
D.C.Marinescu

CDL AS A SYSTEM

IMPLEMENTATION LANGUAGE

IN SCIENTIFIC ENVIRONMENT.

Part II

EIO - 10549

1977

2848/2-77 pr.
Marinescu,o.c.

D.C.Marinescu

CDL AS A SYSTEM

IMPLEMENTATION LANGUAGE

IN SCIENTIFIC ENVIRONMENT.

Part II

EIO · 10549

.. \\apaHecKy J..K. E10 - 10549
llcno:tb30BBHHe COL B Kattecrse H3bJKa orrucaHusr H sue.apemur

cucTeM !vlaTe~18THttecKoro o6ecrretteHnsr a uay't:£Hhrx uensrx. "4. II

B pa6ore xapaKrepuayercsr crreuaanbHhrll SI3bJK, KOTOpbr:H: y.ao6eH .ansr
OmfCBHHSI CHC:T€MHhJX nporpaMM: TpBHC:tSITOpOB, nporpaMM - pe.llBKl'OpOB,

~lOH(iTOpOB H T.II. npHBO.IJHTCSI OIHICBHH€ ero OCHOBHbfX CHHT8KCHlJeCKHX

KOHCTpyKUHJf H OC06eHHOCTeif HCIIO:tb30B8HHH. TpaHC:tSJTOp C 3TOI'O SJ3biK8

euenpeu aeTopoM pa6oTbl ua 3BM CDC-8500 Ol15Hl, " e pa6oTe orr•caHbJ
CIIOC06bi o6palUeHHS1 K .OBHHOMy Tp8HC:tSJTOpy H B03MO.IKHOCTH: HCIIO:tb30BB­

HH5t 5t3bJK8 Ha M8WHH8X .llpyrHX THIIOB.

Pa6ora s"bmOJIHeHa e Jla6oparopHu BhilJHCnHTeJibHoH rexHHKH H aaro­

MBTH38UHH OHHI!.

Coo6weH&e 06-..e)l&He&aoro RRCTRTYTA a)lepRWX RCC.IIe.IIOBRHRi. ,l!y6Ha 1977

Marinescu 0.C. E10 - 10549

CDL as a System Implementation Language
in Scientific Environment. Part.II

The special language is characterized which is coH­
venient for system program description: compilers~ edi­
tors, monitors~ supervisors~ etc.The definition for its
basic syntactical constructions and some notes about the
possible usage are described. The version of the compiler
for this language has been implemented by the author
for the illC-6500 at JINR, and this report contains the
description for the access to this compiler and some
possibilities of using this language on different compu­
ters.

The investigation has been performed at the
Laboratory of Computing Techniques and Automation, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1977

© /977 06loeduNeNNWU UNC•U•JI• JldepHWX UCCAe008QIIUJiJ(y6Ha

..

The pertinent properties of CDL are:

1. CDL is a reccursive language. This feature is required

in order to give to the language the power to describe well

structured collections of objects. This implies that a stack

to hold all quantities local to a rule must exist.

2. The language is highly machine and operating system independent.

Machine independence results from the fact that CDL has been

designed to be translated towards an abstract machine which

can be easily implemented on practically every computer. On the

other hand the interaction with the operating system (especially

when performing I/0 operations)"takes place via external pro­

cedures which must be written (usually in a low level language)

taking into account the particularities of the machine.

3. A CDL program achieves a tremendous simplicity: a running

environment is created by the user which can define the

basic operators he needs, by means of macro actions, flags and

predicates. Thus, the CDL program is highly readable. Since

there is no restriction in naming the different objects

(variables,constants,procedures,etc.) in the computational

space the name gives information about the function.

As stated previously, a high degree of flexibility results

from the fact that CDL is translated towards an abstract machine;

whenever a practical implementation of a CDL compiler-compiler

is to be made, only the instructions of the abstract machine must

be constructed, usually as a set of macro instructions to b~

executed by the processor under consideration.

3

The functions of the abstract machine and the corresponding

abstract machine instructions are presented below.

- l. To reserve space for the two types of data structures

(lists and pointers) there are two instructions (abstract

machine instructions)

ZLISTDEC Pl,P2,P3

Pl ~s the coded name of the list

PZ is the starting address

P3 is the ending address.

ZVARDECL Pl

Pl is the coded name of the variable.

For example the CDL program on the left is translated into the

abstract machine instructions at the right

'POINTER' ALPHA

'MACRO''POINTER' MINTEXT=lOOOOl,

MAXTEXT=lOOlOl.

'LIST' TEXT(MINTEXT:MAXTEXT).

ZVARDECL

ZLISTDEC

(GO)

(Gl),(lOOOOl),

(100101)

The COMPASS expansion of the macro instructions, from CDC-6500

implementation follows:

ZVARDECL MACRO Pl

Pl

ZLISTDEC

Pl

P $Ll ST

USE

BSS

USE

ENDM

DATA

1

0

MACRO

USE

CON

CON

CON

SET

USE

ENDM

Pl,P2,P3

LISTS

P$LIST-P2

PZ

P3

P$LlST+P3-P2+1

0

4

..

- 2. To reverse space for local labels and to provide jumps

to them, either conditionally or unconditionally, there are

the following abstract machine instructions :

ZLABDECL Pl,PZ

ZJUMP Pl,PZ

ZPOSJUMP Pl,PZ

ZNEGJUMP Pl,PZ

Here Pl stands

label)

for the sequence number (or the name of the

inside the proc~dure body.

PZ stands for the coded name of the procedure inside

which the label occured.

For example if in

label declaration

the rule with the coded name GIS appears a

...... ABC:

the corresponding abstract machine instruction is:

ZLABDECL (ABC), (GlS)

and a local label is generated: LABCGlS .

A request to jump to the previous label is written

according to CDL syntax as

.......... , :ABC , ...

and it is translated as

ZJUMP (ABC), (GlS)

The conditional jump instructions depend upon the state of

a condition code.

The COMPASS expansion of the corresponding macros is:

ZLABDECL MACRO Pl,P2

J,,.pl,.PZ BSS 0

ENDM

ZJUMP MACRO Pl,PZ

EQ lrPlrP2

ENDM

5

ZNEGJUMP MACRO PL,P2

+ EQ Lr PlrP2

+ BSS 0

ENDM

ZPOSJUMP MACRO Pl,P2

+ EQ *+2

+ EQ L" PlrP2

ENDM

- 3. The abstract machine must be provided with a condition

code switch which can be set and reset. The instructions

to do that are :

ZRETURNT

ZRETURNF

- 4. The language allows the user to define flags, i.e.,

switches and the abstract machine must be able to test

such flags. The instruction to do that is

ZTEST Pl

Pl stands for the coded name of the flag.

A flag has an address reserved (with a ZVARDECL instruction

refering to the coded name of the flag,for example G28) and

depending upon a preestablished convention some positive value

stands for 'true' and some negative stands for 'false'.

ZTEST simply tests if the content of the address is positive

or not.

- 5. The abstract machine must be able to branch to a certain

rule and to return from it. The instructions to perform

such operations are :

ZCALL ADDR,LINE

ZRETURN

Here ADDR is the coded name of the rule.

LINE is the line number of the source CDL program

on which the call occured.

We are now in the position to understand the differences

between the two basic rules available in CDL, the action

and the predicate.

6

\

J

\
J

Let A be an action with two alternatives , Al and A2.

'ACTION' A.

A = Al ; A2 .

This might be translated as:

ZBLOPEN

ZLOBND

(Gl3), (2), (6), (123)

(2),(3)

body of the first alternative ,Al

ZJUMP (999),(Gl3)

ZLABDECL (1), (Gl3)
------------·-----------------------

body of the second alte~native ,A2

ZLABDECL (999), (Gl3)

ZRETURN

The body of the first alternative is so expanded, that if it

fails, the code of the second alternative is executed. If Al

succeeds then a jump to the end of the rule is performed. If the

second alternative also fails then a diagnostic informs

'may be false action , actionname ' .

If we do not inform the CDL compiler-compiler that A is to

be treated as an action , then by default, it is considered

a predicate and translated as :

ZBLOPEN (Gl3), (2), (6), (123)

ZLOBND (2)' (3)

body of the first alternative, Al

ZJUMP (999),(Gl3)

ZLABDECL (l),(Gl3)

body of the second alternative, A2

ZLABDECL (999),(Gl3)

ZRETURNT
ZLABDECL (2),(Gl3)
ZRETURNF

7

Here if the first alternative succeeds a branch to the

label L999Gl3 occures and the rule returns 'TRUE' . The same

thing happens if the first alternative fails but the second

succeeds. But if the second fails too then the rule returns

'FALSE'.

To be more explicit we shall give an example:

'PREDICATE' ANDREI.

ANDREI+X+Y:

EQUAL+X+O,MAKE+Y+lO;

LESS+X+O ,MAKE+Y+lOO.

In this example EQUAL and LESS are flags and MAKE is an action;

all of them are declared as system macros. The translation is:

ZBLOPEN

ZLOEND

EQUAL

(Gl3), (2), (3), (148)

(2), (3)

(X2), (;Q)

ZNEGJmiP (1), (Gl3)

ZLOBND (3), (4)

MAKE

ZJUMP

(X3), (;lQ) __

(999), (Gl3)

ZLABDECL (1) , (Gl3)

LESS (X4),(;Q)

ZNEGJUMP (2),(Gl3)

ZLOBND (5), (6)

body of the first alternative,
EQUAL+X+O,MAKE+Y+lO

body of the second alternative
LESS+X+O,MAKE+Y+lOO

MAKE (XS),(;lOOl _________ _

ZLABDECL (999),(Gl3)

ZRETURNT

ZLABDECL (2),(Gl3)

ZRETURNF

It is now transparent that each alternative of a predicate must

contain either another predicate or a flag. In this example the

flag EQUAL leads to a sequence containing the expansion of the

macro EQUAL followed by a conditional jump to the end of the

first alternative. This illustrates the idea that if a member of an
alternative fails then the whole alternative fails.

8

I

I

On the other hand, for an action each alternative but the

last must be capable of failing (must contain either a flag or

a predicate as a member).

Since a rule is translated in different ways depending

upon its type (action or predicate) it results that when

defining a rule we must use only other rules which have been

previously defined.

Received by Publishing Department

on April 4, 1977.

9

