4478-12,4531-0,1360	6,1-0,0029 0,0030
22	800	10	0,2417-15,3406-0,0466	$-1,0-0,04210,0066$
23	2000	1	0,0563-14,8046-0,0665	49,1 -0,0044-0,0001
24	10000	100	0,0547-14,8047-0,0678	234,0-0,0008 0,0000

Fig. 1.
(In the cases 23 and 24 the magnetic field is badly approximated by squared parabola)

[^0]: Received by Publisning Department on January 30, 1969.

