
~9\/0(°

M-3o

i 3 b j /t -1- 'f

D.C.Marinescu

CDL AS A SYSTEM

IMPLEMENTATION LANGUAGE

IN SCIENTIFIC ENVIRONMENT .

Part I

ElO - 10544

D.C.Marinescu

CDL AS A SYSTEM

IMPI,EMENTATION LANGUAGE

IN SCIENTIFIC ENVIRONMENT.

Part I

ElO - 10544

EIO • 10544
l1cnoJ'Ibaoeaa11e CDL s Ka"lecTee i13hJKa orrncattHSI 11 e11e.11peHllst
CHCTeM MB.TeMaTH'leCKoro o6ecne"leHH.!l B Hay"IHb!X lleJIS!X. G:. I

B pa6oTe xapaxrep11ayeTCSI CilBl!HB.JibHbIA Sl3bJK, KOTOph!A y.o.o6en JlJI51
Ol1HCBHHSJ CllCT9MHblX nporp&MM: TpB.KCIISITOpOB, nporpB.MM - pe.O.aKTOpoe,

MOKHTOPOB H r.n. npHBO/lHTCH omi:camre ero OCHOBHbJX ClfHT8.KCll'iBCKllX

xo11cTpyKIXHA 11 oco6ea11ocTeA 11Cl1011b30Bafrn:si. TpaHcns;Top c aToro Sl3hlKB.

eae,o;pea aeTOpOM pa60T1:>1 HB 3BM CDC-6500 OH.RM, 11 e pa6oTe onHCBHhJ

cnoco6w o6pamBIUISI K ll8HHOMy Tpa!ICIHITOPY H B03MOJKHOCTH HCl101lb30B8HliHI

Sl3blK8 Ha M81.IHl'.HB.X ltpyrHX T11noe.

Pa60TB Bbl00JIKBH8 B fla6oparop1111 Bhl<iHClllJTBllbHOA TBXHllKH II aBTO­

M8TH3BllHH OJ.15111.

Coo6me••e Ofiwuaeaaoro •ac:TaTYT.& •J1ep11wx ac:cne.11oaaui. ,Ily6Ha 1977

Marinescu D.c. EIO • 10544

CDL as a System Implementation Language
in Scientific Environment. Part I

The special language is characterized which is con­
venient for system program description: compilers, edi~

tors, monitors, supervisors,etc, The definition for its
basic syntactical constructions and some notes about the
possible usage are described. The version of the compiler
for this language has been implemented by the author
for the CDC-6500 at JINR, and this report contains the
description for the access to this compiler and some
possibilities of using this language on different compu­
ters.

The investigation has been performed at the
Laboratory of Computing Techniques and Automation, JINR.

Communication of the Joint lnaUtute for Nuclear Research. Oubna 1977

Introduction

It is a proven fact that scientific communities require spe­

cial software to be designed to fit their.demanding nee<ls.

Such communities are very sensitive to what it is generally

called "user convenience" an<l this is reflected into a conside­

rable effort to bring the machine closer to user wishes. Also a wi<le

spectrum of machines are generally in use and it is always a prol1-

lem to make the facilities, availahle on one machine, "'ork on the

others.

Consequently a lot of work is done, un1ler completion or planne<l

to be done in such areas as programming language and operating

system development practically at every research center with com­

puting ,facilities.

A system implementation language is an extremely useful tool

which can cut down drastically the expenses related to a new system

project and can reduce the time needed for its completion.

CDL (Compiler Description La,nguage) is a high level 1".•hich

can be profitably used as a system implementation language; com­

pilers for it are available on most machines currently used in

scientific communities (CDC, IIM, PDP, etc.). It is well suited

for writing system programs (compilers, utility programs, editors,

and even monitor.s). Even such sophisticated systems like REDUCE

will be in the near future written in CDL. A great advantage comes

from the fact that the number of pecple using CDL is growing

faster.

3

CDL has been developed (at the Technica1 University of West

Berlin liy Professor Koster) primarily as a compiler writing system;

now it is undergoing revisjon and a new vcrsio11 CDLZ will be

available soon.

l. CDL extension o~ax directed compil i!~.8 techn~es

There is an intimate relation between a prograrnmlng language

;ind a compiler for that language; that means that as soon as we

arc able to construct a formal description of a programming language

we shouJJ be able to provide tl1e formal definition of a compiler

for the language. Such an idea is very attractive since from such

a formci.l definition we can dream some means to automatize the compi­

ler built-up.

But as we know the two mechanisms, the language syntax and its

semantics, cannot be separated from each other when defining a com­

piler for thelanguage;the syntax enables us to recognize all the

seq11ences of characters which are valid sentences ln the language

and to derive parsing trees for them while the semantics attaches

a meaning to a parsing tree of a correct program.

The formalization of the syntax is well mastered today via

syntax directed techniques but there is no formalization of the

semantics. /\s a result, manual techniques are the only solution to

consider when semantic actions are to be included into the compiler.

Compiler Description Language aims to extend the use of syntax

directed techniques so that al 1 but the very kernel of the seman­

tics of a compiler can be defined by syntax and only that kernel

must by defined by other means.

Thus, a compiler written in COL is machine independent but for

a smalJ set of primitive actlons implemented as macros in the ma­

chine language of the host computer.

Koster /1, 2 / provided a CF grammar {Context Free) with several >

extensions:

affixes as a mechanism for parameter communication to and from

a procedure;

actions embedded into syntax;

4

jumps and labels;

global variables.

The result is a beautiful high level programming language well

suited not only for compiler writing but for the most of the

problems a system programmer is faced with.

2. CDL specifications

There are four types of symbols accepted as the building

stones of CDL:

a. The tags; they fill the name space of a CDL program. A tag

consists of a letter, possibly followed by a number of letters

of digits between which spaces are ignored.

b. The constants; a constant is a sequence of digits between

which spaces are ignored.

c. The special symbols; + - *; (=) , :
d. The bold symbols; they are defined as strings of characters

other than accents, enclosed between accents. There are several

reserved bold symbols used to:

dl. establish the type of a user defined tag;

d2. name the parameters of a procedure and the result;

d3, define a command for the compiler.

Each tag (name) has associated with it three attrihutes:

the type attribute;

the state attribute;

- the soft attribute.

These attributes are specified using the reserved hold symbols of

class dl (see table 1).

Table !. The reserved bold symbols.

class dl class d2 class d3

'externa 1 ·' 'res.tore' '1'
'action' 'unrestore' '2'

'pointer' 'trace' '3'
'flag' 'untrace' '4'
'macro' 'long' .' 5'

'list' 'short' 'result'

5

The type attribute associates an object with a given name

with one of the six classes of objects which are handled by CDL:

flags, actions, predicates, pointers, lists, labels.

The flags arc t1seJ to test bivalent conditions; for example the

flag EQUAL+X+Y which tests if its first parameter X is equal to

the second one, Y, can be defined as:

'FLAG' EQUAL

LQlli\L""' l '=' 2'.

The actions and the predicates are the tv,·o types of procedures

availnble in the language. While a predicate can return either a

true or a false value, an action always returns a true value. Both

of tJiem can have. parameters and local variables; as an example

the action INCR+X which adds l to its only argument can be defined:

'MACRO' 'AC:TJON' TNCR,

I.l\CR='l':"''l'+l.

~ow we will define tlic predic11te A!lll ONE+X+Y whicl1 tests if its

parameters arc cq11al and if so, increments the first one:

'f'REIJICATE' J\Jl/) ONE.

Allll ONE+X+Y:

F.QUAL+X+Y, fr\CR+X.

·rhc pointers an1l the lists arc the only <lata structures available

in CDL; the pointer corresponds tc the scalar and the list to the

linear array of data. In the following ex:imple the pointer ALP!~

is defined and initialised with the val11c 1200 and the array BETA

of 1200 elements is defined:

':tv!ACRO' 'POfNTER' i\LPl!A=1200.

'LIST' RETJ\(l:/\LPl!A).

The lahels arc used to identify the beginning of a sequence; jumps

to labels provide the means to execute repeatedly a sequence of

operations.

The second attribute of a tag is the state attribute; the

state of a tit~ can be: defined or rapid.

The third attribute of a tag is the sort attribute; it defines

the domain of a tag. There are three sorts:local,global and macro.

6

Table 2 presents a summary of the attributes which correspond

to certain specifications.

Table

Tags attributes and their specification

Tag specifications State Sort Type

'external' 'action' defined global action

'external' 'predicate' defined global predicate

'external' 'pointer' defined global pointer

'external' 'flag' defined global flag

'action' applied global act ion

'predicate' applied global predicate

'macro' 'action' defined macro actiOn

'macro' 'predicate' defined macro predicate

'macro' 'flag' defined macro flag

'macro' 'pointer' defined macro pointer

As far as the structure of a CDL program is concerned there

are six types of statements: specifications, declarations,commands,

comments, rules and starting symbol statements.

The specifications and the declarations are used to define

the attributes of a tag. It should be noted, that there are default

specifications; for example for a procedure an internal specifica­

tion 'predicate' is always assumed so that whenever we want to

define an 'action' we must specify it explicitly.

The commands are grouped together into three pairs:

'restore', 'unrestore' (default is 'unrestore')

'long'

'trace'

'short'

'untrace'

(default is 'short')

(default is 'untrace').

7

The commands are used to establish a certain mode for the compiler­

compiler itself. The first pair defines the parsing mode; the

restore parsing allows a more efficient backtracking. The second

pair controls the output of the compiler-compiler; the short mode

suppresses the layout characters embedded into the output strings.

Tracing mode determines the printing on the output of all attributes

of all locals and globals,

The comments are included into the CDL program for the sake

of readability·.

The rules are the executable statements of the CDL program.

Each rule consists of a set of alternatives separated by semicolons

(;) and the last alternative is terminated by a period (.). In turn

each alternative is a sequence of members separated by c.omm0;S (,).

~~en a rule is executed the alternatives are tried in the order of

occurrence; if one alternative succeeds, the whole rule succeeds

and is thus terminated. If it fails, the next alternative is tried

until eventually one of them succeeds or if none of them does it, the

rule itself fails. All the members of an alternative must succeed

in order to have a successful! alternative. A good way of representat­

ing intuitively the flow of control in a CDL program is the follow­

ing: we write the alternatives of a rule on a single line (what-

ever long that line might turn out to be), one alternative under

the other. \\'hen successful, the control goes on the horizontal line

from left to right until the semicolon is encountered but when

unsuccessful the control descends on a vertical line. CDL has a

block structure, each ruJ.e being a block which can communicate

with the others via its parameters; the parameters are either called

by name or by reference. There arc also local variables of a pro­

cedure.

The starting symbol defines the action which has to be execut­

ed to produce the desired result.

3. Programming in CDL

We want to present here examples of small CDL programs and

to show the organization of a realistic compiler written in

8

CDL, in order to get some insight into the nice features of this

programming language suitable for system program design.

A COL program runs in a certain environment created with the

aid of a library of macros and functions; we sould not be mislead

by the striking simplicity of the COL program itself since a lot

is going behind the sence.

~irst we present a program which reads a string of characters

and prtnts it in reverse.order.

'MACR0' 1 POINTER' NLCR CODE=llO.

'EXTERNAL' 'ACTION' RESYM,PRSYM.

'ACTION' COPY REVERSE.

COPYREVERSE - CHAR

RESYM + CHAR

COPY REVERSE

EQUAL + CHAR + NLCR CODE

PRSYM + CHAR

'RESULT' COPY REVERSE.

Here the environment will contain the read and print symbol routi­

nes, the definition of the character NLCR, the EQUAL macro. The

last program statement informs that the result is expected from

the execution of the COPY REVERSE procedure (in fact, the only

procedure of this program). The action COPY REVERSE has two alter­

natives; the first one reads a cparacter from the input string and

fails unless this character is a NLCR. Control is thus p~ssed to

the second alternative which implies a reccursive call of the

action COPY REVERSE and when this call is successful the character

is printed. So that the characters in the input string are read and

stacked and only when the NLCR character is found, then the ·first

time the procedure is successful and starts printing from the top

(last character read) to the bottom (first character read) of the

stack. This procedure has a local variable CHAR which appears as

a parameter for the external actions RESYM, PRSYM and for the

EQUAL predicate.

We shall now present the organization of a real life compiler

written in CDL (examples are taken from the CDL to ALGOL 60 compi­

ler written for CDC 6500 by J.Jackel). The compiler is organized

9

into four sections. The first section creates the running environ­

ment. Here there are specified

the commands establishing the compiler mode;

- the external procedures used mainly for 1/0;

the definition of different characters used by the language

to be translated (COL) ;

- several flags which test if digit, letter, specification, etc.;

the basic macros for elementary operations;

global variahles.

Samples from the actual code of ~his section are given below.

'LONG'
1 RESTORE'

'EXTERNAL''ACTION' RESYM, PRSYM,EXIT,NEW PAGE.

'MACRO' 'PQINTER' SPACE CHAR:= I OS, TAB CHAR,,,109 ,NLCR CHAR"'-110,

ACCENT CHAR,,,104,QUOTE Cl~R,,,87,NULL CHAR:=S4.

'MACRO' 'FLAG'

WAS LETTER:=('l'.., 27)'"AND'"(1 1'<54),

WAS DIGIT "'(' l' ·, 53) '"ANll"' ('l '< 64),

WAS LETDIG"'('l' >27)'"AND'"(1 1'<64),

l\'AS SPECIFICATI0N""('1'>63) '"AND"' ('1'<104)

'MACRO'' ACT ION'

MAKE '1 ' : :=I 2,

DECR,,,'l' :='l' -1,

ADD ='3':='2'+'1'

SUB ='3'::='2'-'l'

DIVREM = '3':='1''"/"' '2'; '4':"''1'-'2' "'3',

MARK:='l'::=-'l'

The second section is devoted to the input and output processing.

The main action to perform the printing is:

10

'ACTION' OUT.

OUT +X -Y

WAS TAG +X, PRINT TAG +X
WAS BOLD+X, PRINT BOLD+X

WAS SPF.CIFICATION+X,PRINT SPECIFICATION+X

WAS CONSTANT +X,GET CONSTANT+X+Y,Ol!TINT+Y;

OUTINT +X.

!Jere the four flags (WAS ... symbol type) identify the parameter

X as a certain type of symbol (tag,bold,specification,constant)

and direct~ the printing of it. OUTINT is an action to print an

inte_~er and uses several other actions which will also be defined:

'ACTION' OUTINT,OUTINTl,SPACE,SPACES,NLCR.

OUTINT +X -QUOT -'RF:M :

SPACE,

LESS+ X +O, MA KE+REM+ X, MARK+ REM, PRCl-!AR+MINUSCtlAR, OUT I:'-JTl +REM;

EQUAL+ X +O, PRC HAR+ NULLCHAR, SP ACE;
DIVREM+X+lO+QUOT+REM,OUTINTl+QUOT,ADD+REM+54+REM,PRCf!AR+REM,

SPACE.

OUTINTl+X-QUOT-REM:

EQUAL+X+O;

DIVREM+X+lO+QUOT+REM,OUTINTl+QUOT,ADD+REM+S4+REM,PRCHAR+REM.

SPACE:
PRC HAR+ SPACECHAR.

SPACES+X-N:
MAKE+N+O,

START: LESS+N+X,SPACE,INCR+N, :START,

Here is the first time we use a label (START:) and a branch to it,

(:START). The action SPACES ou~puts a number X of space characters.

11

PRCJJAR+X:

EQUAL+ X +NLCRCHAR, NLCR;

EQUAL+X+TAB CHAR,SPACES+S;

EQUAL+X+NIX;

l'RSYM+X,INCR+POS.

Here it should be noted, that POS is a global variable which defines

the position on the output line; it is incremented when a character

is printed and reseted when a new line should start.

NLCR:

PRSYM+ NLCR C PAR ,MAKE+ POS+O.

The third section of the complier deals with the recognition

and translation of CDL rules.

The fourth section is the nucleus of the compiler.

'ACTION' SENTENCE, START SYSTEM,COMPILER DESCRIPTION.

SENTENCE:
START SYSTEM, BLANK LINE,NEW LINE,PRINT HEADER+START,

COMPILER DESCRIPTION,NEW LINE,PRINT HEADER+END,BLANK LINE,

NEW PAGE,POST MORTEM,

COMPILER DESCRIPTION:

START: SPECIFICATION, :START;

DECLARATION, :START;

COMMAND, :START;

COMMENT, :START;

STARTING SYMBOL;

RULE, : START;

SKIP UNTIL POINT, : START.

'RESULT' SENTENCE.

12 '

4, The flow of control in a CDL program

The output of the CDL to COMPASS compiler-compiler is a set

of COMPASS pseudo-instructions and macro calls. We present in

table 3 the expansion of one of the programs listed in the previous

section.

Table 3

COMPASS expansicn of a CDL program

STM CDL statement COMPASS statement

155 'MACRO' 'POINTER'NLCRCODE=llO

156 'EXTERNAL''ACTION'RESYM,PRSYM

157 'ACTION' COPY REVERSE,

158 COPY REVERSE - CHAR

159 RESYM+CHAR,

160 EQUAL+CHAR+NLCRCODE;

161 COPYREVERSE,PRSYM+CHAR.

162 'RESULT' COPYREVERSE

13

I DENT

XTEXT

GET MACRO

PUT MACRO

ZIN IT

EXT

EXT

ZBLOPEN

ZLOFREE

ZCALL

EQUAL

ZNEGJUMP

ZJUMP

ZLABDEGL

ZCALL

ZLOFREE

ZCALL

ZLABDECL

ZRETURN

ZENTRY

ZSTCALL

CDL
CDLTEXT

Pl,PZ

Pl,P2

RESYM

PRSYM

(G0),(0),(4),(158)

(1),(3)

(RESYM), (159)

(B4+3), (•110)

(l),(GO)

(999), (GO)

(1),(GO)

(GO), (161)

(1). (3)

(PRSYM), (161)

(999), (GO)

(GO), (16Z)

We can see in table 3, that the pseudo-instruction XTEXT

informs the COMPASS assembler that the deck named CDLTEXT (from

the file OLDPL, since no X parameter is to be specified on the

COMPASS control card-see next section for the program deck-) is the

source which contains the text qf the macros listed below this

instruction. New versions of the macros GET and PUT have been

defined ; during the COMPASS assembly two warning messages inform

the user, that new versions of these two macros are overriding

the old ones.

The control goes first to the macro INIT and the message

'START OF THE CDL PROGRAM' acknowledges the beginning of the program

execution; then the control is passed to the RUN TIME ROUTINES

(entry point CDLSYS) when base register initialization takes place.

The macro ENTRYPOINT activates the TERMINALS when requests like

INITIALIZf: FOR READING occur. The macro CALL provides linkage to

different externally defined actions as requested by the user.

Finally, the macro STARTCALL provj<les the necessary action for the

'RESULT' rule in the user program. The return in the ~UN TIMF

ROUTINES (to the entry point CLOSF.) and the message 'END OF COL

PROGRAM' are associated with the termination of the pro,1?ram execution.

5. The availability of CDL

There are two high level versions of the CDL compiler-compiler;

one is written in ALGOL '60 and the other in CDL. Also a low level

version for the CDC 6500 computer$, written in COMPASS, is available.

We have installed here at Dubna on the CDC 6400 machine only

the low level version since we believe that it is far more efficient

that the other.

It should be pointed out that CDL compiler--;compilers are

available on a variety of computers : IBM 360 and 370, RIAD,

CDC - 6000, PDP-11, etc. The bootstrapping technique can be used

to construct CDL compiler-compilers for practically every avail­

able computer; with a reasonable effort such a compiler has been

desigried for the R 10 computer / 4/

14

The great advantage of 11sing CllL when writing system progr:1ms

(compilers, e<litors,lihrarians,utility programs, etc.) results

from its power to describe well structured collections of ohjccts.

For example the CDL to ALGOL 60 compiler-compiler contains less

than 200 rules; the readability of such a program is tremenJot1s

as compared with an assemhler written program performing the same

functions.

On the other hand, a CDL written system program c<l.n alw:1ys

be tested on a powerful! machine and only when successfully runs,

there it can be installed on any of the machines provicle<l Kith a

CUL compiler-compiler.

The suggested set-up for the joh when a compilation and a11

execution of a CDL written program is desired is:

JOBCARD,CMSSOOO,TZOO,

ATT /\CH, CDLSYS, I D=COMP, MR= 1 .

ATTACH, OLDPL, CCL I B, ID= COMP ,MR= 1,

ATTACH, ANDY! , tll=COMP, MR= 1.

llPDATE,Q,D,C=CARDIN.

MAP,ON.

LOAD,AN!lYl,CULSYS.

F.XECUTE,,I=CARDIN,C=CARDOUT.

RE\'/INTl,LGO,C/\RDOUT.

LOAD, LGO,CDLSYS.

EXECUTE.

end of record

'"COMPILE PRE,MACLIB

end of record

'AllDF ILE

"DECK PROG

!b~-~~~~-~~~!~~~~~S_!b~_E!~SE~~-~E~!!~~-~~-SQ~_
end of record

The data for the COL program

end of file

15

Three permanent fill'S CCLIB,CflLSYS and ANIJYl are used. The file

nRmed ANDYl contains the compiler-compiler itself in the loadable

format. The CJ)LSYS file cont~ins the CDL RUN TIME ROUTINJ:S.

Roth files must be loaded into the LGO file to create the running

environment for the compilation step (CDL to COMPASS); this is

cxect1teJ as requested hy the following control cards:

LOAll,ANDYl ,CJJLSYS.

EXECUTF,,J=CARIJJN,C:"'CAHllOlJT.

The input file for the previous step (CARDIN) is created using the

UPllATE pr9gram:

Ul'llATr:' Q, n' C=CARDJN.

end of record

'COMPJJ,f; PRE,MACLl E

end of record

*AJlll fILE

~JJECK PROG

-cui-program-

end of record

The new library created by the l'PDATE program (the file named

CAHDIN) will conta:in: the deck PRE {the PRELUDE), the deck MACLJB

(this contains a library of procedures used by the CDL program),

the deck PROG (the user CDL program).

As a result of the CDL to COMPASS translation the file

CAHDOUT is produced. The following control cards will direct the

COMPASS assembly, the loading and the execution of the program:

COMPASS,J=CARDOUT.

LOAD,LGO,CDLSYS.

EXECUTE.

A fjnal point is that in our version the following characters

are to be used:

16

the colon (:) is to be replaced by the percentage character

(%) with the BCD code 16 and the punching code 8-6.

the apostrophe (') used to define the hold symbols has BCD

co<le SS, punch code 11-8-S and will be printed as r character.

References

1. Koster C.ll.A. A compiler-compiler MCA-Report, 121, 1971.

Z. Koster C.l!.A. Using the compiler-compiler. Chapter 4 in Compiler

Construction; Springer lq74,

3. Jackel Joachim C. Bootstrap Eines CDL-Compilcr Auf Die CDC 6500

Technische \Jniversita.·t Berlin, April 197S.

4. Jackel Joachim C. A CDL compiler-compiler for the R 10 mini­

computer. In Minicomputer Fo'rum 1975.

Received by Publishing Department

on r..·larch :'iO, 1977.

17

	10544.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22

