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Processing of Discrete Nuclear Spectra on Smal 1 
Computers. A. Mathematical Considerations 

This paper is the first in a series of three dedicated 
to the detailed description of the KAT0K-F algorithm.This 
code has recently been revised and re-written in FORTRAN 
after being run on Minsk-2 for nine years. 

The paper shows how the problem to solve appears from 
the basic spectroscopy problem and discusses its main fea
tures: non-1 inearity, ill-condition, over-determination and 
also its approximate and mass character. The mathematical 
means of over-comiog the difficulties due to these features 
are described. 

The investigation has been performed at the Laboratory 
of Nuclear Problems, JINR. 
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1. INTRODUCTION 

Processing of spectroscopic data requires in general 
the solving of a first-kind Fredholm'.s integral equation Ill .. 
In the case of discrete spectra, supposing that a reaso
nably plausible mathematical model of the single line can 
be put forward, this is easily reduced to overdetermined 
nonlinear simultaneous equations (see, e.g.,~/ ).These, 
in turn, break into a series of similar simultaneous 
equations of lesser dimensions 'which can be solved separa
tely. Such a further reduction is not a purely mathemati
cal procedure. Its physical foundation is at least twofold: 
the non-uniform distribution of lines over the spectrum 
which leads to line clustering, and the finite resolution 
of actual spectrometers. One is, therefore, justified to 
state that the original problem of processing discrete 
spectra generates a stream (a multitude) of nonlinear 
problems which are independent but closely resemble each 
other. Each individual problem consists of a certain number 
of overdetermined nonlinear simultaneous equations and cor
responds to a section of the spectrum containing one 
cluster of spectral lines. 

A F¢RTRAN-IV computer code, KAT¢K-F, especially design
ed for automated processing of streams generated is des
cribed below. Automation of the mathematical procedures 
used is meant here; indeed, from operators's point of view 
all the problems of a given stream are as a single (although 
large) one. 

The approach just outlined is neither completely new 
nor quite unkm·,•vn. In particular, an earlier and simpler 
machine-language version of the KAT¢K program is being used 
since 1970 ~'61-Up to date over 100000 spectrum sections have 
been processed, and divergence of the iteration procedure 
implemented was "practically never" /4,n/ observed. 
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The present paper aims at diving full description of 
the KAT¢K algorithm in its latest form. Despite extensive 
usage, details of this algorithm were never published in 
the past (except for in ref.~/ whose distribution is very 
limited). 

2. MATHEMATICAL FORMULATION OF PROBLEMS TO SOLVE 

Let us consider a spectrum section which consists of 
consecutive channels numbered respectively qin, q in+ l, ... ,q end 
with 

m = q end - qin + 1 (2. 1) 

and let the number of pulses registered in the qth channel 
be Y . Suppose that this section contains a cluster of 
peak~ with symmetric Gaussian shape on a background con
tinuum represented by a polynomial of eth degree. Suppose 
also that the section considered is shoYt enough to assume 
an equal Full-Width-atHalf-Maximum (FWHM) h for all the k 
peaks present. Then, taking into account the integration 
of the k pulse distributions within the channels of the 
analyser, and setting for convenience a unit channel width, 
the following m simultaneous equations may be derived '~• 3 / : 

yq (2. 2) 
1 k r j 

----- I S. [J(T . ) - J(P . )] t I a. q 2YTr- i=1 I qi qi j=O J 

where Si is the area of the i -th peak; J(y) is the Gaussial 
error integral 

T. 
qi 

and 

4 

y 2 
J(y) = J e -u du' 

-·y 

T. 
qi 

p qi 

and P 
qi 

q-p i 

a/2--

are respectively 

q-pi-1 
----------

ay'2 

(2. 3) 

(2. 4) 

(2. 5) 

Pi is the maximum position of the i -th peak; a is connec
ted with the FWHM by the relation 

h = 2v'2ln2a, (2.6) 

aj is the j -th coefficient of the background polynomial. 
In (2.2) them quantities Yq are given while the peak 
parameters a, p 

1
, S 1, •.• , Pk, S k as well as the background 

coefficients a
0

, a
1 

•... , ar are unknown. One can easily 
express the nurilber of unknown n as 

n = 2k + r + 2. (2. 7) 

Usually 

n < m, (2.8) 

i.e. the non-linear system (2.2) is overdetermined. It is 
also approximate, since the statistical quantities Yqare 
measured with finite accuracy ~Yq which is estimated by 
means of Poisson's distribution as 

~Yq=v'Yq. (2. 9) 

Another substantial feature of this system is that it is 
very often ill-conditioned which leads to divergent itera
tion processes applied for its solving. In the following 
sections we shall explain in more detail how the ill-condi 
tioning is manifested and how it can be overcome. And, last 
but not least, it should be borne in mind that we have to 
deal not with a single system (2.2) but rather with many 
such systems of various dimensions (i.e., with different 
values of m,k andY) which represent the stream to be 
processed. The number of non-linear problems of the type 
(2.2) in a stream will be denoted as M. 

So far we have considered the number of peaks k in a 
spectrum section to be known. When processing streams ge
nerated by actual spectroscopic measurements, however, 
a limited number of sections may occur where k cannot be 
guessed a priori. In such cases the system (2.~) becomes 
a full problem of the Analysis of latent regularities~/. 
It is highly desirable that the algorithm used to solve 
(2.2) be able to process such full problems as well as 
ill-conditioned systems. If, in addition, this algorithm 
possesses an enlarged convergence domain, we shall term 
it universal. A universal algorithm is the only means of 
solving the multitude of (2.2) systems authomatically, 
i.e., as a single large problem. In our judgement, the 
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KAT¢K-F algorithm has all the prerequisits of a universal 
one. It consists of two distinct parts which will be dealt 
with in section 3 (preliminary processing) and 4 (actual 
stream-line solution of problems (2.2)) respectively. 

3. PRELIMINARY PROCESSING OF RAW SPECTRA 

The preliminary processing of raw experimental data is 
carried out in a man-machine dialogue by means of CRT 
point-display. As such a procedure is beyond the scope 
of this paper it will only be summarized here for the sake 
of completeness. The reader is referred for further details 
to refs.n.s1. 

The procedure of preliminary processing includes the 
following four steps: 

3.1. Sectioning, i.e., breaking the experimental spec
trum into separate sections, each of them contain
ing an isolated cluster of spectral lines which 
eventually may overlap. Sections are later proces
sed independently of each other since they give 
raise to independent (decoupled) non-linear simul
taneous equations. These are said to represent 
a stream of ~imilar non-linear problems. 

3.2. Pointing out a pair of characteristic points for 
each spectral peak observed or suspected. One of 
these points should indicate the peak maximum ancJ 
the other its basis, where it practically becomes 
undistinguishable from the background. No specific 

·order of the characteristic points is prescribed. 
and the basic point can lie either on the left or 
on the right to the maximum one. The co-ordinates 
of the characteristic points are later used to 
·calculate the initial guesses of peak parameters. 

3.3. Selecting the degree of polynomial to fit the back
ground on the section. Since Compton-scattering 
pulses from lines of higher energies are also inclu
ded into the background, this may in general be 
non-monotonous and, accordingly, require a higher
degree polynomial. Most often a linear presentation 
of the background is considered sufficiently accu
rate, however some sections require second, third 
and even higher degrees. 

3.4. Forming a standard formatted data set which repre
sents the input to the stage of final processing. 

Among the above listed steps, 3.4 is the only one which can 
be termed formal; the preceding three steps are for the time 
being extremely difficult (if not impossible) to formalize, 
and their successful completion depends essentially on the 
operator's past experience, intuition and recognition capa
bility. 

As to the format structure of the standard data set, it 
is clearly a question of convention. The one accepted by 
the KAT¢K-F code is presented in Table 1 each row of which 
corresponds to a record in ASCII-code. 

4. ITERATION PROCESSES AND AUXILIARY THECHNIQUES 
FOR SOLVING THE PROBLEMS POSED 

4.1 Iteration Processes 

Let us introduce the notations 

X= col(h,p 1 , S 1 , .•. , pk, Sk, l\J• a 1, ••• , ae) & Rn, 
m 

Y = col (Y q _ , Y q + 1 , ... , Y q ) E R 
m m end 

and rewrite (2.2) in the form 

Y = Fx, 

(4. 1. 1) 

(4.1. 2) 

(4. 1. 3) 

where F & C 1 is the non-linear operator of the right-hand 
side of (2.2). Moreover, if we put 

fx=Fx-Y; f E C 1 • (4.1.4) 

we come to the operator equation 

fx = 0 (4.1. 5) 

which is equivalent to (2.2). As the various components of 
(4.1.5) have different accuracy, we introduce the square 
(rn x rn) weight matrix W 

W = diag(w 
1

• w
2

, ••. , wm), (4. 1.6) 

where 2 
wi = 1/(~Yi) . (4.1. 7) 

Following Aleksandrov ~/ we shall be using the regularized 
iteration process (R-process) for finding the solution 
of (4.1.5) 

xO: xt+l = x t- [V(xt) +a tl]-- 1 f'(xt)Wfx t (4.1.8) 
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Ul 
.1-) where x 0 is the vector of initial guesses and the super-.--1 I 
::l )...! Q) script in general is the iteration number; Ul >. Ul OI:Y>.-i<+-<S::;:: 

.--1 rO Q) 'tl u >=: I:Y> 0 rO f'(xt) is the first derivative (Jacobi matrix) of f at 0 s )...! Q) ·rl >=: Q) 'tl 

~ ' Q) ~ >=:'tl·rlS)...!a> point X t ; 
0 >=: Ul Q) .1-) .1-) 

'tl ..<:: Q) ·rl 0 .-IUlrOUJ V(x t) is the iteration-step matrix, i.e. UJQJ.I-)Ul .1-) P,rO.Q Q) QJ 
)...! Q) )...! Ul Oa>P.S 

>. ::l I:Y> )...! 0 QJ0)...!.£:QJ·rl 
V(xt) = f '(xt)Wf '(xt); )...! .1-) s:: 11< 11< )...! .1-) p, .1-) )...! .1-) 

i (4. 1. 9) rO u ·rl 
)...! ::l .1-) 

.1-) )...! )...! Ul 
·rl-1-lOS:::a> the overscore indicates a transposed matrix; l{j •• ~ g' I I 

Ul .1-).1-)P, I is a unit matrix of rank n; Q) rO>t)...!+JrO )...! Ul s 
.1-) .-I OrO.£: 0 rO 0 at is a regularizing scalar 0 '+-< )...! '+-< .1-) u ..<:: .--1 0 z 0 QJ ::l Ul ...:: 

p, 'tl p, .1-) s:: ·rl 
a t -, a 0 e -rt + a , ·Q 0 Q) s ::l 'tl Q) (4. 1.10) s:: )...! Ul 0 0 )...! ..<:: p, 00 

·rl p, ::l 0 ..<:: 0 ;;: ::l Q) 
)...! .1-) () 0 .1-) 

.1-) '+-< Q) '+-< ·rl Q) )...! )...! QJ r and are experimentally chosen constants, while U) H .Q 0 ;;: 0:: Q) I:Y>.--1 aoo 

1 ao f1 epends on the vicinity of xO to the solution 
'tl ..<:: ~ point x. H -1-l 
001UJUl N MCJ'\1"-00 0 CD CD Note, that in the case of at = 0 (4. 1. 8) is identical () >=: .--1 r- r- r- r- N N 
Q) Q) s:: 0 vt to the classical Gauss-Newton iteration process. A third 0:: .--1 ·rl .Q 

variant may be obtained by setting at= const 19~ 
() Since (4.1. 5) is both approximate and overdetermined, .1-) I ·rl I () 

rO .1-) ·rl shall be looking for its approximate solution x which s I Ul I .1-) we 
)...! Ul ·rl Ul minimizes the normalized solution defect 0 .--1 Ul I H I ·rl 

i; 
QJ.--1 Ul QJ H 
s:: Q) 1 .1-) I CJ 

,-----------
>=: s:: Ul () .1-) / ~~t Wfx t rO s:: I QJ rO I u t 

.-iP, s:: ..<:: rO .--1 )...! rO e = v/ ----------- ' (4.1.11) s:: 0 u ..<:: 1 rO I )...! 
H ·rl u )...! ..<:: rO m-n 

.w Ul I 0 () I ..<:: 

""' 
() ::l Ul ~ () which can be seen to represent the weighted Euclidean I """' (]) 0 ::l I '+-< I 

~ Ul ::l 0 0 0~ '+-< norm of fx. Therefore, x is also a solution in the 1S 'tl I:Y> ::l 1 ....... H'"' C\ll 0 sense 
E-1 s:: s:: ·rl 01 ~0' of the least 
~ rO ·rl .1-) ·rl I '+-< ·~ i>< I 

)...!-"' C\l squares. 
~0' 

s:: .1-) 0 -~ :;... The criterion of minimizing (4.1.11) can only be appli-
.>d .--1 0 s:: I p, I 

QJ () 0 §< p, ' ed if (4. 1. 8) converges with a null regularizer, i.e. in 
' s:: () I ii~CJI a s:: 0 0 ~C\l the case of pure Gauss-Newton process. If regularization ra..--.o I )...! )...! 0' '5 0' 

Ul..C: ....... 01 ·rl becomes necessary, (4.1.11) will be replaced by the beha-.1-) H s:: () .1-) I '+-< I~ ' 
s:: (]) 0 Ul .1-) .1-) 4--1.:;-,.-4 vioristic "long solution-defect" 19/ QJ ·rl ·rl -1-l H ~ I Ul 4--L- _..I 

.1-) '+-< Ul Ul ·rl QJ rO o::: cr o~O' 

>=: ·rl ::;:: s:: )...! '+-< s:: lr-1 Ul i>< I 
:;... 

et = i v.e t-i+1 0 .1-) QJ ·rl Ul (4.1.12) () s:: QJ s '+-< '+-< '+-< I '+-< QJ , I Q) ' QJ N ·rl 0 0 0 .1-);::;- .1-)~ s i= 1 1 
'tl 'tl ·rl 'tl '+-< I m--,.-4 1 m-:::,,.-4 
)...! H UJ 0 UJ Ul UJ Ul s:: 0' >=: 0' whose minimum will be sought for. The long solution-defect 0 s .1-) .1-) I -1-l.--1 ·rl I ·rl 
() s S QJ H S:: S:: >=: QJ 'tl UJ 'tl Ul represents the gliding weighted average of e t over the QJ rO rO .--1 Q) QJ QJ I QJ s:: )...! .1-) I )...! .1-) 
0:: QJ QJ.Q§-1-l-1-l .1-) s:: 0 s:: 0 s:: last s iterations, being the respective weights )...! )..< 0 s:: s:: I >=: rO I ·rl I I ·rl v. 

.1-) .1-) )...! 0 0 0 ..<:: 0 0 0 0 I 
1 

(/) U)P..ZUU I u () U P, I u p, which satisfy the relation 

'tl-1-l I I s H rO N MMI"-1"-1"- r- r- r- 1 :l v. 1. (4.1.13) 
0 s <t: HHHHH I H H I H = 
CJ H ~ M 00 0 '<:)' '<:)' i= 1 1 

QJ 0 M .......... I ....... 
0::'+-< 
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The above-mentioned "vicinit~" of x 
0 

to ;; is evaluated 
in termS Of 0 O ; aCCOrdingly 1 a iS determined aS 

ao 

Ae max 

~ 
BOO 

BOO 
Ae 

0 

0 0 
for 0 ::: 0 max 

0 0 
for 0 < 0 max 

(4.1.14) 

where A,B and Omax are experimentally chosen constants. 
Once chosen at the stage of program debugging and set-up, 
such constants become fixed internal parameters which 
the common user is totally unaware of. 

Once the solution point x has been found, the i -th 
component e~t of the corresponding vector of total 
inherited errors e tot f:.H n is expressed 1111 as 

r--------
tot - · ··1 -

e i = 0 (x) y [V (x)] ii (4.1.15) 

In the case of full problems of the analysis of latent 
regularities V(~ degenerates and inversion becomes 
impossible. Nevertheless, an estimation of etot is still 
according to 191 

r-------------
tot - - - -~ 1 

ei ~O(x)y[V(x)+al]ii, (4.1.16) 

where a is the value of regularizer at the i -th iteration 
when x has been reached. Then, repeating the processing 
of the same section with reduced number of peaks k~ a non
degenerate solution x' may be obtained which renders the 
more accurate error estimation (4.1.15) possible. 

4.2 Calculation of the Components of Vector x0 

The initial guesses of all the unknows are needed for 
starting up the iterations according to (4.1.8) and for 
computing the regularizer initial value aO (in case a re
gularization turns out indispensible). The various com
ponents of the initial guess vector x0 are calculated as 
follows: 

k 
ho =-~- l lq(I)_q(I) I, 

k i= 1 1 2 
(4. 2 .1) 

10 

if y (i) 
q1 

y (i) 
q2 

Po 
I ! 

q(~) 

q (i) 
2 

if y (i) < y (i) 
q 1 q2 (4. 2. 2) 

1.2 .... 'k 

so 
I 

I (i) (i) I ly(i) 
,q 1 - q 2 . i ql - y ~; I I (4. 2. 3) 

i ~ 1,2, .... , k 

Y
(i) y(i) . . 

In case q c q2 for a certaln value of 1, the input 
is consideied irregular and processing of the correspon
ding section is skipped. 

a ~ = min ! Y q I ~ 
q = q in ' q in r 1. ... ' q end ~ 

(4. 2.4) 

a0
1 

" a~ = ... = a~ = 0. (4. 2. 5) 

The geometric foundation of formulae (4.2.1)-(4.2.5) is 
illustrated by Figure 1 on which a simple one-peak 
section is presented. 

4.3 Condition of Matrix 
n 

V(x) and Scaling in R 

As already mentioned in section 2, a well-conditioned 
problem of the type (2.2) is rather an exception to the 
rule. In the lack of an overall condition-number defini
tion for non-linear problems we can evaluate these numbers 
in discrete points 

xO,x1, ... ,xt, ..• <::Rn 

by means of the condition numbers of the 
iteration spet matrices V (x 0 ) , V(x 1), 
this we accept the definition /10/ 

cond V = II VII · ! IV -
1

1 ! 

(4. 3. 1) 

respectively 
etc. To achieve 

(4.3.2) 

where weighted Euclidean norms conjugated with (4.1.11) 
are meant. In single-precision calculations on standard 
computers with four-byte length of floating point variables, 
a matrix V may be considered ill-conditioned in V -~ 

-10 5 7106 and above. Numerical inversion of such matricios 

11 



ro 

,___h. _,, ____ _I 

I 
I 
I 
I 

qin Po 
1 
Fig. I. 

0 0 y- 0 _ -Oo 

~end 

A one-peak spectrum section with characteristic points 
(deliberately inaccurate here, as it happens in actual 
processing) shown as dark circles. The shaded triangle 
represents the initial guess of peak area s~ . 

is usually not accurate enough to allow for stable and 
convergent iteration process. Hence, means to lower 
oond V(xt) should be sought for. 

The search of such means may be facilated by an under
standing of basic reasons which lead to ill-conditioned 
iteration-step matrices. There are two such basic reasons 
in the problems of type (2.2). Although in general an 
ill-conditioned matrix is not necessarily next to genera
tion, in this particular case each of the two reasons in
dividually, as well as their simultaneous appearance, 
lead to both high values of cond V and nearly vanishing detV. 

12 

4.3.1. Suppose we process a section where some pair of 
peaks i 1 and i 2 are positioned very near to each other in 
terms of the FWHM h, i.e. 

lp. - P I « h. 
. 11 I 2 (4.3.1.1) 

Then, if we observe the same order of variables as in 
(4.1.1), it may be shown that 

!IV
111 

+KV
112

11 ~,1(Pi 1 -Pi
2 

), (4.3.1.2) 

2' v where !11,2= 1 1,2' J1 denotes the Jlth column-vector of V 

(or also, row rector, as V is symmetri.c) and ' 1 > 0 tends 
to zero when p. ·•P· .If the norm in (4.3.1.2) were null, 

1 1 12 

it might be said that a linear dependence between the two 
column-(row-)vectors existed. In analogy, we may call 
(4.3.1.2) an equation of ",-quasilinear dependence" 
of V 11 and V11 • Hence, when Pi is close to pi in terms 

rt r2 1 2 

of h, the iteration step matrix tends to degeneration and, 
accordingly, its condition number grows high. 

When applying the iteration formula (4.1.8) with a non
zero regularizer at we effectively destroy the " ' -quasi
linear dependPnce" as at is added to different elements 
of V fl. and V fl. (to those on the main diagonal of V) • 
Therefore, regblarization is a good remedy against ill
conditioned iteration steps caused by peaks close to 
each other. This is of particular importance in the case 
of full problems of the analysis of hidden regularities~/ 
when k is deliberately set higher than the value expected, 
and at the solution point coinciding peaks are expected 
to appear, i.e. a degeneration at the solution point is 
present a priori. 

4.3.2. Suppose now that the same two peaks i 1 and i 2 
do not obey (4.3.1.1) but rather their intensities (areas) 
si and si differ strongly, e.g. 

1 2 

si « si 
1 2 

(4.3.2.1) 

Again, it can be shown that 

jj VJ11 
sit 

II= d------)· II v 11. s. !12 
12 

(4.3.2.2) 
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where fl. 1 , 2 = 2i 1. 2 + 1 -~~!__--+ o. 
Si 2 

and £ 2 tends to zero when 

This fenomenon may be termed " < -quasidegeneration" of 
the iteration step matrix V whose condition number raises 
sharply under these circumstances. One can easily see 
that regularization destroys the < -quasidegeneration too. 
However, the value ofat may not suffice, since it depends 
on the overall precision of vector x 0 and, in addition, 
it falls exponentially with the iteration number. A remedy 
which acts independently of the iteration number and, 
therefore, does not fade out when improving the solution 
xt ,should affect directly the magnitude of areas involved. 
It may consist of introducing individual units for all the 
peak intensities so that they all have the same order 
of magnitude; that is nothing suitable scaling. 

The type of scaling we are going to use is represented 
by the class of square real diagonal non-orthogonal matri
ces 

C = diag (ch, cp 1 cs .... ,c ,cs ,c •... ,c ) 
1 Pk k ao ap 

(4. 3. 2. 3) 

such that 

z = Cx, (4. 3. 2. 4) 

where 

l (h ' ' s' ' s' ' ') z=co ,p1' 1, ... ,pk, k'ao, ... ,ar. (4. 3. 2. 5) 

Evidently, there is no need of scaling h and pi and the 
respective elements of C may be set to unity; C8 . may be 

I 

selected in such a way that all the s; be approximately 
equal. As to c a· , they may be chosen in accordance with 

J 
the average value of the respective degrees ~ on the 
section processed. To avoid raising large numbers to high 
powers the polynomial origin may be suitably shifted. To 
prevent the accumulation of additional round-off errors 
all the nontrivial scaling factors should be integer de
grees of the basis used (2 in our case) . 

Optimum scaling is a problem in itself which so far 
has not been successfully solved. Although we are not in 
a position to prove that the scaling outlined is optimal, 
numerical examples demonstrate its extreme effectiveness 
in lowering the cond V down to 6-7 decimal orders of 

14 

magnitude even in relatively simple cases (e.g. one peak 
with no background). The improvement of condV in more 
complicate spectrum sections is greater than that. 

All the operators of such a scaling can easily be pro
grammed. Since the inverse transformation is precise and 
error-free, it can be carried out prior to results' output. 
Thus the common user may be totally unaware of the whole 
scaling - descaling procedure, just as in the case of 
internal numerical constants used to compute the regulari
zer values a 0 and at . 

4.4 Numerical Effects of Ill-Conditioned 
Iteration-Step Matrices 

If we were able to carry out computations with arbi
trary precision (i.e. with indefinitely large number of 
significant digits) there wouldn't be any troubles in 
dealing with ill-conditioned matricies. Moreover, the very 
idea of ill-condition would be obsolete. Not so, however, 
in actual computers which usually work with 5-7 signifi
cant digits in single precision and, in addition, have 
a limited range of number presentation. Under there con
ditions and in the presence of piling-up roud-off errors, 
an attempt of inverting an ill-conditioned iteration step 
matrix V may result i~ 

4.4.1.Range degeneration; this means that !detV! falls 
outside the lower limit of numbers which are meaningful 
in the computer used. When such a situation occurs (under
flow with respect to det V ) most systems would set det V =0 
without interupting the calculations. From the point of 
view of iterating according to (4.1.8), however, continua
tion of the process becomes meaningless. Hence, obtaininrJ 
a null value of detV during the calculations is a sign 
of irregularities in the process used and necessitates 
a change of the computational regime. 

4.4.2. Round-off change of the matrix type; note that 
by the very method of building V, this matrix is posi
tively-definite.Accordingly,all the diagonal elements of 
its inverse v-t should be positive non-zero numbers. 
Hence, testing the sign of elements (V-)f.Lf-1. may be an ef
fective way of controlling the iteration process. 

4.4.3. Condition divergence of the iteration process; 
this situation may occur when neither 4.4.1 nor 4.4.2. 
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are present but, due to ill-conditioned V, the inverted 
matrix is inaccurate enough to cause divergence of the 
iteration process, i.e. an increasing solution defect 
(} t+ 1 > (} t. One should bear in mind that this may also hap
pen by a number of other reasons (bad initial guesses x

0
, 

erroneous measurements of •Yq' etc.). A practical rule of 
thumb is to ignore all these reasons and to attempt a 
change of the computational regime whenever the iteration 
process shows divergence, as if that were always due to 
an ill-conditioned V. A good reason to follow this rule 
is that an attempted regularization usually broadens the 
convergence domain in addition to lowering oondV ~1 . 

It is a common practice to control the iteration pro
cess by means of the solution defect only. In KAT¢K-F 
use of all the three numerical effects discussed is made 

to achieved this goal. 
The implementation of the approach described will be 

the subject of another paper to appear shortly in the 

same JINR-series. 
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