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3llOK830B B.E. EIO · 10192 

YHHBepcallbHNii Meroa aHallH3a cneKrpoB 

ilnH peweHHH 3aaaq~c~ pa3llo~eHH~ annaparHoro cneKrpa cnoco5oM, 

H8H50llee He 38BHCHMbiM OT cy5beKTHBH3M8 B ODHC8HHH ¢op!\1b! DOlle3HbiX 

KOMDOHeHT CDeKTpa, a T8K)K8 ¢opMbl ¢oHa, npeallO)KeH MeToa, KOTOpbiH 

HCTIOllb3yer B Kaqecrae Moaenen peanbHO II3MepeHHbie rHcrorpaMMbi 

H3011HpOB8HHhiX KOMDOHeHT CDeKTpa, BBO!HI B HHX H8KOTOpb1X ¢yHaaMeHT8llb

HNe reOMeTpHqecKHe xapaKTepHCTHKU ~~HKUHA B KaqeCTBe napaMeTpOB, 

Meroa npHMeHHM K aHallH3Y 04eHb wupoKoro Kllacca annaparHwx cneKrpoa 

noapo5HO ODHC8H anropHTMHqeCKHH 8CD8KT MeTOaa. 

Pa5ora BhlDOllHeHa B na5oparopHH awqHCllHTellbHOii TeXHHKH 

H 8BTOMaTH38UHH 011Hlf. 
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The Universal Method of Spectrum Analysis 

To solve the problem of the apparatus spectrum 
decomposition in a way, most independent of the subjec
tivity in describing the shapes of the spectrum compo
nents, both those of the useful ones and that of the 
background, the method is proposed, which uses as models 
the really measured histograms of the isolated spectrum 
components, introducing into them some fundamental geo
metric characteristics of the functions as parameters. 
The method is applicable to the analysis of a very large 
class of apparatus spectra. The algorithmic aspect of 
the method is desribed in detail. 

The investigation has been performed at the Labora
tory of Computing Techniques and Automation, JINR. 
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INTRODUCTION 

This paper is the further development 
and generalization of the method of ref. 11 1 
to a more large class of problems 
rum decomposition. In particular, 
lowing problems are considered: 

of spect
the fol-

1) the decomposition of a function into 
peak-like components (the analysis of a
spectra); 

2) the decomposition of a function into 
continuous components (the analysis of 
{3 -spectra, of spectra of radioactive de

cay of several sources, etc.); 
3) the mixed problem, i.e., the decom

position of a function into peak-like as 
well as into continuous components (e.g., 
t he d e c om p o s it ion of y - s p e c t rum or n e u t -
ron spectrum into peaks and complicated 
background; or analysis of neutron diffrac
tion spectrum, when the peak of elastic 
scattering may be superimposed over the 
peak of inelastic scattering and both over 
the background); a specific case is the 
situation when a continuous component has 
a fine structure, i.e., consists of peak
like and continuous subcomponents, mutually 
connected by some constraints (e.g., ana
lysis of X -r:ay spectra, or decomposition 
of y -spectrum into spectra of single iso
topes). The background may be regarded as 
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a valid (although of no interest) component, 
either continuous or complicated (having 
peak-like subcomponents). 

Contemporarily, the exact analytical 
form of component functions is unknown r'or 
the majority of observed. spectra. The 
use of regression analysis technique for 
the spectrum processing when the models of 
components are singled out by occasional 
means, may be critisized in two relations: 

1) subjectivity of parametrization; 
2) inexactitude of models, because the 

real components have often such a shape, that 
it is hard to find the appropriate shape 
function with a little number of parameters. 

There is however, an idea arising to 
take as models the histograms of really 
measured (sufficiently exactly) isolated 
components of the spectrum (useful as well 
as background) and to introduce into these 
histograms some fundamental geometric 
characteristics of the functions as para
meters. 

1. The Approximate Regression Analysis 

Let us notice previously some specific 
properties of the use of regression analysis 
technique in the experimental physics. Let 
be given the set of points of measurement 
lx.,i=l, ... ,M I and the measured quantity y(x.) 

J l 
such that 

y(x)=f(x,pl-t-r(x). 
where f(x,p,) is the superposition of the "true 11 

physical processes (both of interest and 
those of backtround), ~-n-dimensional pa
rame~er vect0r, r(x)-distur~ance of measu
rement-random qubntity, inc~~endent at dif-
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ferent xi with expectation equal to zero 
and variance D1 (x).Tradi t ionally we mean by an 
amount of information of the sample the 
number M -amount of points of the sample. 
However, in pract1ce of contemporary experi
mental physics there is another view 
on the measurement informativity prevailing, 
namely: actually the measurement is the sum 
of regressions of similar nature (events): 

N 
y(x)=Nf(x,p)+ I r.(x)=Nf(x,p)+e(x) 

i=l 1 

and the amount of information (otherwise, 
statistic) is regarded as the function not 
of the amount of measurement points but of 
the amount of events (i.e., N ). Such a view 
is based on profound physical and mathemati
cal foundations: 

1) the addition of complementary points x, 
situated out of a definite interval is 
either physically or technically senseless; 
the addition of x, situated in this interval, 
is limited by the resolution capacity of 
the apparatus; the improving of the resolu
tion reveals, as a rule, the fine structure 
of regression f(x,p); this leads to replace
ment of f(x,p) by another function, thus to 
transition to another problem; 

a). the modern experiment theory /2/ has 
instanced many facts, which convince that 
rather choice of the points than their 
amount influence the quality of the measu-
rement; 

3) the variances 
(L.S.) estimates of 

of the least squares 
parameters p of regres-

n 
sian I p.¢. (x) 

i=l I I 

proportional 131 

are, as M .... oo, asymptotically 
M 

to the quantities 1/I -1-¢~(x. ); 
id Dl (xi) I l 
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this leads to a paradox: the functions, in
tegrable in square (most suitable in the 
practice), are unacceptable, for then the 
L.S.-estimates of the corresponding para
meters are inconsistent (their variances 
do not tend to OasM--.oo ). 

The fixation ofM influences negatively 
the quality of non-linear L.S.-estimators. 
Let be, e.g., f(x,T)=exp(-2'-), e(x) =a (x)-f(x,T ), 

. . T 
where a(x) Wlth probab1l1ty not equal to 0 
assumes the positive values. The probability 
of registration, e.g., 1 at all points xi 
being not equal to zero, and because L.S.
estimate ofT is in this case obviously oo, 
we can see, that the unique L.S.-estimate 
of this simple (but of great importance in 
experimental physics) problem has no finite 
expectation and variance. 

The rigorous mathematical analysis of 
properties of L.S.-estimators on condi
tion M being fixed and N (statistic) varied 
is given in ref. 141 . It has been shown there 
that, if f(x,p) is twice continuously diffe
rentiable with respect top and af(x,p )/ ap.are 

• • ( -> 0 I ) l1nearly 1ndependent Po -true values of p , 
then the following conditions are sufficient 
for the existence of strongly consistent 
(as N--.oo) L.S.-estimates of parameters p 
of regression f(x, p): 

1) sufficiently exact apriori information 
about ~ is available; 

2) the disturbance e(x) has been truncated. 
. e(x) . 

The d1sturbance r;r- 1s truncated for 
the level f> 0 and statistic N, if 

eN f (x) 
-~-= 

N t ~:x)' 
N 

if ie(xllsf 

otherwise; ci;.[O,d. 
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The truncation corresponds to such actions 
of experimenter: before the sample is analy
sed, all values differing too strongly from 
the expected ones at these points are correc
ted. 

Now let us consider the approximate mo
dels. A physical model ~(x) may be regarded 
as the result of a measurement: 

~(x. )=m(x. )+o(x. ), 
J J J 

i = 1, ... , M1 . 

where m(x), true model; o(x), measurement error
random quantity of the same type as r(x). As a 
result, we have a histogram ~(x·) defined 

• • J 
at the po1nts !x.!.We can bu1ld a smooth 
function¢(x) (e.Jg., by interpolation), coin
ciding with~(x.) inx. and consider ¢(x) as 

J • J • 
a model. We can bu1ld such approx1mate mo-
del both for the useful spectrum components 
and for those of background. Further we 
can introduce into ¢(x)parameters q and apply 
to </>(x,q)the technique of regression analysis. 
It has been shown in ref. 141 that if the sta
tistic of model measurement increases inde
finitely the disturbances o(x) being trun
cated, and the errors of histogram interpo
lation are negligibly small compared with 
the variance of o(x), then with probability 
1 L.S.-estimator, using the approximate 
model, converges to L.S.-estimator, using 
the exact model; moreover in the large class 
of cases it will have asymptotically (as 
N _,"" ) normal distribution with the cova
riance matrix of linearized L.S.-estimator 
(i.e., that of linear regression f(x, p) + 

-> 0 
n a£ (x,po ) 

+ .I. (p.- P. )). This approach enables to 
I=I api 1 10 

express the biases of estimators in terms of 
t he v a r i an c e s o f o. ( x) . 

I 
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2. Real Models and Fundamental Parameters 

Thus, to avoid the subjectivity of para
metrization, it is necessar~ to take as 
parameters some fundamental characteristics 
of functions, possibly similar for all 
spectra. The measurement gives us the model 
in the form¢i(x) ,i.e., without implicit de
pendence on any parameters. Because these 
parameters are introduced only for the iden
tification of spectrum components, we can 
consider parametrization problem as a prob
lem of definition of minimal number of 
geometric function characteristics, which 
unambiguously determine the component loca
tion in the spectrum. Let us define the pa
rameters proceeding from the common proper
ties of relations between the models of 
isolated components ¢(x) and their images s(x) 
in the spectrum. These relations are imple
mented by a set of operators IT I such that: 

s ( x) = T ¢ (x}. 

The models {Mil and images IIi I have the follow-
ing properties/51: . 

l ) r e f l ex i vi t y ( e a c h M . {I. ) i s mod e l ( i mag e '1!: 
I I 

of itself); 
2) symmetry (eachMi(Ii) is image (model) 

of ~ {Mi) ) ; 
3) transitivity (if M1 is model of M2, 

and M2 -model of Ma,thenM1 is model of M3 ; the 
same case of!Iil). These properties mean 
that IT I has a group structure. According 
to ref. 161 one can show that IT lis a conti-
nuous Lie group of plane transformations on 
itself. The most appropriate from them for 
our purposes are the linear and projective 
groups (because the imprimitive groups 
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require too large apriori information and 
are too cumbersome for the computation). Let 
us consider the indicial equation system of 
linear group in finite form/ 6 1: 

y 2 = a 1 I y I + a I 2 x I + a I ; x 2 = a I I Y l + a2 2x 1 + a 2 ' 

where x1,yi are old and x2,y2 are new coordinates 
of plane point. So far as the model and the 
image in our case are always explicit 
single-valued functions of one variable, 
we can neglect the rotation subgroup, 
when c e a 12 = a2 1=0. We neg l e c t also the c on stan t 
shift along Y -axis, that yields a 1=0. Then 

y 2 =a l I y I ; X 2 a 2 2 X I t a2 or T c/J ( x) , a 
1 1

cj> ( ~ 
2 

Xta
2 

)~ l ) 

The indical equation system for the projec
tive group is 

y = ~lLL~12~+a 13_; x = a2l.Y_L2:_C:..22 x-~~-·1_ 
2 b V ~b X ~1 2 b • .h · b 

I I ' I I 2 I . - 2 I ) I ' ~ 2 2x l r 2 :l 

Analogously to considered above, we obtain 

y2 ~a I ly I ; x:Z c :: 2 2 !J~:u__ ; 0 r T cb ( X ) ~ a ¢ ( __<:;rL~.l ) . 
b X •b II b X tb 

:2 2 l ' 2 'l 2 2 J 2 :l 

Denoting a., 3 /a,.,~'-P, h
2 
.. 'a.,,,.cW, b.J /a?·J=K, a

11 
,-A, we have 

.::... ~.::... J ......... ....2 ......... 

s(x) ,,T~)(x)-Ac.'>(-~--!:'_). (2) 
Kx t- W 

Let us put Tr',(x)oAy(x,P,W,K) and normalizec,qx): 

j X·- X() 
T 

1 
ch (x) .- -- -- cf> ( -----), 

'<'; (x )i X , -·X I 
' ' () . -

where x 0 is a maximum point of cj>(x), x1 andx 2 
are the nearest to x 0 left and right points 
such that ¢(x 1 )=¢(x2 )= tcj>(x0).Then T 1¢(x) =l·y(x,O,l,O). 
On the one hand, the parametersA,P, W,K as 
parameters of common transformation groups 
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... 

are the desired fundamental characteristics 
of the functions, on the other hand, they 
have a clear physical sense: A- amplitude, 
P- position,W- fwhm, K- coefficient of 
linear dependence of width on x. 

The relation (2) enables a calculation of 
the partial derivatives of regression func
tion with respect to the parameters A

1
P

1
W,K

1 

which are required by L.S.-estimator: 

~=¢(z)l ()s =-·_A_¢ '{z)l as_=-~'--¢ '(z)IEL=- Azx ¢ '(z). (3) 
a A dp Kx-t w )( aw Kx+ w X aK Kx+W X 

wherez=(x-P)/(Kx+'V) Similarly, the derivatives 
of higher orders are calculated. The rela
tion (3) enables also the determination of 
component area: 

S =fA¢ (~!:__)dx=A(W +KP)f ¢ (z) __ 1 ___ dz. 
Kx+W (l-Kz)2 

The integration is carried out in the domain 
of values of normalized model not equal to 
zero. For the linear group K =- 0 anCi 

S=AW f¢(z)dz=AWc. 

In the practice all four parameters are 
required only in the complicated cases 
(background description, decomposition into 
groups, etc.). For the decomposition into 
peak-like functions A,P 1W are sufficient 
(if necessary, the model should be correc
ted for different spectrum intervals). For 
the description of exponentials and expo
nential-like functions A and W are suffi
cient. The combined evaluation of background 
and useful components gives the more exact 
results. The use of the background subtrac
tion technique achieves the most success, 
if the absolutely exact theoretical back
ground is known. If only its estimate is 
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' 

available then after its subtraction the 
residual background (sometimes more regu
larly shaped, e.g., more close to a polyno
mial) remains in the spectrum and still 
requires the estimating parameters in the 
regression function in order to avoid the 
biasedness of the estimates of useful pa
rameters. 

3. The Sensitivity and the Resolution 
of the Method 

We obtain the L.S.-estimates of para
meters by minimizing 

M n 2 
F (xlple(x))= I-1- I s(x. )-I A. y. (x. 1 P. 1 W. 1 K.) I ( 4) 

j=l D (X • J J j,.J I I J I I I 

J 
provided that n -number of components - is 
known. Let us now explore the uniqueness 
of decomposition. This is very important 
because minimization of (4) optimally fits 
the summary regression line to spectrum 
values, but the distribution of the compo
nents inside this regression may be ar
bitrary, if, e.g., the parameters are cor
related or the initia~ values fail to be 
sufficiently good. Furthermore, the minimum 
of (4) is found from: grad F(xlple(x))=O. 
However, grad F may be equal to zero not 
only at minimum points. Let us consider the 
cases: 

1) the alteration of component numbers; 
physically the problem does not change, but 
formally it means a transformation of coord
dinates of the space of parameter values. 
Hence, F(x 1 p1 e(x.\) always has at least n! mi
nimum points, between which the local ma
xima, the saddle points, etc., interpose. 
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2) if some Ai --.0, hypersur:face F(x,p, e(x )) 
locally degenerates to a hypercylinder, for 
then p. ,w. K. cease to influence the va-

l } I } 

lues of F;the degeneration becomes complete 
as Ai=O; 

3) the spectrum components often have 
the similar shape and equal width (within 
an interval); then if Pi .... P; , the hypersurfac e 

J 

F locally degenerates to a hypercylinder 
along the hyperplanes b 1Ai + b2 A-=const; in 

• .J . 
the case of exponentJ.al analysJ.s thls occurs 
as wi .... wj; it means that decomposing the 
multiplets in complex cases we have prac
tically equal chances to obtain any arbit
rary combination of amplitudes, in sum equal 
to some constant. In such a case a menace 
arises to obtain an inconsistent L.S.-es
timate and in order to prevent this menace 
one should minimize (4) not on all parameter 
space, but on: 

A.>s.;P 1 --P.>r. 
I - I I+ I - I 

(for the exponentials 

W. 1 -W. >r.) 
l+ l - l 

( c \ 
,! j 

on conditions Kixj cWi :::_c, Si>O,ri>O. The quan
tities Si andri should obviously corresponri 
to the disturbance distribution, namely: 
for every e(x) (5) must hold with probabi
lity 1 (or sufficiently great); these quan
tities si and ri have ":L transparent ]!hysical 
sense: they are the sensitivities and the 
res c· l uti on s of "u 1· method ( an a 1 o 1.:; o us to 
those of instruments). That they are not 
equal to zero, reflects an obvious fact 
that the disturbances being present, the 
sensitivity and the resolution of the method 
(as well a2 of the instruments) are not 
ideal. 
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Of course, for the arbitrary e(x)/N such 
quantities si andri may fail to exist and 
then the problem of spectrum analysis turns 
out to be ill-posed, i.e., our method is 
short of sensitivity and (or) resolution 
for the analysis of such a spectrum. 

If the problem of spectrum analysis 
is ill-posed, we can (on condition that 
F ( x ,p 

1 
e ( x ) ) has no other degeneration 

points except for the above-mentioned ones) 
fictitiously select such si and ri 1 corres
ponding to distribution of e(x) 1 that the 
estimator, being a projection of L.S.-es
timator onto symplex (5) will be though 
biased but consistent as N ->oo. 

Formally si and ri may be defined in such 
a way: let the measurement give only pure 
disturbances e(x), which ar.e analysed as 
spectra; then s i and ri for every bounded set 
le(x)l are upper bounds of L.S.-estimates 
of amplitudes and upper bounds of differen
ces of L.S.-estimates of positions. 

We can construct the estimates of these 
quantities. Let be chosen a level of signi
ficance a and d is the upper bound of 
values of some test for the hypotheses about 
si and ri such that if F(x,p 1 e(x)) > d 1 the 

hypothesis is considered as a -nonsignifi
cant. Let denote :i= (si 1 ri ); then the e3timator 
of Li is the solution of the problem: 

... ... 
max F ( x 1 p + ~ 1 e (x )) ( 6 ) 

• • ( -> 1 ) on condltJ.ons F x,p +ul e(x) <d 1 A 1·>s1• 1·P 1 >R+r·~·Kx +W>c 
- - I+- 1 1 j - ' 

The problem (6) is dual to the problem of 
parameter estimation and si and ri are dual 
variables to A .and P. 

1 1 
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4. The Algorithmic Aspect 

Thus, the problem of spectrum analysis 
1s formally posed: 

M n 

min L - 1
- l s (x. ) - L A. y ( x., P. , W., K. ) ! 2 

( 7) 
i=l D (x.) J i=l ' J ' ' ' 

J 
on conditions 

A . > s. ; P. 1 > P. + r. ; K. x . t W. > c . 
I- I It - I I I J I - I ( 8 ) 

Remarks: 1) for the decomposition into peak
like functions the inequalities (8) have 
the form: 

A 1· '> s · ; P. 1 > P. t r . ; K . • = 0 ; W . = k . W . + d . ±t . ;j ~> i ( 8 ' ) 
- I It - I I I J j I j j • 

(in p~rticular, for y-spectrum analysis 
often ki=l,di =ti =0 ). 2) for the decomposi-
tion into exponential-like functions (in 
particular, into peaks with the same posi
tions, but with different widths) the inequ
alities (8) have the form: 

A . > s . ; W . > W . + r. ; K . = 0 ; P . = k . P. t d . ± ( . ; j > i ; ( 8 " ) 
I- I ItS- I I I j J j j J 

(for pure exponentials k.=d· = t. = 0; ) 3) 1n 
J J J • 

all cases si and ri should be prev1ously de-
termined. Further, for improving the proper
ties of estimates one can.add the following 
constraints: 

A.=a.A. ±y.; P.=P.tb. ±o.; j > 
J J I J J I J J 

( 9 ) 

P .n :5 P. :5 P ·n ; 
If I lt. 

P.o=IA.,P .• W.,K.! 
1 l 1 1 1 

(10) 

provided that the region, bounded by (9), 
(10) contains p

0
. 
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To solve this problem the following com
putation procedure has been used: 

1) First, the damped iterations of Gauss
Newton process/7 / on condition that all in
termediate estimates are projected onto 
region (8), (9), (10) are used; 

2) Last, the iterations of Newton process 
are used, on condition that their matrices 
are positive definite. 

This procedure has the following advan
tages: 

1) The constraints do not allow the es
timates exceed the region of their consis
tency and iteration convergency; 

2) The Newton process does not require 
the length of the step of parameter correc
tions (always 1); 

3) The break-up of the process is more 
safe (strictly speaking, the Newton process 
is practically the unique process, which 
has the property: the littleness of correc
tions indicates the nearness of the minimum 
point); 

4) It is possible, having tested the po
sitive definiteness of the matrix to be 
convinced of the correspondence of the solu
tion to minimum of F, but not to other zeroes 
of gradient of F. The last is very important 
because one can instance many complicated 
spectra, the decomposition of which with the 
aid of only Gauss-Newton process (even 
applying the damping technique) gives the 
results disagreeing with the true values to 
an inadmissibly great extent, although all 
outward indicators testify that the minimi
zation has been carried out well (the accu-
racy of fit is achieve~, F(x

2
p '. e (x Jl . 

significantly agree w1th X -d1str1but1on 
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the graphs of components in the spectrum 
look very likely). The matrices were tested 
in the following way: all diagonal minors 
of 1st and 2nd order of direct and inverse 
matrix were calculated and their positi
veness was considered as the indicator of 
the positive definiteness of the matrix. 

Let us adduce the analytical form of the 
projection operators of vector p on the 
inequality simplex (8), (9), (10). The 
projection q of the vector p onto (10) is 
performed: 

l 
•Pi I if Pif~Pi$. pi..1 

q_ = p if I if pi< p if 1 

P. I if pi > p u 
Ill 

The projectionq of vector p onto simplex: 
p. 1-p. > r. is performed with the aid of the 

I+ 1 - I 
procedure: 

a) the indices if 
t hat for every j ( if :5. j 
do hold: p. 1 - p.< r. ; 

and iu are found such 
~ iu} the inequalities 

]+ J J 
b) the components of the vector q are 

calculated: 
i0 iu-1 

q. = L ( 2 _pk + 2 ( k - i e + 1} r k} I m = i u- u + 1 1 u m k=if k=if 

q • = p • 1 j > iu 1 j < if ; 
J J 

iu-1 
q.=q.-2rk 1 if<j<iu; 

J J k=j -

c) the inequalities qif -qir-1.? rie- 1 ; 
q 1·u+1- q. > r. ; are verified; if the 1st does 

111- lU 

not hold, assume ~=if -1; if the 2nd does 
not hold, assume iu = iu +l and repeat the 
actions of the points a) and b), until the 
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the inequalities of point c) hold; d) the 
next group of indices ie and iu is found, 
for which b) and c) are performed; if it 
occurs that for the groups {i£ 1 iullke 1kulkf=iu+l 
and qkn -q. < r. take place, then both the 

L IU lU 
groups are united andqi are recalculated 
according to formulas b); and so on until 
for all qi q i+1- qi~ri hold. 

The pro j e c t i on onto Kx+ W 2: c under as sump -
tion that Kx+ W has the form of Chebyshev 
polynomial is carried out in such a way 
(x ~ [- 1 1 + 1 ] ) : 

1) q 1 =K~q 2 =W~ if W-K2c 1 W+K > c 

2) q1 = 0 I q2 = c I if w- K < c I w + K < c ; 

3) q 1= (c-W+K}/2 1 q2=( c+W-K}/2 1if W-K2'_-c 1 W+K<c; 

4) q 1 = ( K +W-c)/21 q2 = (c+W+K}/2 1 if W-K< c1 W+ K 2: c ; 

The projection q of the vector p onto 
simplex, bounded by the inequalities: 

p. = k. p. + h . ±f. 1 j > i (11) 
J J I J J 

is carried out with the aid of following 
procedure: 

a) all j for which Jp.-k.p.-h.J><.Ij>i I 

J J I J J 
are found; 

b) o. =<·sign{p.-k.p.-h.l+h· are calculated; 
J J J J 1 J J 

c) the componentsqi are calculated: 

q
1 

= p t i f t q I j l 
m m ~ 

q . = ( 2 k n ( p e- Q e } + p • )I ( l + n2 k ; } 1 

I P =2 t 1 L=2 L 
m - n urn b e r o f i n d i c e s j q = k q.+o 1 s<;;{jl. 

s s 1 s 

d) then the inequalities of point a) are 
verified, and if new indices, for which these 
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inequalities hold, are found, they are added 
to li I , and the actions of the points b), 
c), d) are repeated, until (ll) hold. 
Remark: if some fi=O, it is more pre
ferable to construct the projections on 
such equalities, transformating the matrix 
of the iterational processes (it makes the 
matrix better conditioned); a possible al
gorithm is given in ref!8 

The method, described in this paper, has 
been implemented in the subroutine UPEAK, 
written in FORTRAN-4 language and oriented 
to be used on the computers with the memory 
capacity about 32K. The UPEAK can interact 
with any arbitrary subroutine (e.g., dis
play-oriented software, etc.). The experi
mentally measured components (background and 
useful components, simultaneously not more 
than two for each spectrum interval) may be 
used as models. The UPEAK was successfully 
used for the analysis of y- and X -ray spectra 
neutron diffraction spectra, fragment spect
ra, spectra of radioactive decay and so on. 
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