


1 VIntryodu}cti’on

In this paper we describe a scheme of kinematical identification of pd — ppn .
* reaction events. Such a scheme is supposed to be used in data processing of the’
pd — ppn events to be collected at the spectrometer ANKE (COSY) {1, 2, 3]. As
a result of using such a scheme, we have obtained the precision parameters of the
ANKE spectrometer for the process pd — ppn. The approach proposed here can
be easily adapted to any exclusive process. ' S Tt R

2 Method

Kinematical identification of hypothéseé_was introduced into data processing prac-
tice more than thirty years ago [4, 5]. The purpose of this step is twofold: to check
the hypothesis that a given event is of the type it is supposed to ‘be and if it is
true, to find more accurate estimates of the event parameters. For minimizing the
corresponding functional the so-called Lagrange multipliers method was proposed.
In this.paper another technique, applicable to a wider class of problems, is used
for kinematical identification [6-9)... " - L O UL

_ In fig: 1 the setup layout is shown.’ The setup consists of a target, a backward
magnet with'a system of drift chambers and a forward magnet with-a system of
proportional chambers. Hodoscopes of scintillation counters:are used to produce
signals for triggering the chambers.. ... = Ll e SR

. The process pd — ppn is fully described by the following variables:. the coordi-
nates of the interaction point and momentum vectors of two protons, the forward
and backward ones. In the model used we have done some simplifications: consi-
dering that the transversal dimensions of the beam are small (~2 mm in diameter)
and the beam line is practically straight in the vicinity;of the target 40 cm long,
the only essential parameter describing the interaction point is the coordinate
along the beam line. It was generated randomly according to the.uniform dis-
tribution. Another simplification was to generate the kinematics of the reaction
according toits phase space. Finally, we assumed that the measurement error of
coordinates for all the track detectors was 500 pm and the error for the time of
flight was 1 ns*. -~ e S e T e B di

The field map contained three components of the field in the nodes of the
space lattice. In ref. [10] a polynomial model of the analytical representation of
the magnetic field was described. * All the field “calculations were carried out in

the framework of this model with the polyﬁdmigls'iip, to the third order. In this
case 24 coefficients for any elementary volumga”we‘rgdeﬁncdv by preliminary fitting
using known values in 8 corner. points of the volume. -~ - e

IHere we used a rather conservati\;é ‘a;;p'roach and selected deliberaiely higher figures than
one anticipated for the setup under development. . i I :
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: About 3000 events of the deuteron break -up were generated in WInch both pro-
tons crossed respectlvely all planes of the backward and forward detector. chambers
and hit " the correspondmg scintillation hodoscopes. The Runge-Kutta tracking
was done’ according to the method described in ref. [11].. While tracking the

'partlcles Coulomb scattermg in dlfferent elements of the setup was taken into
account. " - U - -
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Fig. 1. Setup layout. All dimensions in cm \

Arange of the event para.meters was as follows: i v it 20Ty L
' ~200cm. < I ]5]200cm ‘ B
0053 <.& <030 -
~=0.027, < <0028
013 GeV/c <. P < 051GeV/je =~~~
£,.—0.096 <., 25 <0580 S
S = 0,110 < < 0.100
et 0.56 GeV/c <. < 316 GeV/c

The following notations are used here: L is the coordmate of the interaction point
) (vertex coordmate) taken along the beam relative to the middle of the target,
-z, Py are the slope coefficients along the z,y axes and the momentum for the
backward proton, ‘h, y2, P, are the‘same for the forward one.~ .. :
These ‘simulated events were used as the input data for the ﬁttmg progra.m
The parameter est]mates were found by m1n1m1z1ng the following. x? form:
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with the constraint equation:
(B +mp) — (B + E2)* - [ ~ (B + &2)]° = my,
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where z} ; are the "true” coordinates of the particle hits of the track detectors, &

are thelr "measured” values, G;; is the weight matrix taking into account both
errors of measurement and Coulomb scattering in the general case, AT* is the
"true” value of the time-of-flight difference between protons in the forward and-
backward detectors, AT™ is the "measured” value of the time-of-flight difference
and or is the error of the time-of- -flight measurement. The constraint equation is
easily understandable: the missing mass of the reaction must be equal to the neu-
tron mass; here E;, p, are the beam partlcle energy and momentum, E\, i, Ez, P2
are the energies and momenta of the forward and backward protons, m,, m, are
the masses of the target proton and missing neutron respectively. ‘

" In order to do fitting we have to express the "true” coordinates in terms of .
the functions of the parameters. It is well known that the equation of motion of
a particle in the magnetic field is the Lorentz equation which in the coordinate
representation is equivalent to differential equations of the second order. "For an
inhomogenious magnetic field these equatlons are usually solved by the Runge—
Kutta method if five initial parameters of the particle trajectory are known — two
coordinates, their derivatives and the momentum. In our case there are only four
initial parameters: the vertex coordinate; two derivatives and the momentum.
Then the hit coordinates z ; and AT* are some regular functions of these four
variables and the problem i is to find these functions. Here it is done by the method
described in ref. [12]. The idea of the method is to represent these functions in the
form of expanslon into Taylor series over the initial parameters. The maximum
power of the series is defined by. the condltlon that the approximation inaccuracy
is less than other unavoidable inaccuracies. In our case the major source of the
unavoidable inaccuracy is Coulomb scattering and we required that the approxi-
mation inaccuracy must be less than or comparable with it. We used the Taylor
series over four variables and obtained accuracies’ of approx1mat10n better than
the Coulomb scattering errors.

In table 1 the Coulomb scattering errors s for backward and forward protons
are shown. The errors were calculated for the proton momentum 0.5 GeV/c for
the backward proton and 1.5 GeV/c for the forward one. The method of taking
Coulomb scattering into account is described in ref. [13]. Inaccuracies. due to
approxlmatlons, expressed as square roots from mean quadratic deviations, are
also given in table 1. '

Table 1. Coordinate inaccuracies (R M.S. in cm) ‘caused-by
approximation procedure and Coulomb scattering -

Backward spectrometer | Forward spectrometer
S o | o oy oy | og o3
Function inaccuracy-{ 0.060 | 0.100 | . 0.120 -} 0.032 | 0.056 | 0.080
Coulomb inaccuracy | 0.140 | 0.280 | 0.340 | 0.055 | 0.070 | 0.095

Here o4, 03, 03 are the function and Coulomb scattering errors for the first, second
and third chambers respectively.
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It is seen that the inaccuracies caused by the approximation procedure are
lower than the Coulomb scattering errors. S ' '

3 Results |
In fig: 2 and in the first column of table 21 we show the accuracies obtained with
the model as described above. It is seen that the accuracies in momentum-are
' ~1.0%, in.interaction coordinate ~3.8 cm and in‘angle less than ~3.3 mrad.

In the second column of table 2 the same, accuracies in' the so-called ideal”
case. are shown — when we assume that fuiiétidns for observables are known
~ exactly. One can see that the accuracies _ar‘e‘~1'0% better, in other iords if the
Runge-Kutta tracking is done right during the kinematical fit, one will get ‘these

- accuracies.. In these cases the weight matrix Gi; in formuila (1) was written with

taking into account both measurement and Coulomb scattering errors.

. Sometimes during parameter estimation Coulomb scattering is either not taken
into account at all or dealt with inan approximate manner. To clarify the influence
of such simplification we have conducted a special investightion in the framework
of ‘our model. .In column 3 of table 2 we give the parameter accuracies when
‘only: measurement. errors, were included in_the matrix Gi;. In comparison with
column. 2 we obtain a'~40% decrease in a.ck;tird@:y. In the last column we show

‘the accuracies when Coulomb s)catt:f;ring,\&'a.fs, included Eﬁnly in the diagonal terms
-of the matrix Gjj, i.e. all the correrlziyti‘dn,,j;er.ms were neglected. It is seen that we
again obtain-a worse accuracy thoyug‘h ‘w‘(')rs'enlihglisf not so blg as in the previous
casel s e a pee o
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... - Table 2. ,Parair‘igﬁégf:écgﬁ;zfé‘y for different (\:ase;sl;:"

1 2 B EE N N

L (AL em | 349 858 | 511 | 340
S Te(EEy % T4 7100 | L1 | 106
oo |e(B2),% [ o087 | 0807} 1.04 | 0.8
: ' o(Az)), mrad | 3.34 | 3.24 | 3.65 3.50
o(Ay;), mrad | 1.04 | 0.94 | 1.99 1.59

Lo(Axy), mrad | 2.87 | 2.64 | 3.75 | 2.80
a(Ays), mrad | 0.68 | 0.58°1" 0.72 | 0.59

‘ Fi‘n‘a.lly;kin,ﬁg 3. the time of flight différ'e’hcés‘a.re shown for the cases when a
proton (or.two) from deuteron break-up is replaced by a 7-meson taking the same

momentum. These spectra were obtained: for the same sample of events which

was used during the model testing (r’e‘:méﬁib‘érqtli'at the kinematics of the process
was generated according to phase \Spac,e). 'A e . T

© a) backward proton Ap/p, b) forward proton Ap/p,
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Fig. 2. Parameter 'acc:“f,acylih?t}‘igfﬁbdelf T

<) vertex coordinate AL (in cm), d) slope coefficient Az}
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Frg 3. Time of ﬂrght drﬁ'erence (in nsec) between the backward and forward
particles.

a) backward — proton, forward — proton,
b) backward — proton, forward — #-meson,
c) backward — wx-meson, forward — proton,
d) backward — w-meson, forward ~— w-meson.

4 Conclusmn

Usmg the model data we tested a scheme for selectron of the deuteron break -up
reactron Briefly, the results can be summarrzed as follows

"o The proposed scheme gives good estrmates of parameters a.nd may be con-
s1dered as a candrdate for the proposed data processing procedure .

° Usage of the approxrmate functions whrch is much qurcker than usmg Runge-
“Kutta for event observables (in our model in the polynonnal form), gives a .
~10% decrease in accuracy.’ ' o : -

e Coulomb scattering should be taken mto account during the kmematrcal
analysrs phase Otherwrse one loses ~40% in accuracy. .

The proposed scheme may be apphed to any exclusrve process ‘As for 1nc]us1ve

. processes, minimization of the quadratrc form with a correct covariation matrix
" and 'use’of the Runge-Kutta method are. recommended if one is going to get. the

‘maximal accuracy of estimates. Such an approach is. resource- -costing. but the

. performance of: modern computers is high enough to permrt 1t in, the case of
experlmental facrhtles like ANKE. '
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