

E1l0 - 10549

llcnonbaobanne (DL B xauecTBe s3biKa ONMUCAHHA H BHEADEHHH
CHCTeM MaTemaTH4eCKOro ofecrneveHus B HayyHbix uedsx. Y, II

-Mapuuecky J.K.

B pafore xapakTepuayeTcs creudaZbHbi} S3BIK, KOTOpeI# ynoGeH ans
OMUCAHUA CHCTEMHLIX NPOTpPaMM: TPAHCIATOPOB, NMPOFPAMM =~ pefax TOPOB
MOHHTOPOB # T.NM. [IpHBOAMTCS OMUCAHME €r0 OCHOBHBIX CHHTAKCHYECKHX
KOHCTPYKUUHA # OoCOBeHHOCTeH HclONR3oBaHud. TpaHCHsSTOp ¢ aToro a3bika
BHe/peH aBTOpoM paboTw Ha OBM CDC-6500 O!lfil, w B paGore ommcaubi
crnocobbi ofpalleHHs K NAHHOMY TPAHCAATOPY H BO3MOXHOCTH HCIONB3OBA—
HUS A3bika Ha MalluHaX OPYTHX THIOB.

Pa6ora shmonsena B /1a6opaTOpuH BEINHCIHTENLHOR TEXHHKH H aBTO—
matuaaunn O,

Coobwenne O6%enHHEHAOr0 NHCTETYTA SACPHMX Hccnenomaumii. Qy6ua 1977

E10 - 10549

Marinescu D.C.

CDL as a System Implementation Language
in Scientific Environment. Part.II

The special language is characterized which is con-
venient for system program description: compilers, edi-
tors, monitors, supervisors, etc.The definition for its
basic syntactical constructions and some notes about the
possible usage are described. The version of the compiler
for this language has been implemented by the author
for the MC-6500 at JINR, and this report contains the
description for the access to this compiler and some
possibilities of using this language on different compu-
ters.

The investigation has been performed at the
Laboratory of Computing Techniques and Automation, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1977

© 1977 O6vedunennsili UNCRURYR SOCPNMX uccaedosanut Jybua

1.

from the fact that (DL

whenever a practical implementation of a CDL

The pertinent properties of CDL are:
CDL is a reccursive language. This feature is required
in order to give to the language the power to describe well
structured collections of objects. This implies that a stack
to hold all quantities local to a rule must exist.
The language is highly machine and operating system independent.
CDhL has been

designed to be translated towards an abstract machine which

Machine independence results from the fact that

can be easily implemented on practically every computer. On the
other hand the interaction with the operating system (especially
when performing I/0 operations) “takes place via external pro-
cedures which must be written (usually in a low level language)
taking into account the particularities of the machine.

A CDL
environment is created by the user which can define the

program achieves a tremendous simplicity: a running

basic operators he needs, by means of macro actions, flags and
predicates. Thus, the CDL program is highly readable. Since
there is no restriction in naming the different objects
(variables,constants,procedures,etc.) in the computational
space the name gives information about the function.

As stated previously, a high degree of flexibility results

compiler-compiler

is to be made, only the instructions of the abstract machine must

be constructed, usually as a set of macro instructions to be

executed by the processor under consideration.

is translated towards an abstract machine:

The functions of the abstract machine and the corresponding
abstract machine instructions are presented below.

- 1. To reserve space for the two types of data structures
(lists and pointers) there are two instructions (abstract
machine instructions)

ZLISTDEC P1,P2,P3
Pl is the coded name of the list
P2 is the starting address
P3 is the ending address.
ZVARDECL P1
P1 1is the coded name of the variable.
For example the CDL program on the left is translated into the

abstract machine instructions at the right

'POINTER' ALPHA . , ZVARDECL (GO)
"MACRO' 'POINTER' MINTEXT=100001,
MAXTEXT=100101.
"LIST' TEXT(MINTEXT:MAXTEXT) . ZLISTDEC (G1), (100001),
(100101)

The COMPASS expansion of the macro instructions, from CDC-6500
implementation follows:

ZVARDECL MACRO P1

USE DATA

P1 BSS 1
USE 0
ENDM

ZLISTDEC MACRO P1,P2,P3
USE LISTS

P1 CON P$LIST-P2
CON P2
CON P3
PSLIST SET PsLIST+P3-P2+1
USE 0
ENDM

- 2. To reverse space for local labels and to provide jumps
to them, either conditionally or unconditionally, there are
the following abstract machine instructions
ZLABDECL P1,P2
ZJUMP P1,P2
ZPOSJUMP P1,P2
ZNEGJUMP P1,P2
Here Pl stands for the sequence number (or the name of the
label) inside the procedure body.
P2 stands for the coded name of the procedure inside
which the label occured.
For example if in the rule with the coded name G15 appears a

label declaration

the corresponding abstract machine instruction is:

ZLABDECL (ABC), (G15)

and a local label is generated: LABCG15
A request to jump to the previous label is written

according to CDL syntax as

and it is translated as

ZJUMP (ABQ), (G15)

The conditional jump instructions depend upon the state of
a condition code.

The COMPASS expansion of the corresponding macros is:

ZLABDECL MACRO P1,P2
ILeP1eP2 BSS 0

ENDM

ZJUMP MACRO P1,P2
EQ LePlop2
ENDM

ZNEGJUMP MACRO

+ EQ
+ BSS
ENDM

PL,P2
Lo PloP2

ZPOSJUMP MACRO

+ EQ
+ EQ
ENDM

P1,P2
*'._2

L»P1eP2

- 3. The abstract
code switch w
to do that ar

ZRETURNT
ZRETURNF

- 4. The language
switches and
such flags. T
ZTEST Pl
Pl stands
A flag has an addr
refering to the co
depending upon a p
stands for 'true'
ZTEST simply tests

or not.

machine must be provided with a condition
hich can be set and reset. The instructions
e

allows the user to define flags, i.e.,
the abstract machine must be able to test
he instruction to do that is

fér the coded name of the flag.

ess reserved (with a ZVARDECL instruction
ded name of the flag,for example G28) and
reestablished convention some positive value
and some negative stands for 'false'.

if the content of the address is positive

- 5. The abstract machine must be able to branch to a certain

rule and to r
such operatio
ZCALL ADDR,LINE
ZRETURN
Here ADDR is
LINE is
on
We are now in the
between the two ba

and the predicate.

eturn from it. The instructions to perform

ns are

the coded name of the rule.

the line number of the source CDL program
which the call occured.

position to understand the differences

sic rules available in CDL, the action

Let A be an action with two alternatives , Al and A2.

'ACTION' A.

This might be translated as:

ZBLOPEN (G13), (2),(6),(123)
ZLOBND (2),(3)

ZJUMP (999), (G13)
ZLABDECL (1), (G13)

ZLABDECL (999), (G13)
ZRETURN

The body of the first alternative is so expanded, that if it
fails, the code of the second alternative is executed. If Al
succeeds then a jﬁmp to the end of the rule is performed. 1f the
second alternative also fails then a diagnostic informs
'may be false action , actionname '

If we do not inform the CDL compiler-compiler that A is to
be treated as an action , then by default, it is considered
a predicate and translated as

ZBLOPEN (G13),(2),(6),(123)

ZLOBND (2),(3) ’

ZJUMP (999), (G13)
ZLABDECL (1), (G13)

ZLABDECL (999), (G13)

ZRETURNT
ZLABDECL (2), (G13)
ZRETURNF

Here if the first alternative succeeds a branch to the
label L999G13 occures and the rule returns 'TRUE' . The same
thing happens if the first alternative fails but the second
succeeds. But if the second fails too then the rule returns
'FALSE'.

To be more explicit we shall give an example:

'PREDICATE"' ANDREI,

ANDREI+X+Y:
EQUAL+X+0,MAKE+Y+10;
LESS+X+0 ,MAKE+Y+100.

In this example EQUAL and LESS are flags and MAKE is an action;

‘all of them are declared as system macros. The translation is:

ZBLOPEN (G13),(2), (3), (148)
ZLOBND (2),(3)

EQUAL (X2), (=0)

INEGJUMP (1), (G13)

ZLOBND (3),(4)

MAKE (X3),(=10) ___________
ZJUMP (999), (G13)

ZLABDECL (1), (G13)
LESS xX4), (=0)
ZNEGJUMP (2), (G13)
ZLOBND (5),(6)
MAKE (X5), (=100)
ZLABDECL (999), (G13)
ZRETURNT

ZLABDECL (2), (G13)
ZRETURNF

body of the first alternative,
EQUAL+X+0 ,MAKE+Y+10

body of the second alternative
LESS+X+0,MAKE+Y+100

It is now transparent that each alternative of a predicate must
contain either another predicate or a flag. In this example the
flag EQUAL leads to a sequence containing the expansion of the
macro EQUAL followed by a conditional jump to the end of the

first alternative. This illustrates the idea that if a member of an

alternative fails then the whole alternative fails.

On the other hand, for an action each alternative but the
last must be capable of failing (must contain either a flag or
a predicate as a member).

Since a rule is translated in different ways depending
upon its type (action or predicate) it results that when
defining a rule we must use'only other rules which have been

previously defined.

Received by Publishing Department
on April 4, 1977.

