ST

Pees—C csu8 80§30 1] SESsasse

= .»i.,D.Q.Maiix;;géscﬂ :

CDL AS A SYSTEM
~ IMPLEMENTATION LANGUAGE
- IN SCIENTIFIC ENVIRONMENT

—— Patt I ;:‘ ,;;. _7

D.C.Marinescu

CDL AS A SYSTEM
IMPLEMENTATION LANGUAGE

IN SCIENTIFIC ENVIRONMENT.

Part 1

E10 - 10544

-

Mapunecry LK.) E10 . 10544 !

Henomesopagre CDL B EauecTpe A3LKA ONMACAHEA K BHEADEHES
CHCTEM MaTeMATHYeCKoro ofiecmedeHus B Hay9Hmx Measx, H.1

B paBore XapaxTepm3yeTcs CHeLBANbHLIR A3BIK, KOTOPhA yaobed As
ONECARAS CHUCTEOMHLIX NMPOrPAMM: TPAHCIAATOPOB, NPOrPAMM ~ DeAaKTOPOB,
MOHHTOPOBR H T.0t. [IDHBOAMTCH oNAcCaHHE er¢ OCHOBHRIX CHHTAKCHYECKHX
xoACTPYRIRH B ocoSeHHOCTEN UCNOIL3CBaHEA. TDAHCASTOD C 3TOC0 A3HIKA
BHefpeH aBTopom paboTm ua 3BM CDC-8500 CHUAM, & B paGoTe oumcaps
crocobsl oBpamersg X A8HHOMY TPaHCASTODY M BOSMOXHROCTH UCIONb3OBAHES
g3bIXA Ha MAMWHAX ADYTHX TUMOB. - .

Pa6ora memongena 3 flaBOPATOPHH BHYHCAHTANBHON TeXHHKH M ABTO—
matuzanan OHHAH.

Coobmenne O6LenmHeNnoro EHCTETYTA SNEPAMX RCcreacBanmi. Hy6xa 1977

Marinescu D.C. E10 - 10544

CDL as a System Implementsation Language
in Seiepntific Enviromment. Part I

The special language is characterized which is con-
vepient for system program descripticn: compilers, edi-
tors, monitors, supervigors,etc, The definition for its
basic syntactical constructions and some noctes about the
possible usage are described. The version cof the compiler

for this language has been implemented by the author

for the CDC-6500 at JINR, end this report contains the
description for the acces:s to this compiler and some
possibilities of using this language on different compu-
ters.

The investigetion has been performed at the
Labeoratory of Computing Techniques and Automation, JINR.

Communication of the Joint Institute for Nuclear Research. Dubha 1977

@ 1977 OCwedunennstid uNCERUNYN Xoepusx uccaedoeanul Jytna

Introduction

It is a proven fact that scientific communities require spe-
cial software to be designed to fit their demanding needs.

Such communities are very sensitive to what it is generally
called "user convenience" and this is reflected into a conside-
rable effort to bring the machine closer to user wishes. Also a wide
spectrum of machines are generally in use and it is always a prob-
lem to make the facilities available on one machine, work on the
others.

Consequently a lot of work is done, under completion or planned
to be done in such areas as programming language and operating
system development practically at every research center with com-
puting facilities.

A system implementation language is an extremely useful tool
which can cut down drastically the expenses related to a new system
project and can reduce the time needed for its completion.

CDL (Compiler Description Lahguage) is a high level which
can be profitably used as a system implementation language; com-
pilers for it are available on most machines currently used in
scientific communities {CDC, TBM, PDP, etc.). It is well suited
for writing system programs (compilers, utility programs, editors,
and even monitors}. Even such sophisticated systems like REDUCE
will be in the near future written in CRL. A great advantage comes
from the fact that the number of peecple using CDL is growing

faster.

CDL has been developed (at the Technical University of West
Berlin hy Professor Kester) primarily as a compiler writing system;
now it is undergoing revisgion and a new version CDLZ will be

avazilable soon.

1. CbL extension on syntax directed compiling techniques

There is an intimate relation between a programming language
and a coempiler for that language; that means that as soon as we
arc able to construct a formal descripticn of a programming language
we should be ahle to provide the formal definiticn of a compiler
for the language. Such an idea is very attractive since from such
a formal definition we can dream some means to automatize the compi-
ler built-up.

But as we know the two mechanisms, the language syntax and its
semantics, cannot be separated from each other when defining a com-
piler for thelanguage;the syntax enables us to recognize all the
sequences of characters which are valid sentences in the language
and to derive parsing trces for them while the semantics attaches
a mezning to a parsing tree of a correct program.

The formaiization of the syntax is well mastered today via
syntax directed techniques but there is no formalization of the
semantics. As a result, manual techniques are the only sclution teo
consider when semantic actions are to bhe included into the compiler.

Compiler Description Language aims to extend the use of syntax
directed techniques so that all but the very kernel of the seman-
tics of a compiler can he defined by syntax and only that kernel
must by defined by other means.

Thus, a compiler written in CDL is machine independent but for
a small set of primitive actions implemented as macres in the ma-
chine language of the host computer.

Koster /1. 2/ provided a CF grammar (Context Free) with several
extensions:

- affixes as a mechanism for parameter communication to and from
a procedure;

- actions embedded into syntax;

- jumps and labels;
~ global variables.

The result is a beautiful high level programming language well
suited not only for compiler writing but for the most of the
problems a system programmer is faced with.

2. CDL specifications

There are four types of symbols accepted as the hbuilding
stones of CDL:

a. The tags; they fill the namec space of a CDL program. A tag
consists of a letter, possibly followed by a number of letters
of digits between which spaces are ignored.

b. The constants; a constant is a sequence of digits between
which spaces are ignored.

c. The special symbols; + - *; (=) ,

d. The beld symbols; they are defined as strings cof characters
other than accents, enclosed between accents. There are several
reserved bold symbols used to:

dl. establish the type of a user defined tag;

d2. name the parameters of a procedure and the result;

d3. define a command for the compiler..

Ezch tag (name) has associated with it three attributes:

- the type attribute;

- the state attribute;

- the soft attribute.

These attributes are specified using the reserved hold symbols of
class di (see table 1).

’

Table 1. The reserved bold symbols.

class dl class d2 class 43
'external! 'restore! ot
taction’ 'unrestore’ vzt
‘pointer’ 'trace' '3
“flag’ 'untrace’ T4
'macro' *long' A5
'list’ tshort! 'result!

The type attribute asscciates an object with a given name
with one of the six classes of objects which are handled by CDL:
flags, actions, predicates, peointers, lists, labels,

The flags arc used to test bivalent conditions; feor example the
flag EQUAL+X+Y which tests if its first parameter X is equal to

the second one, Y, can be defined as:

'MACROY 'FLAG' EQUAL
EQUAL="1"="'2"%,

The actions and the predicates are the two types of procedures
available in the language. While a predicate can return either z
true or a falsc value, an action always returns a true value. Both
of them can have. parameters and local variahles; as an example

the action INCR+X which adds I to its only argument can be defined:

TMACRO' 'ACTTON' TNCR.
[KCR="17:='1"+1.

Now we will define the predicate ADD ONE+X+Y which tests if its

paramcters arc equal and if so, increments the first one:

"PRENDICATE! ARD QONE,
AT ONE+X+Y:
EQUAL*X+Y, TNCR+X.

The pointers and the lists are the only data structures available
in CDL; the pointer corresponds te the scalar and the list to the
linear array of data. In the following example the pointer ALPHA

is defined and initialised with the value 1200 and the array BETA
of 1200 elements is defined:

'MACROT™ "POINTER"™ ALPHA=1200,
'LIST' BETA(1:ALPHAY.

The labels are used to identify the beginning of a sequence; jumps
to labels provide the means to execute repeatedly a sequence of
operations,

The second attribute of a tag is the state attribute; the
state of a tag can be: defined or rapid.

The third attribute of a tag is thec sort attribute; it defines

the domain of a tag. There are three sorts:local,global and macro.

Table 2 presents a summary of the attributes which correspond

to certain specifications.

Table 2
Tags attributes and their specificaticn

Tag specifications State Sort Type
'external' 'action” defined global action
'external' 'predicate' defined global predicate
'external' 'pointer’' . defined global peinter
'external' 'flag' defined global flag
'action' applied global action
‘predicate’ . applied global predicate
'macro’ 'action' . defined macro action
;macro' ‘predicate! defined macro predicate
'macro’ *flag' defined macro flag
'macro' fpointer’ defined macro pointer

As far as the structure of a CDL program is concerned there
are six types of statements:; specifications, declarations, commands,
comments, rules and starting symbeol statements,

The specificaticns and the declarations are used to define
the attributes of a tag. It should be noted, that there are default
specifications; for example for a procedure an internal specifica-
tion 'predicate' is alwafs assumed so that whenever we want to
define an 'action' we must specify it explicitly.

The commands are grouped together into three pairs:

'restore’, 'unrestore' {default is 'unrestore!)
‘long' , ;short' {default is 'short')
*trace' , 'untrace’ (default is 'untrace').

The commands are used to establish a certain mode for the compiler-
compiler itself. The first pair defines the parsing mode; the
restore parsing allows a more efficient backtracking. The second
pair controls the output of the compiler-compiler; the short mode
suppresses the layout characters embedded into the cutput strings.
Tracing mode determines the printing on the cutput of all attributes
of all locals and globals.

The comments are included into the CDL program for the sake
of readability.

The rules are the executable statements of the CDL program.
Fach rule consists of a set of alternatives separated by semicoclons
(;) and the last alternative is terminated by a period (.). In turn
each alternative is a sequence of members separated by commas {,).
When a rule is executed the alternatives are tried in the order of
occurrence; il one alternative succeeds, the whole rule succeeds
and is thus terminated., If it fails, the next alternative 1Is tried
until eventually onec of them succeeds or if none of them does it, the
rule itself fails. All the memhers of an alternative must succeed
in order to have a successfull alternative. A good way of representat-
ing intuitively the flow of control in a CDL program is the follow-
ing: we write the alternatives of a rule on a single line (what~
ever long that line might turn out to be), one alternative under
the other. When successful, the control goes on the horizontal line
from left to right until the semicolon is encountered but when
unsuccessful the ceontrol descends on a vertical line. CDL has a
block structure, each rule being a block which can communicate
with the others via its parameters; the parameters are either called
by name or by reference. There arc also local variables of a pro-
cedure.

The starting symbol defines the action which has to be execut-
ed to produce the desired result,

3. Programming in (DL

We want to present here examples of small CDL programs and

to show the organization of a realistic compiler written in

CDL, in order to get some insight into the nice features of. this
programming language suitable for system program design.

A CBL program runs in a certain environment created with the
aid of a library eof macros and functions; we sould not be mislead
by the striking simplicity of the CDL program itself since a lot
is going behind the sence.

First we.present a program which reads 2 string of characters
and prints it in reverse order. :

'MACRO''POINTER' NLCR CODE=110.
'EXTERNAL' 'ACTION® RESYM,PRSYM.
'ACTION' COPY REVERSE.
COPYREVERSE - CHAR
RESYM + CHAR , EQUAL + CHAR + NLCR CODE ;
COPY REVERSE , PRSYM + CHAR .
'RESULT' COPY REVERSE.

Here the enviromment will contain the read and print symbel routi-
nes, the definition of the character NLCR, the EQUAL macro. The
last program statement informs that the result is expected from
the execution of the COPY REVERSE procedure (in fact, the only
procedure of this program). The action COPY REVERSE has two alter-
natives; the first one reads a character from the input string and
fails unless this character is a NLCR. Control is thus passed to
the second altermative which implies a reccursive call of the
acticn COPY REVERSE and when this call is successful the character
is printed. So that the characters in the input st}ing are read and
stacked and only when the NLCR character is found, then the first
time the procedure is successful and starts printing from the top
(last character read) to the bottom.(first character read) of the
stack. This procedure has a local variable CHAR which appears as
a parameter for the external actions RESYM, PRSYM and for the
EQUAL predicate.

We shall now present the organization of a real life compiler
written in CDL (examples are taken from the CDL to ALGOL 60 compi-
ler written for CDC 650C by J.Jackel). The compiler is organized

into four sections. The first section creates the running environ-
ment. Here there are specified :
- the commands establishing the compiler mode;
- the external procedures used mainly for 1/0;
- the definitioen of different characters used by the language
to be translated (CDL);
~ several flags which test if digit, letter, specification, etc.;
- the basic macres for elementary operations;
~ global variables.

Samples from the actual code of this section are given below.

'LONG'
*RESTORE"
*EXTERNAL''ACTION' RESYM, PRSYM,EXIT,NEW PAGE.
"MACRO''POINTER' SPACE CHAR=105,TAB CHAR=109,NLCR CHAR=110,

ACCENT CHAR=104,QUOTE CIIAR=87,NULL CHAR=54.
"MACRO' "FLAG'

WAS LETTER=('1" ~ 27} '"AND"' ('1'<54)},

WAS DIGIT ={'1" ~53) " AND"' ('1% 64),

WAS LETDIG=('1' >27) 'MAND™' ('1'< 64},

WAS SPECIFICATION® ("1'+63)'"AND"t (11'<104)
*MACRO' ' ACT LON?

MAKE f1':='2"

DECR='1':='1'-1,

ADD =t3ti=t2rter]r

SUB ='3':=121-11"

DIVREM = '3':=t1tin/ue 120, PXRTES R AR

MARK="1':=-'1" .

,

The seeund‘section is devoted to the input and output processing.
The main action to perform the printing is:

10

tACTION' OUT,
OUT +X -Y
WAS TAG +X, PRINT TAG «X ;
WAS BOLD+X, PRINT BOLD+X ;
WAS SPECIFICATION+X,PRINT SPECIFICATION+X ;
WAS CONSTANT +X,GET CONSTANT+X+Y,0UTINT+Y;
OUTINT +X.

flere the four flags (WAS ...symbol type) identify the parameter
X as a certain type of symbol (tag,bold,specification,constant)
and directs the printing of it. OUTINT is an action to print an

integer and uses several other actions which will also be defined:

*ACTION' QUTINT,CUTINTL, SPACE,SPACES,KLCR.
OUTINT +X -QUOT =REM : :
SPACE,) ,
LESS+X+0,MAKE+REM+X , MARK+REM, PRCHAR+MINUSCHAR , OUT INT L +REM;
EQUAL+X+0, PRCHAR+NULLCHAR, SPACE;
D TVREM+X+10+QUOT+REM, QUT INT1+QUOT , ADD+REM+ 54 +REM, PRCHAR+REM,
C SPACE.
OUTINT1+X-QUOT-REM:
EQUAL+X+0;
DIVREM+X+10+QUOT+REM, QUTINT1+QUOT, ADD+REM+54 + REM, PRCHAR+REM.
SPACE: .
PRCHAR+ SPACECHAR.
SPACES+X-N:
MAKE+N+Q, ‘
START: LESS+N+X,SPACE, INCR+N, :START,

Here is the first time we use a label (START:)} and a branch to it,
(:START}. The action SPACES outputs a number X of space characters.

n

PRCHAR+X:
EQUAL+X+NLCRCHAR,NLCR;
FQUAL+X+TAB CHAR, SPACE 548 ;
EQUAL+X+NIX;

PRSYM+X, INCR4POS,

Here it should be noted, that PQJS is a
the pesition on the output line; it is

is printed and reseted when a new line

global variable which defines
incremented when a character

should start.

NLCR:
PRSYM+NLCR CHAR,MAKE+P0OS5+0.

The third section of the complier
and translation of CDL rules.
The fourth section is the nucleus

deals with the reccgnition

of the compiler.

YACTION!
SENTENCE:

SENTENCE, START SYSTEM,COMPILER DESCRIPTION.

START SYSTEM, BLANK LINE,NEW LINE,PRINT HEADER+START,
COMPILER DESCRIPTION,NEW LINE,PRINT HEADER+END,BLANK LINE,

NEW PAGE,POST MORTEM,
COMPILER DESCRIPTION:

START: SPECIFICATION, :START;
DECLARATION, :START;
COMMAND, :START;
COMMENT, :START;
STARTING SYMBOL;
RULE, :START;
SKIP UNTIL POINT,
"RESULT' SENTENCE.

:START.

12,

4,

The flow of control in a

CDL program

The output of the DL te COMPASS compiler-compiler is a set

of COMPASS pseudo-instructions and macro ¢alls. We present in

table 3 the expansion of one of the programs listed in the previous

section,

Table 3
COMPASS expansicn of a CDL program

STM

ChL statement

COMPASS statement

155
156

157
158

159
160

161

162

IDENT
XTEXT
GET MACRO
PUT MACRO
ZINIT

'"MACRO' ' POINTER'NLCRCODE=110
"EXTERNAL' ' ACTION'RESYM, PRSYM : EXT

TACTION' COPY REVERSE.
COPY REVERSE - CHAR :

RESYM+CHAR,

EQUAL+CHAR+NLCRCODE;

COPYREVERSE, PRSYM+CHAR.

'RESULT?

COPYREVERSE

EXT
ZBLOFEN
ILOFREE
ZCALL
EGUAL
ZNEGJUMP
2JUMP
ZLABDEGL
ZCALL

ZLOFREE

ZCALL
ZLABDECL
- ZRETURN
ZENTRY
ZSTCALL

CDL
CDLTEXT
P1,P2
P1,P2

RESYM
PRSYM
(G0, (0], (4),(158)
(13,(3)

(RESYM}, (159)
(B4+3), (=110)

(1), (GO}
(999),°(G0)

(13, (GO)

(G0), (161)

(1), (3

(PRSYM}, (161)
(599), (GO)

(60Y, (162)

13

We can see in table 3, that the pseudo-instructicn XTEXT
informs the COMPASS assembler that the deck named CDLTEXT (from
the file OLDPL, since no X parameter is to be specified on the
COMPASS control card-see next section for the program deck-) is the
sgurce which contains the text of the macros listed beloy this
instruction, New versions of the macros GET and PUT have been
defined ; during the COMPASS assembly twe warning messages inform
the user, that new versions of these two macros are overriding
the old ones.

The control goes first to the macro INIT and the message
'"START OF THE CDL PROGRAM' acknowledges the beginning of the program
execution; then the control is passed to the RUN TIME ROUTINES
{entry point CDLSYS) when base register initialization takes place.
The macro ENTRYPOINT activates the TERMINALS when requests like
IKITIALTZE FOR READING occur. The macro CALL provides linkage to
different externally defined actions as requested by the user.
Finally, the macrto STARTCALL provides the necessary action for the
'RESULT' rule in the user program. The return in tHe‘RUN TIME
ROUTINES {to the entry point CLOéH] and the message 'END OF CDL
PROGRAM! are associated with the termination of the program execution.

5. The availability of CDL

There are two high level versions of the CDL compiler-compiler;
cne is written in ALGOL 60 and the other in CDL. Also a low level
version for the CDC 6500 computers, written in COMPASS, is available,

We have installed here at Dubna on the CDC 6400 machine only
the low level version since we believe that it is far more efficient
that the other.

It should be pointed out that CDL compiler-compilers are
available on a variety of computers : IBM 360 and 370, RIAD,
cbC - 6000, PDP-11, etc. The bootstrapping technique can be used
to construct CDL compiler-compilers for practically every avail-
able computer; with a reasonable effort such a compiler has been

desigried for the R 10 computer ‘¥,

14

The great advantage of using CDL when writing system programs
(compilers, editors,librarians,utility programs, etc.) results
from its power to describe well structured collections of objects.
For example the CDL to ALGOL 60 compiler-compiler centains less
than 200 rules; the readability of such a program is tremendous
as compared with an assembler written program performing the same
functions.

On the other hand, a CDL written system program can always
bc tested on a powerfull machine and only when successfully runs,
there it can be installed on any of the machines provided with a
Cbl compiler-cempiler.

The suggested set-up for the job when a compilation and an

execution of a CDL written program is desired is:

JORCARD, CM55000,T200,
ATTACH,CDLSYS, ID=COMP ,MR=1.
ATTACH,OLDPL,CCL.1B, ID=COMP ,MR=1,
ATTACH,ANDY1, TD=COMP MR=1.
UPDATE,Q,D,C=CARDIN.

MAP,ON.

LOAD, ANDY1,CDLSYS.
EXECUTE, , [=CARDIN,=CARDOUT.
REWIND, LGG,CARDOUT .
LOAD, LGO, CDLSYS.

EXECUTE.

end of record

*COMPILE PRE,MACLIR

end of record

*ALBDFILE

*PECK PROG

end of file

15

Three permanent {iles CCLIE,CDLSYS and ANDY1 are used. The file
named ANDY1 contains the compiler-compiler itself in the lcadable
format. The CHLSYS file contains the CDL RUN TIME ROUTINES.

Both files must be loaded into the LCO file to create the running
envirenment for the compilation step {CDHL to COMPASS); this is

cxecuted as requested by the folleowing control cards:

LOAD,ANDY] , CDLSYS.
EXECUTL, , I=CARDIN, C=CARDOUT.

The input file for the previocus step (CARDIN} is created using the
UPDATE pregram:

UPDATE, Q, D, C=CARDIN.
end of record
YCOMPILE PRE,MACLIE
end of record

*ADD FILE

"NMiCK PROG

end of record

The new library created by the VPDATE program (the file named
CARIMIN] will centain: the deck PRE {the PRELUDE), the deck MACLIB
(this contalins a library of procedures used by the CDL program),
the deck PROG (the user CDL program).

As a result of the CDL to COMPASS translation the file
CARDQUT is produced. The following control cards will direct the
COMPASS assembly, the loading and the execution of the program:

COMPASS, 1=CARDOUT.
LOAD, LGO, CDLSYS.
EXECUTE.

A final point is that in our version the follewing characters

are to be used:

16

- the colon (:) is to be replaced by the percentage character
{$) with the BCD code 16 and the punching code 8-6.

- the apostrophe (') used tc define the held symbels has BCD
code 55, punch code 11-8-5 and will be printed as t character.

References

1. Koster C.H.A. A compiler-compiler MCA-Report, 121, 1971.

2. Xoster C.H.A. Using the compiler-compiler, Chapter 4 in Compiler
Construction; Sprinpger 1974,

3. Jackel Joachim C. Bootstrap Eines CDL-Compiler Auf Die CDC 6500
Technische Universitdt Berlin, April 1875.

4. Jackel Joachim C. A CDL compiler-compiler for the R 10 mind-

computer. In Minicomputer Forum 1975,

Received by Publishing Department
on March 30, 1977.

17

	10544.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22

