ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

V.S.Butsev, D.Chultem, V.Cojocaru, W.D.Fromm, Dz.Ganzorig, T.Krogulski, H.-G.Ortlepp, S.M.Polikanov, E.M.Sabirov, U.Schmidt

2436/2-76

B-98

INTENSITIES OF MUONIC X RAYS IN LEAD, THORIUM AND URANIUM

28/11-76

E1 - 9580

E1 - 9580

V.S.Butsev, D.Chultem, V.Cojocaru, W.D.Fromm, Dz.Ganzorig, T.Krogulski, ² H.-G.Ortlepp, S.M.Polikanov, E.M.Sabirov, U.Schmidt

INTENSITIES OF MUONIC X RAYS IN LEAD, THORIUM AND URANIUM

Направлено в "Письма в ЖЭТФ"

² On leave from the Institute of Nuclear Research, Swierk near Warsaw, Poland.

> объединенный институт адерных всследований БИБЛИСТЕКА

On leave from the Central Institute for Nuclear Research, Rossendorf, Dresden, GDR.

Бутцев В.С., Чултэм Д., Кожокару В., Фромм В.Д., Ганзориг Ж., Крогульски Т., Ортлешт Х.-Г., Поликанов С.М., Сабиров Б.М., Шмидт У.

Интенсивности мезорентгеновских переходов в свинце, тории и уране

Измерены абсолютные интенсивности основных переходов в мюонных атомах естественных элементов свинца, тория и урана. Полученные абсолютные интенсивности не подтверждают предсказания каскадной модели.

E1 - 9580

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований Дубна 1976

Butsev V.S., Chultem D., Cojocaru V., Fromm V.D., Ganzorig Dz., Krogulski T., Ortlepp H.-G., Polikanov S.M., Sabirov B.M., Schmidt U.

Intensities of Muonic X-Rays in Lead, Thorium and Uranium

The absolute intensities of the principal transitions in muonic atoms of natural lead, thorium and uranium have been measured. The predictions of the cascade calculations are in disagreement with the observed intensities.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research

Dubna 1976

Knowledge of the intensities of muonic transitions v is of essential importance for the study of muonic atom properties as well as for the investigation of the interaction between a muon and a nucleus. In the latter case the fraction of nonradiative muonic transitions directly exciting the nucleus should be known to normalize the yields of various reactions, like fission or neutron emission, following this excitation. This fraction of 2p-1s transition may be defined as the difference between the population of 2p levels and the intensity of radiative transitions. But because of the limi-2p - 1stations of sensitivity it is experimentally very difficult at present to measure the intensities of all transitions leading to 2p levels. Therefore, in a few papers dealing with this problem $\frac{1}{2}$, the lack of the intensity of transitions in thorium, uranium and plutonium 2p - 1selements with respect to the intensity of this transition in lead was interpreted as a fraction of radiationless transitions in the actinide nuclei. But there is one important assumption made that the intensities of the higher radiative transitions are the same for the nuclei under consideration. Otherwise, the fraction of missing X -rays cannot be simply related to that of radiationless transitions.

In the present experiment we attempt to check this assumption measuring the absolute intensities of the main muonic X-rays in natural lead, thorium and uranium.

The experiment has been performed using the separated negative muon beam of the 680 MeV synchrocyclotron, Dubna. The muonic X -rays were detected with a true-coaxial Ge(Li) diode of a 45 ccm volume, in prompt coincidences with the μ -stop signal developed by a conventional 1234-counter telescope. The time resolution was $2\tau = 10$ nsec and the energy resolution was 3 keV and 8 keV for 1 MeV and 8 MeV energy of gammaray, respectively. The typical rates were as follows: 36000, 11000, 1300 and 200 per second for "1,2", "1,2,3", "1,2,3,4" and (μ,γ) coincidences, respectively.

The targets were of identical dimensions, $60x77 mm^2$, weighing about 50 g each and with the effective thickness of about 2 g/cm².

The reliable determination of the efficiency of X-ray detection and of the true number of μ -stops in targets was of major importance in these measurements.

To be free of beam stability problems, ten cycles of measurements were accomplished. In every cycle six runs were performed with all four targets in the order as follows: Al , Pb , Al , Th , Al , U . Thus, reasonable averaging over the fluctuations of beam conditions could be achieved. Moreover, the efficiency curve of the Ge(Li) diode was normalized to the absolute units using the well-known value of the intensity of K_a muonic transition in aluminium $^{/3/}$.

The true number of μ -stops was determined comparing the dependence of four quantities on the target thickness, which were the number of μ -stops, $(\mu_{stop}, \gamma_{total})$ and $(\mu_{stop}, \gamma_{prompt})$ coincidences, and the yields of K_a muonic X-ray in Al and "6 \rightarrow 5" and "5 \rightarrow 4" transitions in heavy targets.

The method was checked by measuring the yields of muonic X-rays from the sandwich target composed of sixteen aluminium and lead foils 50 mg/cm^2 and 60 mg/cm^2 thick, respectively.

The experiment was carried out in two steps. Firstly, the absolute intensities of $6h \rightarrow 5g$ and $5g \rightarrow 4f$ transitions in lead, thorium and uranium were found applying the above mentioned repetitive measurements. Then in runs of longer duration the muonic X-ray spectra of all targets were measured from 150 keV to 7 MeV, and the relative intensities of transitions were established. Combining both data we obtained the final results presented in the Table.

ande	_							
		Intens	ities of rac	digtive muc	nic transit	ions		
		Pb (nat)		232	Тh	53	۴U	
ansitions	E(keV)	Iexp	$I_{con} = \frac{1}{2} - \frac{1}{2} $	E (keV)	Iexp	E (keV)	Iexp	
7i - 6h						166-182	0.367±0.025	
91-71 91-7h				181-191	0.034±0.004	190-200	0.040 ±0.004	
8i – 6h						285-295	0.043 ± 0.007	
. 6h-5g	230-237	0436±0035	5070	274 - 291	0.315±0.022	285 - 304	0391±0027	
7h-59	370-375	Q060 ± 0 005	0075	143-456	0035 ± 0.003	464 - 477	0 050 ± 0 006	
212 - 4 412	429-432	0.265 ± 0.016	0.239		0176 ± 0.014		0.228±0.016	
nn-4 tsn	177-187	0192 ± 0.013	0.211		0.139 ±0.009		0.173 ± 0.010	
59-41	177 - 771	0.457 ± 0.032	0450	514 - 535	0.315 ± 0.022	537-560	0.401 ± 0.026	
69-41	662-673	0.055±0.005	0.080	794-816	0.033±0.004	831-854	0.048 ± 0.005	
f _{5/2} - 3d _{5/2}	929	0.024±0.003	0.016					
f _{7/2} -3d _{5/2}	938	0.298±0.021	0 320	1115-1151	0.205±0.015	1170 - 1210	0.260±0.020	
$f_{5_{12}} - 3d_{3_{12}}$	965-972	0.224 ± 0016	0284	1174-1193	0.135 ± 0.010	1230-1260	0.180±0.012	
f — 3d		0 2 4 6 ± 0.0 4 0	0570		0.340±0.025		0.440±0.032	
	2501	0 298 ± 0 0 22	0 435	2730 - 2740		2810-2850		
3d ₅ -2p ₃ ,				2792 - 2825	0.074 ± 0 012	2860-3035	0142 ± 0.020	
				2892 - 2927				
3d _{3/2} - 2p _{1/2}	2642	-0176 ± 0 014	0.245	3088 - 3157	0.159 ± 0.013	3215 - 3242	0.185 ± 0.020	
8 d—2 p		0 474 ± 0.038	0.680		0.233±0.025		0.327±0.040	
2PV2-15V2	5781	0.259±0.026	0.295	6000-6120	0.230±0.024	6050-6200	0.312 ± 0.030	
2 Par - 15/12	5967	0 336 ± 0 029	0.585	6280-6470	0.230 ±0.024	6380-6580	0.237 ± 0.024	
2p-1s		0.595 ± 0.060	0.880		0.460 ±0.048		0.550±0.055	

N

W I

The quoted errors are determined first of all by the uncertainty of about 5% in the estimation of the μ -stop number. The error in the value of $\mu A \Gamma K_{\alpha}$ - transition intensity contribute in a 2% amount. The statistical errors are negligible for higher transitions and they amount to several per cent for K_{α} transitions.

The relative efficiency curve for photopeak detection was measured, extending the calibration by means of radioactive isotopes with the 35 Cl(n, y) reaction. The corridor of errors of a 0.5% relative width was obtained for the functional representation of efficiency data by the polynomial of the fourth degree in the doubly logarithmic coordinates (log ϵ_r versus log E_V).

The smooth dependence of self-absorption coefficients in the function of gamma-ray energy was determined with the inaccuracy of 3% by measuring the natural activity of the thorium target and thorium foil 0.05 mm thick.

The off-line analysis of the spectra was made using the computer code SAMPO $^{/9/}$. The comparison of experimental results and the predictions of the cascade calculations based on the code developed by Hüfner $^{/4/}$ is shown in Fig. 1. In the calculation only radiative E1 transitions and Auger transitions were allowed, the electronic K-, L- and M-shell conversion was included and the initial population distribution at n = 20: $\rho \sim (2 \ell + 1)e^{\alpha \ell}$, was assumed. The intensities of $6 \rightarrow 5$, $5 \rightarrow 4$, and $4 \rightarrow 3$ transitions in lead may be reproduced by using a = -0.14. But for this value of the "a" parameter the calculated intensities of $3 \rightarrow 2$ and $2 \rightarrow 1$ transitions are much larger than those found experimentally. Moreover, as we can see from Fig. 1., there is no value of the "a" parameter with which the intensities of muonic transitions in thorium or uranium could be reproduced. Therefore, the basic assumption of the cascade calculations referring to the initial population distribution seem to be not adequate. The theoretical predictions may also fail to reproduce the observed intensities because the effective coupling between nuclear and atomic motions is not considered at all in the used cascade calculations.

Fig. 1. Results of the cascade calculations of muonic transition intensities per μ -capture for Z =82 and Z =92, plotted against the "a" parameter of the initial population distribution: $\rho \sim (2\ell + 1) \exp(a\ell)$. The measured intensities are quoted alongside.

The absolute intensity of K_{α} muonic transition has been measured only in the case of ¹⁸¹Ta by Bleser et al. ^{/5/} and our result for Pb_{nat} is in very good agreement with it. Our results are not in contradiction with Anderson's et al. $\frac{6}{}$ relative measurements but there is a meaningful difference between the intensities of both and $4 \rightarrow 3$ transitions as measured for natural 5 → 4 thallium $\frac{7}{7}$ or bismuth $\frac{8}{7}$ and as measured for natural lead by us.

One may conclude that the intensities of all corresponding transitions are different for lead and actinide muonic atoms. Therefore, the fraction of missing X-rays cannot be simply related to the fraction of radiationless transitions, and only improving considerably the sensitivity of the measurements of muonic X-ray intensities and searching for the difference between the population and the radiative decay rates of muonic states one might be able to infer reliably the fraction of radioationless transitions.

Acknowledgements

The authors are grateful to Professors V.P.Dzhelepov and L.I.Lapidus for their support and interest in this work. Thanks are due to Dr.H.Schneuwly for many helpful discussions.

References

- 1. M.Ya.Balats et al. JETP (Sov.Phys.), 38, 1715 /1960/; 39, 1165 /1960/; 49, 7 /1965/.
- 2. E.P.Hincks et al. See J.A.Diaz et al. Nucl. Phys., 40, 54 /1963/.
- 3. H.Backe. Z.Phys., 241, 435 /1971/.
- 4. J.Hüfner. Z.Phys., 195, 365 /1966/.
- 5. E.J.Bleser et al. Phys. Rev., 132, 1679 /1963/.
 6. H.L.Anderson et al. Phys. Rev., 187, 1565 /1969/.
 7. H,Backe et al. Nucl. Phys., A189, 472 /1972/.
 8. A.Zehnder. Diplomarbeit. ETH Zurich /1970/.

- 9. J.T.Routti. Report UCRL-19452.

Received by Publishing Department on March 2, 1976.