
Do-rso 

V.G.Olshevsky, S.V.Trusov* 

DATA ACQUISITION SOFfWARE 

FOR DIRAC EXPERIMENT 

Submitted to «Nuclear Instruments and Methods A» 

El0-2000-150 

*Skobeltsin Institute for Nuclear Physics, Moscow, Russia 



1 Introduction

The data acquisition (DAQ) software described in this paper was devel-
oped for DIRAC experiment[l] which is running now at CERN. The ex-
perimental setup consists of forward detectors and two-arm spectrometer.
The information comes from about 2000 channels of drift chambers, 2048
channels of micro-strip gas chambers, 480 channels of scintillation fibres
detectors and about 150 channels of scintillation and Cherenkov detectors.
Pedestal subtraction and zero suppression are implemented at hardware
level.

The trigger and read-out electronics schemes are described in the
DIRAC proposal]!] and internal notes[2]. It was supposed that one or
two accelerator bursts, each of 0.35 - 0.45 sec duration, will be delivered
to the experiment beam-line in 14.4 sec supercycle. The main feature of
DIRAC DAQ is that all data of subdetectors coming during the acceler-
ator burst are transferred to VME buffer memory modules LeCroy 1190
via FERA bus [3] or stored inside dedicated electronic modules [4] without
any software intervention. Relatively slow procedures like checks of data
consistency, event building, data transfer, are performed during a pause
between bursts and hence the maximal operation rate of DAQ electronics
is provided.

The main part of the DAQ software is running on two computers: a
VME processor board and a main DAQ host (host computer). The Pow-
erPC based VME processor board (CES RIO 604, 180 MHz, 64 Mbytes
of RAM) is running a diskless LynxOS 2.5.1 operating system. This
board controls the trigger and read-out electronics via two CAMAC branch
drivers (see Fig. 1) and performs event building. The CORBO VME in-
terrupt register[5] is used for generating VME interrupts at the beginning
and the end of each burst. These interrupts are handled by a data tak-
ing process. We used standard CERN drivers for operating with CAMAC
branches and handling CORBO interrupts[6].

1



10 Mbits/s ETHERNET dedicated link General ETHERNET

Switch

Computers
for monitoring

PCI

PC 2

Host computer
SXJNWS

BOB

EOB

VME crate

VME

PI
II -I

o S

1
I!

Trigger CAMAC branch

Read-out CAMAC branch

CAMAC

Figure 1: Hardware layout. Dedicated Ethernet link is used mainly for the
data transfer to a central recorder and to computers (PCI, PC2, SUN
workstation) connected to General Ethernet link. VME and CAMAC
crates connected to SUN work station contain modules for high voltage
control. Ethernet switch decreases traffic on the dedicated link and pro-
vides a fast data transfer to monitoring computers connected to the switch
directly.

All events accepted in one burst are transferred to the host computer
(this one was an HP workstation 715/90, now replaced by a PC running
Linux) via a dedicated 10 Mbit Ethernet link and then distributed for
recording and for user monitoring programs running on different computers
via another network interface.

The DAQ software is written in C under different UNIX-like operat-
ing systems (LynxOS, HP-UX, Linux). We used CVS[7) to manage the
development of DAQ code.



2 General approaches used in the develop-
ing of DAQ software

2.1 Choice of operating system

At the start point of the development of DAQ software it was clear, that
DAQ would use computers with different architectures. For example, the
VME crate and CAMAC branches were controlled by a Power PC VME-
board, the main DAQ host was running on an HP workstation 715/90, and
several PCs were dedicated for on-line monitoring.

The VME-board and main DAQ host were running UNIX-like operat-
ing systems. Therefore, with many hardware architectures, for providing
maximum portability and coexistence of DAQ software we decided to use
UNIX-like operating systems on all hosts participating in DAQ and on-line
monitoring.

This decision allowed us to use during software development a wide
variety of standard UNIX services, including interprocess communication,
communication between computers across the network and so on. This
also reduced the time necessary for porting the DAQ software to different
platforms.

2.2 Guidelines during development of DAQ software

In order to minimize the time necessary for development and maintenance
of DAQ software, we used the following approaches as much as possible:

• Whenever possible, we used services provided by the operating sys-
tem and existing libraries instead of writing own code. Examples:
use of RPC calls for slow control processes, shared memory for data
distribution, semaphores, inetd services — for data distribution, sys-
log facilities for providing uniform logging services, XForms libraries
for creating GUI, etc.

• Among services, provided by different operating systems, we always
preferred those which are most standard for different flavours of
UNIX. We also did maximum efforts to write code in a clean and
portable manner.

• Whenever possible, we tried to separate software in logically inde-
pendent pieces (in different libraries, in different programs, etc) in



order to make porting, debugging, and maintenance of software less
time consuming, and code more robust. Examples: DAQLOG wrap-
per for uniform access to syslog, SLOWCONTROL libraries, data
distribution scheme, etc.

All DAQ software projects were developed in frames of CVS code
management system, which keeps history of changes, makes simpler
co-operative code development and process of porting software to
different flavours of UNIX.

3 Layout of DAQ software
The schematic layout of the data acquisition processes is shown on a Fig. 2.
The DAQ software can be divided into 4 logically (almost) independent
groups.

The first is the program for data readout and event building (DT pro-
gram), which runs on the VME board under LynxOS.

The second group is a set of programs for distributing data across the
network for data recording and on-line monitoring programs. This group
includes primary data receiver and secondary data senders/receivers. The
data distribution scheme was developed in a scalable approach with one
data receiver per host. In this group the primary receiver is the only
program which receives data directly from the data taking process and is
critical for data acquisition — other processes may, or may not be running
and may be started at any time.

The third group of programs allows shift members to control the run
state via graphical user interface (GUI) — to set run parameters (e.g., run
duration), to select trigger type, to change run state (to start, suspend,
resume, stop data acquisition). The members of this group are RC process
(RC stands for Run Control), which controls run state via slowcontrol calls,
RC.gui — the graphical interface for dealing with RC. There is also the
RD (Run Display) program, which provides information about current run
state and conditions.

The fourth group of programs is a set of slow-control processes, which
allow uniform access to hardware on any host from any other host par-
ticipating in DAQ. The main tasks of these programs are high voltage
management, initialisation of CAMAC and VME modules, controlling run
state and so on. This group of processes uses RPC calls and provides uni-



VME host

Data read-out

Event building

Event transmitter

Slow control executor

Computer for monitoring
and control

Slow control executor

Secondary reciever

Monitoring

—»f| Subdetector tuning

Slow control client

DAQ host

Run control GUI

Run control

Event distributor
and

Recorder

Slow control dispatcher

Run display

Figure 2: Layout of data acquisition software. Basic processes running on
VME and DAQ hosts, and on one of monitoring computers. Only main
communication lines are shown between different processes.

form access from any host to any piece of hardware controlled by DAQ. It
consists of three types of processes: central dispatcher, executors and client
programs (clients). Clients perform different operations with hardware via
remote calls to central dispatcher. Central dispatcher checks validity of
incoming remote calls and forwards them to executors on different hosts.
Executors serve remote calls and perform necessary operations with hard-
ware.

Besides these groups of programs, there are several supplementary pro-
grams, developed mainly as monitoring and debugging tools.

Software for trigger support and on-line monitoring was developed by
other persons and is not discussed in this paper.



All programs mentioned above use a uniform logging mechanism for
reporting problems. It is implemented as a library of wrapper functions
for standard UNIX syslog facilities. All DAQ hosts are configured so that
messages from DAQ processes go to the logfiles on the main host. This
helps in a great extent to keep track of current software state and to
localize possible problems with DAQ processes. Note that these logfiles
contain mainly reports about different events in DAQ software.

Besides the logging features described above there is also another way
for storing messages, designed for "physical" information —• so called run
logbook. This one keeps information which is of interest mainly for data
analysis — target type, beam intensity, parameters of read-out electronics
and so on.

Now we will consider the programs mentioned above with more details.

4 Data read-out and event building

Data taking process (DT) runs on VME processor board and performs
read-out of data, event building and data transfer to main DAQ host.

At start DT initializes few electronics modules used to control data
acquisition (CORBO interrupt register and control registers), establishes
connection with the primary data receiver and waits until run control (RC)
process establishes connection with it. Then DT waits for any interrupt to
continue the work. This may be either real-time interrupt from accelerator
(begin of burst or end of burst), or timer signal generated after expiring
of predefined time out. The installed timer handler forces DT to transfer
run status even in absence of accelerator signals in order to inform other
processes (including RC) that data taking is in operation. Each time an
interrupt signal is obtained and served, the DT checks availability of RC
command. Such command, if present, forces DT to take corresponding ac-
tions and to changes the state of data acquisition (or run) correspondingly.

The possible states of run are: STOPPED, RUNNING, PAUSED and
SC-PAUSED (paused by slow control). In the RUNNING state the run
status is transferred together with built events. In STOPPED, PAUSED
and SC-PAUSED states the timer signal causes periodical transfer of the
run status for informing other DAQ processes that DT is in operation. If
a predefined time-out expired and run status fragment was not transferred
it means that either DT terminated abnormally or there is a problem with
data distribution. To indicate this situation we use UNKNOWN run state.

6



DT can change the run state when receiving a corresponding command
from the run control process. Actions undertaken after receiving STOP,
PAUSE and SC-PAUSE commands are evident from their names: data
acquisition is disabled, run state is changed, and DT waits until next com-
mand is available. The CONTINUE command, which can be issued only
when run is in PAUSED or SC-PAUSED state, causes DT to change run
state to RUNNING and to wait either for data from next burst, or for next
run control command.

NEWRUN command causes the start of new run. As it will be de-
scribed in Run Control section, RC sends this command to DT after per-
forming initialisation of read-out and trigger electronics and preparing con-
figuration files with predefined names. When DT receives this command,
it reads the configuration and parameter files containing the description of
subdetectors and read-out electronics, fills internal structures which will
be used in the event building, and finally changes the run state to "RUN-
NING".

Let us discuss in more detail what happens when the state is "RUN-
NING".

The data may be received only in the interval between begin of burst
(BOB) and end of burst (EOB) signals, which are provided by the accel-
erator. These signals are put into CORBO register and cause real time
interrupts. When DT detects the BOB interrupt, it enables triggers and
opens read out electronics. During the burst (recall, its duration is 0.35 -
0.45 sec) all signals necessary for accepting data are provided by hardware
without any intervention of the program. At the end of the spill, the real
time interrupt corresponding to EOB signal informs DT that all data are
digitized and put in VME buffer memories.

When receiving an EOB interrupt, DT checks that data from previous
burst were already processed and sent to the host computer. If it is so, the
program copies data from VME buffer memories to internal buffers and
immediately prepares electronics for accepting next burst. If the data of
previous burst were not transmitted yet, then data of new burst remain
in VME memories until DT will complete transmission of previous one
(of course, accepting of next bursts is disabled at this time). Due to
this behaviour, the DT program is able to accept very close bursts —
minimal interval between first and second bursts is about 0.5 sec with
about 1 MByte of data in each.

During event building DT checks data consistency. The read-out elec-
tronics of subdetectors provide headers and serial numbers of subevents



written in each VME buffer memories. These serial numbers allow one to
check that all buffer memories contain the same number of subevents and
that different subevents correspond to each other. In the case of an overflow
detected in one of FERA or DC buffer memories DT ignores all subevents
with numbers starting from that one in which overflow happened. It is
not so in a case of MSGC memory overflow: following events will be built
without MSGC data (which are absent). It was done to provide a possibil-
ity to collect as much as possible data from other subdetectors for pedestal
measurements and due to the fact that in off-line analysis it is not required
that all MSGCs have data for each event.

The data check includes procedures which are specific to each branch
(DC, MSGC or FERA ones). All these checks are based only on the
expected structure of data provided by electronics and do not touch the
physics characteristics of accepted information. The burst data are ignored
when a fatal error is detected in DC or FERA memories, because it is not
always possible to recover valid events and an illegal recovery may create
problems for off-line analysis. The error detected in one of MSGC memories
is not fatal and is treated as the absence of events in it at all.

During the data check the structure of pointers to subevents is filled
up. If no fatal error was detected, this structure is used to build events
and to copy them into the output buffer containing all built events of the
burst. The pointers to events in this buffer as well as a trigger type of each
event are stored in another buffer. The DIRAC event format is described
in [8]. The data accepted in one burst can be considered as one "record"
consisting of events of variable lengths. Each event consists of data blocks
which in turn contain event description and data of subdetectors. Subde-
tector data blocks are filled by data obtained from electronics in the same
format as they were read, at least we try to do that for most subdetectors.
It was done in order to minimize the number of operations on raw data
during event building.

There is a dedicated kind of events which is used for including infor-
mation from another parts of DAQ software to the data flow. DT process
reads such events from the shared memory region, to which other DAQ
processes can write with the help of special slow control calls. During
event building, DT checks the availability of data in this memory region
and builds a corresponding event when necessary. For example, a run may
be in PHYSICS or TUNING mode. If TUNING mode was selected than
slow control routine can pause the run, change the electronics parameters,
continue the run with new parameters. A corresponding message may be



written to the shared memory and it allows one to trace what was changed
and how it affects on the collected data. This feature was implemented for
supporting automatic tuning of the setup.

In order to simplify the control and monitoring of data acquisition
status and on-line event monitoring, the dedicated run status fragment
of data is filled up for each burst. It contains the run number, current
run state, number of events collected in the burst and in the run, running
time and some other information. Different DAQ processes may monitor
the status of setup and validity of data and set warning or alarm bits
in corresponding words. Alarms and warnings can be triggered either at
software level, or by providing a hardware signal to a dedicated VME input
register. The DT process reads and includes alarm and warning bits into
run status fragment. The presence of unmasked alarm forbids data writing
to the storage, but the data are still distributed to monitoring programs to
give them a chance to analyze and find the reason of the problem. Initial
configuration for warning and alarm masks is set by Run Control Graphical
User Interface (RC_gui) at the start of run.

The data collected by the data taking process are transfered at each
burst to the host computer via dedicated Ethernet link. Its further distri-
bution is discussed in the next section.

5 Data distribution

Processes of this group are responsible for storing data on the disk and for
its distribution to the hosts willing to perform on-line analysis. The group
includes primary data receiver and secondary data senders/receivers. The
data distribution scheme was developed in a scalable approach with one
data receiver per host.

The primary receiver runs on main DAQ host. It receives data from DT
program and stores them on the local disk for further transfer to central
tape recorder with SHIFT utilities[9]. The receiver also puts data into
shared memory buffers for further access by other DAQ processes and user
monitoring programs. The secondary senders/receivers distribute data to
other hosts willing to receive data on-line.

All these programs know nothing about the internal data structure - -
their only task is to distribute incoming data across the network. This
helps to make code for these programs relatively simple and more stable
(because it is not affected by changes/additions in data format).

9



Both the VME processor board and main DAQ host are put in local
network, for which the main DAQ host serves as a router. This is done
in order to provide maximum and guaranteed bandwidth for transferring
data from VME to host computer.

As soon as data from one burst are read and prepared by data taking
process, they are sent to the main DAQ host. All data consist of 32-bit
words with a predefined byte order (network byte order) to avoid problems
with byte ordering on different computers.

Data transfered from VME are divided in several (to the moment, five)
fragments. The first one contains current run status, which was described
earlier.

The second fragment is filled with offsets to events and their ^trigger
types, and is dedicated for use by monitoring programs for fast look-up of
events.

Events themselves are transfered in the third fragment.
The fourth fragment contains special run header event with description

of read-out electronics configuration, target type, magnetic field value,
proton flux intensity, and so on. This fragment is sent from VME only
once at start of new run, for all subsequent bursts it has zero length.

As we mentioned above, other processes can also prepare .special kinds
of events. Such events, when available, are transferred in the fifth fragment
of data.

The whole data buffer sent from VME contains timestamp, lengths of
named above data fragments and data fragments themselves.

5.1 Primary receiver
As we described earlier, the data taking program which runs on VME pro-
cessor, reads data from hardware and sends them to main DAQ host. The
data sent from VME processor are read by the primary receiver program
running on the host computer. The primary receiver has two main tasks —
to store incoming data into the local disk file, and to put data of the last
burst into shared memory region (data pool). Let us discuss both with
more detail.

When data arrive (if write to disk file was requested), the primary
receiver extracts the fragment containing events and stores it into disk
file. It permanently keeps track of the size of current datafile in order to
avoid creating enormously large files. When the size of current datafile
exceeds the predefined maximum (which is set as an argument at start of

10



the program), the receiver automatically closes the current file and opens
the next one. The receiver also closes automatically the current datafile
when the run goes to "stopped" state or in case of lost connection with
data taking process (the latter may happen at abnormal termination of
data taking process). At close, the receiver marks the file as readonly, thus
signalling that writing of that file is completed and it can be transferred
to the central tape recorder.

Besides storing data in file, the receiver provides data of current burst
for consumer processes by placing them into the data pool implemented in
shared memory. The primary receiver is the only process which has rights
to modify data in the pool, all other processes can only read data.

The receiver sets a semaphore before refreshing information in "the pool
and releases, it after modification ends, thus providing means of synchro-
nisation for processes willing to read data from the pool.

The receiver places data in the pool in the same "fragmented" struc-
ture as they were received from the data taking process, but with some
modifications — it places most recent run header (fragment 4) and special
events (fragment 5) in every burst during the whole run. This is done so
because 4 and 5 fragments contain information critical for on-line moni-
toring -programs, and this information should be available at any time.

5.2 Data consumers. Secondary senders/receivers

Since data corresponding to the current burst are placed into the shared
data pool, any process can map this pool into its address space and process
data on-line. As it was said above, arrival of new data is signalled with
a semaphore. This way of receiving data is used by all data consumers,
including RD (run display) and other on-line monitoring programs.

Among data consumers, there is a special class of processes which re-
transmits data to other hosts, we call these processes secondary, or slave,
senders. The counterpart of slave sender is slave receiver — the program
which runs on host willing to receive data on-line.

If some computer needs to receive data, it starts the slave receiver
program. This program connects to a special port of a server host (this
may be the main DAQ host as well as any other host which already receives
data). When connection with server host is established, standard UNIX
inetd daemon launches slave sender program, which in turn reads data
from pool for each burst and sends them to the slave receiver. The slave
receiver works with shared memory pool in the same way as the primary

11



receiver does — it receives data, sets semaphore, puts data into data pool,
and releases semaphore, thus signalling to data consumers on this host
that fresh data arrived. Among data consumers on such "slave" host, the
next level slave sender may be started for propagating data to other hosts.

As it can be seen from the discussion above, with such approach each
host receives the full volume of data only once per burst and can run any
number of monitoring programs. It also can serve as data source for other
hosts.

As we saw during DIRAC beam-time, the described scheme of data
distribution worked in a stable way and was able to distribute up to 3
megabytes of data per super-cycle (in two bursts) to 6 hosts participating
in data acquisition and on-line monitoring. The limitation for transfer rate
with such scheme arises from Ethernet links used and is about 4 MBytes
per super-cycle. This limit can not be reached with the current volume of
VME buffer memories. To increase further the transfer rates (for example,
in case of increasing volume of VME buffer memories) the network links
must be rearranged.

6 Run control

Both run control (RC) and its graphical user interface (RC_gui) are running
on the main DAQ host.

The RC process provides a control of the data acquisition — it trans-
mits commands to the data taking process (DT) via special connection.
Such commands may be sent by other processes like RC-gui and slow con-
trol or issued by RC itself. Only one instance of RC may be running at
any given time, it's checked at the start of RC process.

When running, RC reads run status from data pool at each refreshing
of data. If a predefined time-out (about 60 sec) for getting status expires,
RC considers this as a fatal error in the data transfer or in DT and exits.
We should mention that RC may be killed and started again even during
data acquisition and it will not affect run state and DT operation. For
example, if run was in RUNNING state, the DT continues to get data and
to transfer them to primary receiver even in absence of RC process. When
restarted, the new instance of RC will establish all necessary connections
with DT and provide further control of data acquisition.

The SC-PAUSE command may be issued only by a slow control (SC)
function. Typically, any such call requires to pause data acquisition, per-

12



form an action, and continue the data acquisition. Execution of SC func-
tion may depend on the initial state of run, some procedures may be in-
voked in PAUSE state and it is natural to restore the state at the end
of execution. So, we forced to distinguish PAUSED state caused by RC
GUI from SCJPAUSED one in order to escape conflicts when during ex-
ecution of SC procedure in paused state the RCgui tries to resume the
data acquisition.

For the moment there are two cases when RC itself issues commands
to DT. The first case is when the limit of run duration or number of
collected events is reached. In this case RC sends STOP command to DT.
The other case is when periodical automatic calibrations were requested at
start of new run. The required numbers of bursts between different modes
of measurements are transfered in the run status fragment. The RC checks
if is it time to perform a calibration, and if it is so, it sends SC-PAUSE
command to DT, waits until this command will be completed and after
that reloads read-out and/or trigger electronics via calls to SC procedures.
As electronics is reloaded, the RC issues CONTINUE command and waits
until several bursts with changed parameters are accepted. After collecting
calibration data, RC repeats the same steps in order to restore standard
run parameters.

The run control graphical user interface is written on the basis of
XForms library[10] and works in Xl l environment. It provides means
for manual control of run by accepting user commands and transmitting
them to RC process.

When started, it checks that there is no other RC_gui process. As
RC_gui transfers commands to the RC process, the last one must be run-
ning as well. The information about current run state is obtained by
RC_gui from the data pool.

RC_gui opens the primary control panel, waits until the run status
fragment is obtained and sets internal variables in correspondence with it.
Only after that control buttons are enabled and may be used to perform
an action.

As it was mentioned above, performing commands by DT is synchro-
nized with VME real time interrupts or time-out signals. So, a reaction
time of DAQ on the issued command may take one or more sypercycles.
RC_gui may be killed and started again without affecting on other DAQ
processes.

At the start of new run RC_gui opens a series of windows which allow
the user to set required run duration and trigger type, to decide how to

13



serve warnings and alarms. It also provides possibility to control read-
out electronics modules — to switch modules on or off or to change their
parameters. This can be done for any subdetector in total as well as for
individual modules.

When all these parameters are set by the user, they are saved to several
configuration files with predefined names and other processes can access
them. DT includes the essential part of this information into run status
fragment and into dedicated run header event, so it can be used during
on-line and off-line data analysis.

When the user completes the selection of new run parameters, RC.gui
transmits NEWRUN command to RC, which in turn calls SC functions
to initialize the electronics and only after that retransmits the NEWRUN
command to DT.

All other commands are retransmitted to DT via RC without any ad-
ditional operations.

In order to monitor the data acquisition process a run display (RD)
program was developed. It is also built based on XForms library for XI1
environment. It may run on any host receiving data on-line and displays
some run parameters, current run status, amount of collected events in the
burst and in run, running time, the volume of data in the burst, and so
on. It shows also general information about warning and alarm messages,
and the status of MSGC, DC and FERA VME buffer memories.

7 Slow Control

The purpose of this group of processes is to perform relatively rare and
slow operations like CAMAC modules initialisation, high voltage control
and monitoring, and so on.

The hardware used in DIRAC experiment is controlled by different com-
puters. In order to provide uniform access to all controlled hardware, we
implemented slow control as a distributed system with central dispatcher
which serves (forwards) all calls from client applications to hosts which per-
form real actions with hardware. Such approach allows one to keep track
of the state of the whole system at any moment. Moreover, such approach
made it possible to implement behaviour where certain procedure can be
called only in "compatible" system states. For example, procedures which
change hardware parameters are not allowed when state is "RUNNING"
and central dispatcher rejects such calls.

14



The slow control scheme uses RPC (remote procedure calls), which are
standard part of any UNIX-like OS. Therefore, this set of programs is fairly
portable.

Each host which owns a piece of controlled hardware, should have the
server part (slow control executor) running. Such executor contains some
set of procedures specific for hardware controlled by this host. Client
application which may run on any other host, can call these remote proce-
dures. All requests from client applications do not go directly to executor
programs but instead call some procedures of a central dispatcher. The
dispatcher process serves several purposes:

• It allows one to group several remote procedures in one logical call,
thus making cleaner the code of client applications. For example, at
hardware initialisation several remote procedures should be called —
initialisation of readout modules, loading of parameters, loading of
trigger logic, etc. All these calls to remote procedures are encap-
sulated in one routine of central dispatcher, so client applications
should call only it.

• It hides "implementation details" of remote procedures from client
applications. This helps to minimize efforts in case of changing
some routine, because such modifications should be done only in
one place — in central dispatcher. For example, if it is necessary to
add something to initialisation routine, this should be done only in
the code of the central dispatcher, and client applications which use
it would remain unchanged.

• It keeps track of current state of all DAQ system. This is useful
because some procedures can affect run conditions and should not
be used in certain run states. Having the information about current
run state, dispatcher addresses this problem by selectively rejecting
calls from client applications to such "dangerous" procedures.

• It can communicate with RC (run control) process and can suspend
and resume run. For this purpose, special run state SCJPAUSE
(pause from slow control) is reserved. This functionality is imple-
mented for supporting applications for automatic tuning of setup.
The idea is to allow application program to suspend run, change
some setup parameters (recall, such changes in "RUNNING" state
are rejected by dispatcher), and after that resume the run and collect

15



data with new conditions. We should note that dispatcher allows
such behaviour only when run is in "TUNING" mode. When run
mode is "PHYSICS", all changes of run conditions are disallowed.

8 Conclusion

Programs described above worked several months during DIRAC runs at
the CERN PS accelerator. As these runs showed, the DAQ software works
in a stable way, is reliable and easy to manage.

The whole system was able to accept data from two bursts in an accel-
erator supercycle with up to 1.5 MBytes in each, and to distribute events
to hosts participating in on-line data processing. We should note that this
limitation comes not from DAQ software, but arises from the volume of
VME buffer memories currently used.

9 Acknowledgements
The following people have contributed and are thanked for their help.
V. Karpukhin and A. Kulikov developed and tuned the general trigger
and read-out electronics scheme. I. Manuilov participated in a lot of dis-
cussions concerning the global scheme of DAQ processes and developed a
user library for event access as well as event monitoring code. V. Iazkov
for help in understanding off-line needs. L. Afanasev and M. Gallas for
fruitful collaboration. M. Ferro-Luzzi for the support of work on the initial
stage. D. Drijard and L. Nemenov for fruitful discussions and permanent
support of the work. S. Soulie and G. Polivka for successful solving of
system manager problems. C. Detraz for technical support. Our special
thanks to C. Moine, J. Neiwold, J. Petersen, M. Joos and I. Perrin for
very useful consultations and help in our work. And, of course, to all our
DIRAC collaborators for their understanding of the difficulties in the de-
velopment of DAQ software in a rather limited time and for contributions
in tests and debugging of the system as whole.

References
[1] Proposal to the SPSLC, CERN/SPSLC 95-1, SPSLC/P 284, Geneva,

1994 (updated 1995): Lifetime measurement of ix+-n~ atoms to test low

16



energy QCD predictions. DIRAC collaboration (B. Adeva et al.)

[2] NOTE 96-26 : First level trigger for DIRAC, A. Kulikov (JINR)

NOTE 96-16 : A comment on the level-2 trigger, K. Kuroda (CERN)

NOTE 96-17 : Note on trigger logics, F. Takeutchi (FAROS)

NOTE 96-27 : Third level trigger for DIRAC (versions of implementa-
tion), V. Karpukhin, A. Kulikov (JINR) and V.Yazkov (SINP MSU)

NOTE 96-31 : A note on level-2 trigger logics, M. Kobayashi (KEK)
and K. Kuroda (CERN)

NOTE 97-01 : Ionization hodoscope: a trigger scheme, C. Bricman,
J. Buytart, C. Detraz and M. Ferro-Luzzi (CERN)

NOTE 98-01 : Fast zero level trigger. A. Kulikov (JINR)

NOTE 98-02 : Trigger scheme of the ionization hodoscope. A. Ku-
likov (JINR)

NOTE 98-07 : The complete software-programmable third level trigger
for DIRAC. M.V. Gallas (University of Santiago de Compostela, Spain)

[3] LeCroy Research Systems Catalog, p.108-115, 1999

[4] NOTE 2000-01: MSGC/GEM Detector electronics. F. Gomez,
P. Vazquez, (University of Santiago de Compostela, Spain).

[5] RCB 8-47 CORBO VME Read-Out Control Board, User's Manual,
1993, CES

[6] Software support, CERN,
http://www.cern.ch/ess/os/services/software_support.html

General Purpose Interrupt Handler for the CES RIO2 8060 and the
RTPC 8067 running LynxOS, M. Joos, J. Peteresen, 1996, CERN,
http://atddoc.cern.ch/Atlas/Notes/019/Note019-l.html

CAMAC routines for OS-9/VMEbus CBD8210 Systems. Jorgen Pe-
tersen, Per Scharff-Hansen, 1992, CERN,
http://wwwinfo.cern.ch/ce/ms/os9/papers/CAMAC-OS-9.html

[7] Version Management with CVS, 1992, 1993 Signuni Support AB.
Per Cedegvist et al.

17



[8] The DIRAC Offline User Guide; D. Drijard (CERN), M. Hansroul
(CERN) and V. Yazkov (SINP MSU), 1999, CERN
http://www.cern. ch/DIRAC/Userguide.html#I/O

[9] SHIFT — the Data-Intensitive Physics Analysis Facility, CERN,
http://wwwinfo.cern.ch/pdp/serv/shift.html

[10] Forms Library, A Graphical User Interface Toolkit for X. T.C. Zhao
and M. Overmars, 1996,1997
ftp://einstein.phys.uwm.edu/pub/xforms

Received by Publishing Department
on June 28, 2000.

18


