


-1 Introduction

D_éep inelastic scattering of polarized lept01lé_on' polarized nucleons hasproved

oo be a powerful tool for studying the internal spin structure of nucleons. ’I_‘his ,
4structure is characterized by two. spin dependent structure functions gl( ,@%)

",and 92(x, Qz) enterlng the cross sections calculated in one-photon excha.nge SRS

. approximation’ (for review of the phenomenology see [1]). This approximation
. assumes  that the deep 1ne1astlc differential cross section of polarlzed leptons on
polarxzed nucleons 7, can be wrltten as'a sum of unpolarlzed Ty, and’ polanzed
oy, terms: » T Do
T dedQ? T dedQ? d dQ? N R
e where the second term depends on relative orientations of the lepton a.nd nucleon
~ spins, Sen. The polarized part of the cross section can be separated from the
unpolarized one taking the difference of cross sections w1th oppos1te orientations - ‘
of spins: ) ' :
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" because the unpolarized part'of the cross section is assumed to be the same in o1~

“and 05! and Sy = +1(—1) for the same (opposite) orientation of the lepton and"

- ~nucleon spins. Expression (2) is valid for measurement from pure (mononuclear).

.~ polarised targets like hydrogen' deuterium or Helium-3 . It is also valid in case of
. “multinuclear targets containing a small fractlon of polarlsed hydrogen (deuterlum)

" if other nuclei are unpolarised . . :

In practice there are two cases of the relative spin orlenta.tlons In the ﬂrst case

" “spins of nucleons and leptons are parallel (=>—+) or antiparallel (<=—) to each

“ other and aligned along the beam direction, i.e. leptons and nucleons are polarised

o longltudmally In the second case the leptons are polarised longitudinally (—+) but
- nucleons are polarised transversely ({} and f}).

From the text books(see [1]) one can find that
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‘/”“where Ao ](_‘) is the cross section dlﬁ'erence for lougltudxnally polarized leptons and
* longitudinally (transverselly) polarized nucleons. These expressions are written for

the practical cases when the polarization and scattering planes are perpendicular
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to each other. As one can see from (3) and (4), the measurements of Ac' and
Ao~ provide the data to separate G; and G '. Due to different contributions
of G4 and G, to Ac's at different scattering angles 8, it is possible to separate
G; and G, from measurements of only Acl(f) or Ag™(0) using a likelihood

~procedure. The determination of Gy and G, from (3) and/or (4) requires the

“ absolute measurements of each cross section. Experimentally the cross sections
(3) and (4) are determined from the normalized counting rates corrected for
losses, acceptance and high order radiative processes. If the counting rates are
‘high enough i.e. statistical errors are small, the accuracy of the cross section

measurements will be llmlted only by systema.tlc uncertainties of normahzat]ons"

_and’ corrections. -
" To avoid the problems of norrnallza,tlons and to some extend, a.cceptance
corrections, the earlier (E80/130, EMC, SMC, -E143, E142) experiments [2] -

[5] used another method: instead of the absolute measurements of Cross “section

differences, (3) and (4), they performed relative measurements of the so called
Cross sectlon asymmetries Aj or Ay -
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From [1] it is seen that Lo ’ o
‘ Ay = D(A; +142), . i (7)

where D and n are kinematic factors and A;-and A, are virtual photon-nucleon -

asymmetries. In the first approximation, A| can be related to the spin dependentr
structure function g, as follows:

Ay FB(,0%
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D 2z + R(z, Q?)] Q2

a(z,Q%) =

where F, and R are unpolarized structure functions, and the nec]ected second term 7

in (7) is expected to be small.

So, to extract the spin dependent structure functlons from the asyrnrnetry :
measurements, one needs to know the unpolarized structure functions from other.
experiments. But in many cases these structure functions are either unknown in a’

" definite kinematic domain or not precise enough for the purposes of the particular .
* experiment. For example, the kinematical region of the SMC experiment [4] is. -

extended to the low values of = up to.x ~ 0.001.- There were no measurements
of the structure function R(

Irelationship between g1, g2 and G, G see in [1]
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z,Q?) for z below ~ 0.01. So, to apply (8)? the SMC .

et e ey T

has to extrapolate the existing data on R to the unknown region. This can cause
systematic errors [7] which are not easy to estimate. : : .
The use of (3) and (4) does not require the unpolarized structure funct10us~
So, nieasurements of ¢; and g, can be done within the same experiment without,
the data from other experinients. The other advantages of this approach will be .
dlscussed below. ' : e e
The aim of this papm is to develop practical a]ﬂorlthms to extract the’ spin
dependent stluctule function from the measured cross sections. The paper couslsts
of 7 sections. In Sect.2 we describe an algorithm to separate o, and o, from(1 ) »
The expenmental data are collec ted during certain periods of time. Sometimes it
is necesealy to analyze the data for each period separately and combine them:at
the en(l This p1ocedure is described in Sect.3. When oy .and o, are separated,’

‘ thexe are two ways to contmue the calculatlons i . ’

o elthel to go fulthex and ﬁu(l 9 and g, from (3). and/or from (4):

® or to. (leﬁuo asymmetly as - o oo o
and find ¢, au(l g2 from cquatiom similar to (8).

The first way will be the subJect of a separate puhludllon The second way is

described in Sect.4. To extract g; and g, for proton and neutron, the measurements

are performed with Hydrogen, Deuterium and lelium targets. Nuclear effects |
“should be taken into account.in two last cases. The correction procedures  for

radiative processes and nuclear effects are given in Sect.5. Sect.6 contains tests of

this approach using the Monte-Carlo and HERMES data for 3He [9]- (ou(‘luslom

are given in Sect.7.

2 Lik‘elyivhood:»procedure to separate o, and ¢,

"The cross sections (1) are small and the data to determine them are
collected during long periods of time , usually within several years:: In"these
- periods “the normalized counting rates could vary due to different reasons like
“variations of beamn, Py, and target, P, polarization, beam intensity, and/or
arget dumty(lummoqlly) and/or spectrometer efficiencics, ete. To *minintize
the systematic errors associated with these variations, the data are divided in
_samples with relatively stable experimental conditions. And again to minimize the
“systemalics, the target polarization is frequently reversed. Inside each samph of,
the data we can determine the number of events Nij(r, Q*) collected for a given
pair (bin) of the beam (¢) and target (j) polarizations:



‘ Nij(z, Q) = ouLij + 0, Li; PP P, (10)
where N;; is the number of events for j-bin , L;; is "luminosity” for a ij- bin,
Lij = a;;M; Ty, (- where a;5(z, Q%) is acceptance, M;; is an incident flux and

T;; is the target density), P,—",(PJ-‘) is the measured beam(target) polarization. For

simplicity we have assumed that the event reconstruction efficiency , dead time and
other corrections are known and properly accounted for. We have also assumed that
the target is mononuclear. The multinuclear case will be discussed in Section 7. Our
aim is to extract ¢, and o, from Nj;(z,Q?). Taking into account statistical errors

‘of N;; and polarizations, the solution of this problem is found in the framework’

of the maximum likelihood method. As one can see from (10), the normalized
counting rates, Nij(z, Q?)/Lij, as a function of the polarizations product P} P} are
~ represented by the straight line. The intersept of this line at P‘bP; = 0 gives cr: and
the slope gives o,. Since N;; and P} P} are measured with ertors, each point on the
Ni;( P! P}) plot will be represented by a cross. The task of the likelihood procedure

~_is to find the true product <f’,-"P}> and the parameters of the straight line. If ~

fluctuations of the polarizations and Nj;(z,Q?) are assumed to be Gaussian, the
- logarithm of the likelihood functional, L, is as follows: :

128 ’ ‘ .
—Inl = E Z (MJ —oyLi; —U,,L;j <E6P;>)2/N;j+
ig=I .

+(P!Pj— <P!P}>)*[6}; + const,
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_whebrelm,.n are numbers of P* and P* bins; §;; is the statistical error of P} P} and
<P} P}> is a product of true polarizations. According to the definition of the mean
value, P} P} can be written as follows: ' ‘

PibP; =<P;bP;> +€ijy

i ~ N(0,82), (12)

7 where ¢; is the statistical fluctuation of the polarizations product with the zeré
mean value and variance §%. :

_ 'Fhe': guanti_ti(s <P!P!>,i=l, .., m, ] =], ..,n, and 0y, 0, are parameters.
Minimizing the functional (11) over <P,—"P}>, t =1, ...,m,j=l,...,n and inserting
values of <P!P{>,i=l, ..., m, j =1, ..., n corresponding to the minimum in (11),
we obtain the functional o ‘ .

; = ) 1
—Inl = -
. 2

thd i)

3 (Nij = oulss = opLe PPV /(N + AL (1)
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Minimization of (13) gives o, and 0.

The complete matrix of statistical errors for o, and oy is calculated as the
inverse matrix of the second derivative matrix of the functional (13) at the
minimum.

This approach guarantees the minimal bias for o, and . Extracting o, and o,
from Ni;(z,@?) or Nij(z), one can have either the cross sections within a certain Q?
bin or the-cross section averaged over Q? of the corresponding z-bin, respectively.

3 Procedure to combine results from different
samples of the data

As it has already been mentioned above, the collected data consist of.
several samples which could have different normalized counting rates even after
appropriate corrections being done due to the known fluctuations of efficiencies,
luminosity, etc. The weighted averaging is a usual procedure to combine results of
different samples. But if the samples have uncontrolled fluctuations and/or drifts,
the average value could have a systematic shift. To minimize this systematics,
instead of averaging one can use the likelihood procedure based on certain physics
assumptions.

3.1 Combined results for asymmetries

Let us assume that the collected data are divided in n samples. For each of
them the equation (9) can be rewritten as follows:

o) = Adt,i=1,2..n. (14)

where A-is the asymmetry of the physiés origin and should be the same for all
the samples. The cross sections a:, and of for each sample are determined by
the likelihood procedure up to a certain normalization constant depending of the
flux,aceeptance, etc. This constant is crossed out in Eq.(14).

Each pair of o), and 0}, is determined with errors & and &}, respectively. The
value of A (common for all samples) can be obtained within these errors using the
likelihood procedure. The procedure logically consists of two steps: the first - to
find the true value of the unpolarized cross section <o%> and, the second - to '
_determine the asymmetry A for all samples.

Assuming fluctuations of &% and o) to be Gaussian, the logarithm of the
likelihood functional is as follows:

—lnL= %i(a;; ~ A <aiSV[(8) + (oi~ <oi>)*/(8)* )

=]




According to the definition of the mean value, o, can be written as follows:

ol =<oi> +é, , (16)
~ N(0,(6,)%).

t
Cu

Minimizing the functional (15) over <a',';>,z: = 1,...,n and substituting values

of <p','l>,i =1,...,n, corresponding to minimum in (15), we obtain the functional:

—tnl = £ 3(6} ~ AGKY /() + AL (1)

=1
Minimization of Eq.(17) yields the combined value for A. As the result of the
“likelihood procedure we-obtain:

e the asymmetry A with minimal possible statistical error and bias;
o the x%-values; '
e the values of residuals .

The analysis of x? values gives the confidential level of compatibility of samples,
- therefore one can detect bad samples of experimental data.

3.2 Combined results for cross sections

The combined values for o, and o, can be obtained in two steps.
First, minimizing the functional

D= % T (ot — AG /(8 + (0 = o /(8L (18)

i=1

we obtain A and oy whicll are given by:

L e
Oy = (Z '_3)/(2 (6"‘)2) (19)

=1 (6:4) =1
and n ) n .
A=@k%ﬂ&§é§) (20)

Second, knowing A and oy, one can find o, from (9). The complete matrix of
statistical errors for o, and A are calculated as the inverse matrix of the second
* derivative matrix of the functional (18) at the minimum.

4 Calculation of the g'(z) and I}

Knowing the asymmetry A for the particular target and spin orientations one
can calculate the structure functions using the text book algorithms [1]. For the
HERMES experiment a software package is written to convert AT‘HE(I) into the
A}(z), g}(x) and calculate the first moment of g}(z) to test the Ellis-Jaffe sum
rule{10,11].

The measured Helium-3 spin asymmetry is calculated as:

A reas(@) = A (), (21)
where Aa”e(m) is calculated for *He-target as discribed above and D is a
depolarization factor:
_ y(2-y) (22)
Ty -0+ )
The factor D is calculated for a given (z, <Q*>) kinematical point where <@*>
is the average Q? for given x-bin. The structure function R is taken from SLAC
parameterization [12]. ‘

The POLRAD code [13] is used to calculate the radiative corrections. On the
basis of the explicit formulae (Sect. 5) and fit (see Appendix), the RC corrected
asymmetry Ail(*,f)(:v) is obtained.

Nuclear corrections are taken into account for the neutron asymmetry A}(x):

(@) = (1= ful2) RAT(E)

ne) — o9
Al(x) TP , (23)
where dilution factor is given by the formula:
i) = 5777 21)
AT a

P,=-0.028 and P,=0.86 are effective nucleon polarizations in Helium-3 [14'].
The result of ref.[15] is used to approximate proton spin asymmetry Aj(x):

Al(x) = 27, (25)

which has been obtained by fitting the SMC and SLAC data (x*/ndf=0.866). A
more complicated parameterization from [16] gives the same results for A}(x).
The structure function g} (x) is obtained by

g, <Q?>) = Al () FY (x, <Q*), (26)




where F}*(z,<Q?>) is defined with the formula

F;‘(:,<Q2>)(l 4 41\12212)
21[‘1’."(1‘, <Q*) = TRG.< QZ:)Q > @0
The first moment of ¢f is obtained as a sum of three terms
0.02 1
= / dzg}(2,Q3) + / deg}(z,Q8) + [ dzg}(z,Q3), (28)
0.02 08

where the second: and third terms from the HERMES unmeasured regions are
calculated using the extrapolation of the fit (A.1), see Appendix. Before the integral
is calculated, the structure function g7(z, <Q*>) (26) is reevaluated to the common
value of Q% = Q% = 3GeV?, assuming that A}(z,Q?) is Q*- independent and using
parameterization [12] for F, and R. The account for the possible Q? dependence
on A? could be performed using several suggestions [18].

5 Radiative corrections

The interpretation of experiments on deep inelastic scattering requires to separate
the Born cross section from background contributions known as radiative
corrections originating from loop diagrams and processes with the emission
of additional photons. Radiative events cannot be completely removed by
experimental methods and that is why they have to be calculated theoretically
and subtracted from the measured cross sections.

There are three basic channels for scattering (cross sections) electrons on
nuclei with respect to regions of the four momentum and energy transfer: elastic,
quasielastic and inelastic processes. At the Born level both v and Q? (and a channel
of scattering as a result) are fixed completely by the measured momentum of
the scattered lepton. In case of elastic scattering (v = Q2/2M,q, M4 is nuclear
mass) the electrons are scattered on the nucleus leaving it in a ground state.
Quasielastic scattering (v ~ Q*/2M, M is nucleon mass) corresponds roughly to
direct collisions with individual nucleons inside the nuclei. The inelastic scattering
occurs when the pion threshold .is reached (v > Q*/(2M + m.), m, is pion
mass). However at the level of radiative corrections the radiated photon removes

‘the fixation by taking away an arbitrary amount of energy and all the channels
contribute to the observed cross section. Such elastic, quasielastic and inelastic
processes with radiation of a real photon are known as radiative tails from the
elastic ,0., and quasielastic o, peaks and from the continuous spectrum oiy.
The total radiative correction of the lowest order is obtained as a sum of these

[

contributions and the one from the effects of vacuum polarization and radiation
of additional virtual photons (o,):

ORC = Oin + 04+ 0 + 0. ' (29)

The radiative correction ARC A; to the measured asymmetry (21)

3H.

AlMle = e . ARC 4 (30)

1 mees
can be written as follows

UO(Uin(gl) + UP + Ucl) - Uo(gl)(ai‘:; + U;‘ + U:I)
((1 + S, )00 + Uzn + UL‘J‘ + U:l)

ARC A, = ; (31)
where 8, = 0?/0% = o®/o¥. The Born, 0o, and inelastic, i, parts of cross sections
depend on g4, and in the last case the dependence is non-trivial. So, the equation
(30) becomes dependent on g;(z) or a system of equations when the extraction of
&1 is performed for n kinematical points x; (i = 1,...,n). Usually such a system
of equations is solved with the iteration methods. The most evident iteration
algorithm is as follows: .

Az?:) - Ai}::eaa A(11—])’41’ n=12,. (32)

where n is the iteration number, AjHe s given by Eq.(21), A(n 3 is calcula.ted

1 meus
theoretically (31) and Amf) = Ale .
At the first step of iteration, n = 1, we fit the measured asymmetry
Al using parameterization (A.1) from Appendix. With the help of the found

parameters.we calculate gy, , the correction AFC and RC-corrected asymmetry
A;?f) At the next step of iterations, n = 2, A1(1) is fitted with (A.1), new
values are found for gi;; and then for A(I)Al and Al(2) Iterations are stopped
if | A(") A("_I)Al |< 0.0001. In practice the procedure converges within 4-5

steps.

6 Tests of the method.

The method was tested using Monte-Carlo program and the 1995 HERMES '
data.

6.1 Monte-Carlo test

To test the proposed method, a special Monte-Carlo program has been
developed. For each event at the positron beam energy 27.5 GeV the kinematical



variables ( z, Q? ) are generated with 1/Q* for Q? and flat for » distributions
~ within the following intervals: ¢ = 0.02 - 0.8 and @* = 1. - 20. GeV?2. Additional
cuts are applied: v= 0. - 23.375 GeV; W? = 4. - 500. GeV 2. 9 = 0.02 - 0.3 Rad;
y = 0. -0.85.

Each event is weighted with W:

W=1+ PbptA”(:t), (33)
Ay(2) = D(A(2)fa(@)Pa + (1. = fa(@) AL(2) F5) (34)

where A? is a proton spin asymmetry:
AZ(z) = 0.01902 4 0O (1 ~ el~1:8452)), (35)

The structure functions R, Fj and Fj are taken from the SLAC and NMC
parameterizations [12]. This program simulates the real HERMES data taking, in
particular, the accelerator bursts, the values of the beam and target polarizations,
~ dead time of the set-up and values of the luminosity monitor.

The software package of the asymmetry calculations, as discribed in Section 4,
was applied to the sample of these events. Figure 1 presents the typical dependence
of the normalized yield versus product of the beam and target polarizations
obtained with the Monte-Carlo program. The fit by straight line of this dependence
~ gives the values of o, and o, in units of the luminosity monitor. The calculated
asymmetry and the input parameterization are presented in Figure 2. One can see
that there is a good agreement between the reconstructed and input asymmetries
(x?=3.83 for 10 points). The first moment of g, calculated from the reconstructed
value of g1(z) coincides with the input value within less than 1 % . The ratio
between A%} (z) and input parameterization of asymmetry is shown in Figure 3. It
also confirms the correctness of the procedure test. Thus, we can conclude that
the method is valid and can be applied to real experimental data.

6.2 Tests using HERMES data

The method, as described in sections 3.2 and 4, has been applied to the 1995
HERMES data on Helium-3 target. The results are in good agreement with the
data presented in {9]. . :
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7 Discussions

7.1 Multinuclear target

This method can be applied to multinuclear targets like SMC target [18]. It is seen
from the following consideration. For the multinuclear targets the equation (10)
can be written as follows:

Nij(z, Q) Li; = Y ok + > o5 PicPj, (36)
k k. .

where index k means the certain type of the nucleus in the target. Since the value
of the target polarization is high enough only for hydrogen(deuterium), but it is
close to zero for other nuclei, the second term of Eq.(36) can be expressed as
follows: )

Y opPhPh o Ph Py, ' (37)
k .

where indexes jl,...,jk and il,...,2k mean the binning over target and beam
polarizations, a; is a polarized deep inelastic cross section of polarized leptons
on hydrogen(deuterium) nuclei. The first term of Eq.(36) is expressed through
dilution factor(Fy) for target [3] , which takes into account the fraction of

hydrogen(deuterium) nuclei contained in the target :
ol=Fiy ol : (38)
k ‘
where ol is an unpolarized deep. inelastic cross section of polarized leptons on
hydrogen(deuterium) nuclei. ,
So, the equation (10) for polarized hydrogen(deuterium) nuclei contained in
multinuclear target is written as follows:

oy
Nij(z, Q") Lij = Faz,0n T o, P P, (39)

which is similar to Eq.(10).

7.2 Unpolarised structure functions

So far we have discussed the procedure of determinaion of the spin dependent
structure functions. But it is obvious that having o, either-from the likelihood
procedure or/and from o5'+05t and applying the unfolding procedure [19] to
account for the acceptance and resolution , we can also determine the unpolarized
structure function Fy(z,Q@?). Comparison of this function with the existing
precision measurements will provide additional tests for the method.

11



8 Conclusions

The method to separate the polarized and unpolarized parts of the measured
cross sections for deep inelastic scattering of polarized leptons on polarized
nucleons is proposed and tested. These parts of cross sections can be used for direct
calculations of spin dependent structure functions. This method allows to extract z
and Q? depenedences of g1 directly, without using the F2 and R structure functions
from other experiments. To take into account the resolution and acceptance of the

set-up, the method can be improved by the special unfolding procedure [19].
Appendix

The following function taken from Schaefer’s parameterization [16] is used:for
fitting the neutron spin asymmetry measured by HERMES [9}:

1 a
Kooy = - (aofg 4 Bt6r 482 -2 D) (AD
' : qo + 3a1 9
where o
2zo%(1 — z)Pe z24(1 — )P4 ;
ag = - ,
0 B(auaﬂu'{'l) 2B(adaﬂd+1) (A 2)
o = 3 zo4(1 — z)Pe )
' 2 B(ayg, Bu+ 1)
and
o= 1 - e 1
T ] ageros(l —z)?’ * 7 1 + auoarozs(l — )%’ (A3)
2= : = ! '
47 1 ¥ arawez(l — z)%’ 47 1 ¥ araneaor®é(l — z)*

Parameters a7, ayo and ao are considered as free ones and @y, ag, B, and B4 are

fixed: . ,
o, = 0.588, ag=103, B.=2.69, (s =6.89. (A4)

Fitted values of the parameters are as follows: " -

aj0=0.88, auw =046, ar= 11.64. . (A.5)
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Puc. 1: The ndrmglized yield versus a product of the beam and target polarizations
at £=0.025 obt-a.ine'd with Monte-Carlo program discribed in section 6.1. The result °
of fit by a straight line is also shown (see Eq.(10), P, = oy, P, = 0, in units Knb,

‘where K is the normalized constant for luminosity monitor).
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Puc. 2: The asymmetry Al(x) calculated from the Monte Carlo sample Sohd line
is the parametenzatlon used for generation.
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Puc. 3: The ratio (Ratio) of A}(z) calculated from the Monte-Carlo sarIrple and

input values of A7.
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’sectlons for deep inelastic scattering. of polarucd leptons on polanzed nudeons
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R ls proposed The method is based on the exact. formulae for dlfterences of cross
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~takmg into account’ dynamlcal variations of beam" and target po]an?zmons as well






