

С005ЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯЯЕРНЫХ

 ИССЛЕДОВАНИЙ
Дубна

$95-444$
E1-95-444
A.V.Bannikov, G.A.Chelkov, Z.K.Silagadze*
$B_{s}^{0} \rightarrow D_{s}^{-} \alpha_{1}^{+}$DECAY CHANNEL
IN THE B_{s}^{0}-MIXING STUDIES

[^0]
1 Introduction

In the Standard Model B^{0} and \bar{B}^{0} are not mass eigenstates. Instead we have (the small CP -violating effects are neglected)

$$
\begin{equation*}
B^{0}=\frac{B_{1}+B_{2}}{\sqrt{2}} \quad \therefore B^{0}=\frac{B_{1}-B_{2}}{\sqrt{2}} . \tag{1}
\end{equation*}
$$

So the time evolution of the B_{i} states looks like

$$
\begin{equation*}
B_{i}(t)=B_{i}(0) \exp \left\{-\frac{i}{\hbar}\left(m_{i}-i \frac{\Gamma_{i}}{2}\right) t\right\}, \tag{2}
\end{equation*}
$$

where m_{i} is the mass eigenvalue and Γ_{i} - the corresponding width.
It follows from (1) and (2) that the probability for B^{0} meson not to change its flavour after a time t from the creation is

$$
\begin{equation*}
P^{B^{0} B^{0}}(t)=\left|\left\langle B^{0}(t) \mid B^{0}(0)\right\rangle\right|^{2}=\frac{1}{2} e^{-\frac{\Gamma t}{\hbar}}\left(\cosh \frac{\Delta \Gamma t}{2 \hbar}+\cos \frac{\Delta m t}{\hbar}\right), \tag{3}
\end{equation*}
$$

and the probability to convert into the \bar{B}^{0} meson -

$$
\begin{equation*}
P^{B^{0} \bar{B}^{0}}(t)=\left|\left\langle\bar{B}^{0}(t) \mid B^{0}(0)\right\rangle\right|^{2}=\frac{1}{2} e^{-\frac{\Gamma}{\hbar}}\left(\cosh \frac{\Delta \Gamma t}{2 \hbar}-\cos \frac{\Delta m t}{\hbar}\right) \tag{4}
\end{equation*}
$$

where $\Gamma=\frac{1}{2}\left(\Gamma_{1}+\Gamma_{2}\right)$ is the average width and $\Delta \Gamma=\Gamma_{1}+\Gamma_{2}$. So $\Delta m=m_{1}-m_{2}$ mass difference between the B mass eigenstates defines the oscillation frequency. Standard Model predicts [1] that $\frac{\Delta m_{s}}{\Delta m_{d}} \sim\left|\frac{V_{t s}}{V_{t d}}\right|^{2} \gg 1, V_{i j}$ being the Cabibbo-KobayashiMaskawa matrix element. Therefore the mixing in the B_{s}^{0} meson system proceeds much more faster than in the B_{d}^{0} system.

The total probability χ that a B^{0} will oscillate into ${\overline{B^{0}}}^{0}$ is

$$
\begin{align*}
\chi & =\int_{0}^{\infty} P^{B^{0} \bar{B}^{0}}(t) \frac{d t}{\tau}\left(1-y^{2}\right)=\frac{1}{2}\left(\frac{x^{2}}{1+x^{2}}+\frac{y^{2}}{1-y^{2}}\right)\left(1-y^{2}\right), \\
x & =\frac{\Delta m}{\Gamma}, y=\frac{\Delta \Gamma}{2 \Gamma} . \tag{5}
\end{align*}
$$

In the first B_{d}-mixing experiments [2] just this time integrated mixing probability was measured. The result [3] $x_{d}=0.69 \pm 0.07$ shows that in the B_{s} system $x_{s} \gg 1$ is expected. In fact the allowed range of x_{s} is estimated to be between ~ 12 and ~ 30 in the Standard Model [4]. Such a big value of x_{s} makes impossible time integrated measurements in the B_{s} system, because χ in (5) saturates at ~ 0.5 for large values of x.

Although it was thought that unlike the kaon system for the B mesons the decay width difference can be neglected [5], nowadays people is more inclined to believe
the theoretical prediction [6] that the $b \rightarrow c \bar{c} s$ transition, with final states common to both B_{s} and \bar{B}_{s}, can generate about 20% difference in lifetimes of the short lived and long lived B_{s}-mesons [7].

But we can see from the $(3 \div 5)$ formulas that the effect of nonzero y is always $\sim y^{2}$ and so of the order of several percents, because $y \approx 0.1$ is expected. In the following we will neglect this effect and will take $y=0$, though in some formulas y is kept for reference reason.

The development of high precision vertex detectors made it possible to measure [8] in the B_{d} system the time dependent asymmetry

$$
\begin{equation*}
\frac{P^{B^{0} B^{0}}-P^{B^{0} B^{0}}}{P^{B^{0} B^{0}}+P^{B^{0} B^{0}}}=\cos \frac{\Delta m t}{\hbar} \tag{6}
\end{equation*}
$$

The same technics can be applied to the $B_{s}-\bar{B}_{s}$ system also.
Recently the ATLAS detector sensitivity to the x_{s} parameter was studied [9] using $B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+} \rightarrow \phi \pi^{-} \pi^{+} \rightarrow K^{+} K^{-} \pi^{-} \pi^{+}$decay chain for B_{s} meson reconstruction. It was shown that x_{s} up to 40 should be within a reach [10]. The signal statistics could be increased by using other decay channels, like $B_{s}^{0} \rightarrow D_{s}^{-} a_{1}^{+}, B_{s}^{0} \rightarrow$ $J / \Psi K^{* 0}$.

The purpose of this note is to study the usefulness of the decay chain $B_{s}^{0} \rightarrow$ $D_{s}^{-} a_{1}^{+} \rightarrow \phi \pi^{-} \rho \pi^{+} \rightarrow K^{+} K^{-} \pi^{-} \pi^{+} \pi^{-} \pi^{+}$for B_{s} meson reconstruction in the $\Lambda T L A S$ B_{s}-mixing experiments.

2 Event simulation

About 20000 following b-decays were generated using the PYTIHIA Monte Carlo program [11]

$$
\begin{aligned}
\left(p_{T}^{\mu}>6 \mathrm{GeV} / c,\left|\eta^{\mu}\right|<2.2\right) \mu_{t a g} \leftarrow b \bar{b} \rightarrow B_{s}^{0} \rightarrow & D_{s}^{-} a_{1}^{+} \\
& \hookrightarrow \rho^{0} \pi^{+} \\
& \hookrightarrow \phi \pi^{-} \\
& \hookrightarrow \pi^{+} \pi^{-} \\
& \hookrightarrow K^{+} K^{-}
\end{aligned}
$$

The impact parameter was smeared using the following parameterized description of the impact parameter resolution

$$
\begin{equation*}
\sigma_{I P}=14 \oplus 72 /\left(p_{T} \sqrt{|\sin 0|}\right) \quad \sigma_{Z}=20 \oplus 83 /\left(p r \sqrt{|\sin 0|^{3}}\right) \tag{7}
\end{equation*}
$$

where resolutions are in μm and θ is the angle with respect to the beam line. It was shown in [9] that this parameterized resolution reasonably reproduces the results obtained by using the full simulation and reconstruction programs.

For the transrerse moment um resolution an usial expression [10]

$$
\begin{equation*}
\frac{\sigma\left(p_{T}\right)}{p_{T}}=3 \cdot 10^{-4} p_{T} \because 1.2 \% \tag{8}
\end{equation*}
$$

was assumted.
Track reconstruction efliciencies for varions particles were taken from [10]. Because now we have 6 particles in the final state instead of 4 for the $B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+}$ decay channel. we expect some loss in statistics due to track reconst ruction inefficiencies. but the effect is not significant because the incestigation in [10] indicates a high reconst raction efficiency of 0.9%.

3 Event reconstruction

The topology of a considered $B_{s}^{\prime \prime}$ decay chain is shown schematically in a figure:

'The B_{s} decay vertex reconstruction was done in the following three steps.
First of all the D_{s}^{-}was reconstructed by finding three charged partiches presumably originated from the D_{s}^{-}decay and fiting their tracks. For this goal ath combinations of the properly charged particles were examined in the generated events assuming that two of them are kaons and one is pion. The resulting invariant mas distribution is shown in Fig. la. The expected D_{s}^{-}peak is clearly seen along
with moderate enough combinatorial background. ('uts on $\Delta O_{K i}$. $\Delta \theta_{k K}$ and $\left|M_{K K}-M_{o}\right|$ were selected in order to optimize signal to background ratio. To select one more cut on $\mid M_{K K}$ - $-M_{D-}^{-} \mid$. the information about the invariant mass resolntion is desirable. lig. 2a shows the reconstructed D_{s}^{-}meson from its true decay products. The finite invariant mass resolution is due to applied track smearing and equals approximately to $10 . \mathrm{Mct} / \mathrm{c}^{2}$.

After D_{s}^{-}meson reconstruction, a_{1}^{+}meson was searched in three particle combinations from the remaining charged particles. each particle in the combination being assumed to be a pion. Fig. Ib shows a resulting invariant mass distribution. Because of huge width of a_{1}^{+}. signal to background separation is not so obvious in this case. If a_{1}^{+}is reconstructed from its true decay products as in F_{ig}. 2h, its width is correctly reproduced. To draw ont a_{1}^{+}from the background, further cuts were applied on $\Delta o_{\pi-} \cdot \Delta \Theta_{\pi-} \cdot\left|M_{\pi-}-M_{p}\right|$ and $\left|M_{\pi-\pi}-M_{n_{1}}\right|$.

At last B_{s}^{0} decay vertex was fitted, using reconstructed I_{s}^{-}and a_{1}^{+}.
Almost the same resolution in the B_{s}-decay proper time was reached $\sigma_{\tau} \approx$ 0.064 ps , as in [9]. The corresponding resolution in the 33 -meson decay length in the transverse plane is $\approx 87 \mu \mathrm{~m}$). The relevant distributions are shown in lig. 3 .

4 Signal and background

Branching ratios and signal statistics for the $B_{s}^{0} \rightarrow D_{s}^{-} a_{1}^{+}$channel are summarized in Table 1.

Table 1.
Branching ratios and signal statistics for $B_{s}^{0} \rightarrow D_{s}^{-} a_{1}^{+}(1260)$.

Parameter	Value	Comment
$L\left[c m^{-2} s^{-1}\right]$	10^{33}	
$l[s]$	10^{7}	
$\sigma(b b) / \sigma(l o l)$	$\simeq 1 / 100$	
$\sigma(b b)[\mu b]$	$\simeq 500$	
$\sigma(b b \rightarrow \mu X)[\mu b]$	$\simeq 2.24$	$p_{T}^{\mu}>6 \mathrm{GeV} / c$
		$\left\|\eta^{\mu}\right\|<2.2$
$N(b b \rightarrow \mu X)$	2.24×10^{10}	
$B r\left(b \rightarrow B_{s}^{0}\right)$	0.1	
$B r\left(B_{s}^{0} \rightarrow D_{s}^{-} a_{1}^{+}\right)$	0.006	
$\left.B r(D)_{s}^{-} \rightarrow \phi \pi^{-}\right)$	0.035	
$B r\left(\varphi \rightarrow K^{+} K^{-}\right)$	0.491	
$B r\left(a_{1}^{+} \rightarrow \rho^{0} \pi^{+}\right)$	~ 0.5	
$B r\left(\rho^{0} \rightarrow \pi^{-} \pi^{+}\right)$	~ 1	
$N\left(K^{+} K^{-} \pi^{-} \pi^{+} \pi^{-} \pi^{+}\right)$	116000	

Note that we use an updated value for $\operatorname{Br}\left(D_{s}^{-} \rightarrow \phi \pi^{-}\right)$from [12]. B_{s}^{0} branching ratios are still unknown experimentally. Neglecting SU(3) unitary symmetry breaking effects, we have taken $\operatorname{Br}\left(B_{s}^{0} \rightarrow D_{s}^{-} a_{1}^{+}\right) \approx \operatorname{Br}\left(B^{0} \rightarrow D^{-} a_{1}^{+}\right)$.

Acceptance and analysis cuts are summarized in Table 2. We take a track reconstruction efficiency of 95% and a lepton identification efficiency of 80%, as in [10].

- Table 2.

Analysis cuts and acceptance for $B_{s}^{0} \rightarrow D_{s}^{-} a_{1}^{+}(1260)$ (for $10^{4} p b^{-1}$ integrated luminosity).

Parameter	Value	Comment
$N\left(K^{+} K^{-} \pi^{-} \pi^{+} \pi^{-} \pi^{+}\right)$	116000	
$\begin{aligned} & \text { Cuts: } \\ & p_{T}>1 \mathrm{GeV} / \mathrm{c} \\ & \|\eta\|<2.5 \end{aligned}$		
$N\left(K^{+} K^{-} \pi^{-} \pi^{+} \pi^{-} \pi^{+}\right)$	7680	6.6\%
$\begin{aligned} & \Delta \varphi_{K K}<10^{\circ} \\ & \Delta \theta_{K K}<10^{\circ} \\ & \left\|M_{K K}-M_{\phi}\right\|<20 \mathrm{MeV} / \mathrm{c}^{2} \\ & \left\|M_{K K \pi}-M_{D_{-}}\right\|<15 \mathrm{MeV} / \mathrm{c}^{2} \end{aligned}$		
$\begin{aligned} & \Delta \varphi_{\pi \pi}<35^{\circ} \\ & \Delta \theta_{\pi \pi}<15^{\circ} \\ & \left\|M_{\pi \pi}-M_{\rho^{0}}\right\|<192 \mathrm{MeV} / \mathrm{c}^{2}(\pm 3 \sigma) \\ & \left\|M_{\pi \pi \pi}-M_{a_{1}+}\right\|<300 \mathrm{MeV} / \mathrm{c}^{2} \end{aligned}$		
$N\left(K^{+} K^{-} \pi^{-} \pi^{+} \pi^{-} \pi^{+}\right)$	5765	5.0\%
$\begin{aligned} & D_{s}^{-} \text {vertex fit } \chi^{2}<12.0 \\ & a_{1}^{+} \text {vertex fit } \chi^{2}<12.0 \\ & B_{s}^{0} \text { vertex fit } \chi^{2}<0.35 \\ & B_{s}^{0} \text { proper decay time }>0.4 \mathrm{ps} \\ & B_{s}^{0} \text { impact parameter }<55 \mu \mathrm{~m} \\ & B_{s}^{\mathrm{o}} p_{T}>10.0 \mathrm{GeV} / \mathrm{c} \\ & \hline \end{aligned}$		为
$N\left(K^{+} K^{-} \pi^{-} \pi^{+} \pi^{-} \pi^{+}\right)$after cuts	3505	3.0\%
Lepton identification Track efficiency	$\begin{gathered} 0.8 \\ (0.95)^{6} \end{gathered}$	
$\overline{N\left(K^{+} K^{-} \pi^{-} \pi^{+} \pi^{-} \pi^{+}\right) \text {reconstructed }}$	2065	1.8\%

As we see, about 2065 reconstructed B_{s}^{0} are expected after one year run at $\mathcal{L}=$ $10^{33} \mathrm{~cm}^{-2} s^{-1}$ luminosity. The corresponding number of events within one standard deviation ($\simeq 22 \mathrm{MeV} / \mathrm{c}^{2}$) from the B_{s}^{0} mass equals 1407 . This last number should be compared to 2650 signal events, as reported in [10], then $B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+}$decay channel is used.

Events which pass the first level muon trigger ($p_{T}>6 \mathrm{GeV} / c,|\eta|<2.2$) are predominantly $b \bar{b}$ events. Background can come from other B decays of the same or higher charged multiplicity, and from random combinations with some (or all) particles originating not from a B decay (combinatorial background).

The following channels were considered and no significant contributions were found to the background:

- $B_{d}^{0} \rightarrow D^{-} a_{1}^{+}$. These events don't pass the analysis cuts, because the D^{-}mass is shifted from the D_{s}^{-}mass by about 100 MeV , and so does the B_{d}^{0} mass compared to the B_{s}^{0} mass.
- $\Lambda_{b} \rightarrow \Lambda_{c}^{+} \pi^{-}$followed by $\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+} \pi^{+} \pi^{-}$. Taking $\operatorname{Br}\left(\Lambda_{b} \rightarrow \Lambda_{c}^{+} \pi^{-}\right) \approx 0.01$ from [13], we see that the expected number of $p K 4 \pi$ events, originated from this source, is only five times less than the expected number of truly signal events. But the decay topology for this decay chain is drastically different ($1+5$, not $3+3$) and therefore it is unexpected that significant amount of the B-decays will be simulated in this way.
Note that even for $B_{s} \rightarrow D_{s}^{-} \pi^{+}$decay channel the similar background is negligible [9], although $\operatorname{Br}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)$is about 44 times bigger than $\operatorname{Br}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+} \pi^{+} \pi^{-}\right)$:
- $B_{d}^{0} \rightarrow D_{s}^{-} a_{1}^{+}$. About 10000 such events were generated by PYTIIAA and then analyzed. Using $\operatorname{Br}\left(B_{d}^{0} \rightarrow D_{s}^{+} a_{1}^{-}\right)<2.7 \cdot 10^{-3}$ from [12] and assuming that $B_{d}^{0} \rightarrow D_{s}^{-} a_{1}^{+}$decay goes through $B^{0} \bar{B}^{0}$ oscillations: $B_{d}^{0} \rightarrow B_{d}^{0} \rightarrow D_{s}^{-} a_{1}^{+}$, and therefore $\operatorname{Br}\left(B_{d}^{0} \rightarrow D_{s}^{-} a_{1}^{+}\right)=\chi_{d} B r\left(B_{d}^{0} \rightarrow D_{s}^{+} a_{1}^{-}\right)<4.3 \cdot 10^{-4}$, we have got Fig.4. It is seen from this figure that because of $M_{B_{s}}-M_{B_{d}} \approx 100 \mathrm{McV}$ mass shift, the contribution of this channel to the background proves to be negligible.
Note that Fig. 4 refers to the total number of the $B_{d}^{0} \rightarrow D_{s}^{-} a_{1}^{+}$events. In fact the distribution of these events with regard to the decay proper time is oscillatory, x_{d} (not x_{s}) defining the oscillation frequency, So in general this will result in oscillatory dilution factor. The conclusion that this dilution factor is irrelevent-relies on the fact that no candidate event was found with invariant mass within one standard deviation from the B_{s} mass for $6 \cdot 10^{4} \mathrm{pb}^{-1}$ integrated luminosity.

A huge Monte-Carlo statistics is needed for combinatorial background studies. No candidate event with $M_{B_{g}^{0}}-150 \mathrm{MeV} / \mathrm{c}^{2}<M_{K K \pi \pi \pi}<M_{B_{g}^{0}}+150 \mathrm{McV} / \mathrm{c}_{\text {2 }}^{2}$ was found within $\sim 3 \cdot 10^{5}$ inclusive μX events. This indicates that signal/background ratio is expected to be not worse than $1: 1$.

5 Dilution factors

The observation of the $B-B$ oscillations is complicated be sone ditution factors. First of all the decay proper time is measured with some accuracy σ. Fron previous discussions we know that in our case $\sigma=0.061 p$ s is expected. Due to this finite time resolution. the observed oscillations are convolntions of the expressions (3) and (1) given above witla a Canssian distribution. For example

$$
\begin{align*}
& \nu^{B^{0} B^{0}} \rightarrow \frac{1}{2} \int^{x} c^{-\frac{\Gamma}{h}}\left(\cosh \frac{\Delta l^{\prime} \mid}{2 h}-\cos \frac{\Delta m s}{h}\right) \operatorname{cop}\left[-\frac{(l-s)^{2}}{2 \sigma^{2}}\right] \frac{d s}{\sqrt{2 \pi} \sigma} \sim \\
& \frac{1}{2} c^{-\frac{r_{1}}{h}}\left(\cosh \frac{\Delta l}{2 h}\left(1-\sigma \frac{\sigma}{T}\right)-D_{t i m r} \cos \frac{\Delta m}{h}\left(1-\sigma \frac{\sigma}{T}\right)\right) \tag{9}
\end{align*}
$$

Where $D_{\text {time }}=\exp \left[-\frac{1}{2}\left(\frac{\pi}{r}\right)^{2}\left(r^{2}+y^{2}\right)\right] \cdot \tau=\frac{4}{1}$
So the main effect of this smearing is the reduction of the oscillation amplitude by $D_{\text {time }}$ This is quite important in the B_{s} swstem where $r \gg 1$. There is also a time shift $1 \rightarrow 1-\sigma \frac{\pi}{T}$ in (9). This time shift does not really effect the ohservability of the oscillations and we will negled it.

In fact (9) is valid only for not too short decay 1 mes $1 \geqslant \sigma$, becuse in (3) and (1) distributions $\boldsymbol{}>0$ is assumed.

Another reduction in the oscillation amplinde is cansed by the particle/ antiparticle mistagging at $t=0$. Inour case particle/antiparticle hat ture of the $/ 3$ meson is tagged by the lepton charge in the semileptonic decay of the associated beauty hadron. Mistagging is mainly due 10

- $B-B$ oscillations: accompaneing b quark an bo hadronizol as a noutral B meson and oscillate into 13 before semileptonic decay
$\bullet b \rightarrow c \rightarrow l^{+}$cascade process, then the lepton is misidentified as liaving come directly from the 13 - meson and associated to the $b \rightarrow 1^{+}$decay ghe me
- leptons coming fromother decaying particles (K.a....).
- detector crror in the leptone charge identification.

Let η be the mistagging probability: If we have tagged $N \quad \beta^{0}$ mesons. anong then only $(1-\eta) N$ are indecd $B^{\circ}-s$ and ηN are $B^{\circ}-$ s misidentifiod as $B^{\circ}-$ s. So at the proper time 1 we would observe $\left(P^{B^{0} B^{0}}(t)=P^{B^{0} B^{0}}(t)\right.$ due to (P P incariance)

$$
N\left[(1-\eta) P^{B^{0} R^{0}}(l)+\eta \nu^{B^{0} R^{0}}(l)\right]=\frac{N}{2} r^{-} \frac{1}{h}\left[\cosh \frac{\Delta I \eta}{2 h}-(1-2 \eta) \cos \frac{\Delta m l}{h}\right]
$$

decays associated to the $B^{0 \prime}$ meson and therefore

$$
I^{H^{0} H^{0}}(1) \rightarrow \frac{1}{2} c^{-\frac{1}{h}}\left[\cosh \frac{\Delta l \mid}{2 h}-(1-2 \eta) \cos \frac{\Delta m 1}{h}\right]
$$

So the dilution factor due to mistagging is $D_{\text {tag }}=1-2 \eta$. In our studies we have taken $D_{\text {tag }}=0.56$, as in [14].

Finally the dilution can emerge from background. Suppose that apart from

$$
\frac{V_{\text {signal }}}{2}=\frac{\Gamma t}{h}\left(\cosh \frac{\Delta \Gamma t}{2 h}-\cos \frac{\Delta m l}{h}\right)
$$

events with $B \rightarrow B$ oscillations we also have $\lambda_{b a c k}(t)$ additional background events. Half of them will simulate \vec{B} meson and half of them B meson (assuming asymmetry free background). So the observed number of would be $B \rightarrow B$ oscillations will be
$\frac{\lambda_{\text {signal }}}{2} \epsilon^{-\frac{\Gamma}{h}}\left(\cosh \frac{\Delta \Gamma t}{2 \hbar}-\cos \frac{\Delta m t}{\hbar}\right)+\frac{\nu_{b a c k}(l)}{2} \sim e^{-\frac{\Gamma^{\prime}}{h}}\left(\cosh \frac{\Delta \Gamma \ell}{2 h}-D_{b a c k} \cos \frac{\Delta m \ell}{h}\right)$ and the oscillation amplitude will be reduced by an amount

$$
D_{\text {back }}=\frac{N_{\text {signal }} \cdot \cosh \frac{y t}{\tau}}{N_{\text {signal }}+N_{b a c k}(t) c^{\frac{1}{\tau}}}
$$

Neglecting the proper time dependence of this dilution factor (that is supposing that the background is mainly due to B-hadron decays and therefore has approximately the same proper time exponential decay as the signal [15]), we have taken $D_{\text {back }} \approx$ 0.71 which corresponds to the $2: 1$ signal/background ratio.

6 Prospects for x_{s} measurements

For $6 \cdot 10^{4} p b^{-1}$ integrated luminosity the number of reconstructed B_{s}^{0}-s would reach ~ 8000 from the analyzed channel alone. Another $\sim 16000 \quad B_{s}^{0}$-s are expected from the $B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+}$channel $[9,10]$.

For events in which B_{s}^{0} meson does not oscillate before its decay, the D_{s} meson and the tagging muon have equal sign charges. If the B_{s}^{0} meson oscillates, opposite charge combination emerges. The corresponding decay time distributions are

$$
\begin{align*}
& \frac{d n(++)}{d t}=\frac{N}{2 \tau} e^{-\frac{1}{\tau}}\left(1+D \cos \left(\frac{x_{s} t}{\tau}\right)\right) \\
& \frac{d n(+-)}{d t}=\frac{N}{2 \tau} e^{-\frac{t}{\tau}\left(1-D \cos \left(\frac{x_{s} t}{\tau}\right)\right)} \tag{10}
\end{align*}
$$

D is the product of all dilution factors and N is the total number of reconstructed $B_{\mathrm{s}}^{0} \mathrm{~s}$.

The unification of samples from $B_{s}^{0} \rightarrow D_{s}^{-} a_{1}^{+}$and $B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+}$decay channels allows to increase x_{s} measurenent precision.

Fig. 7 and lig. 8 show the corresponding

$$
\Lambda(t)=\frac{\frac{\operatorname{dn}(++)}{d t}-\frac{d n(t-)}{d t}}{\frac{\operatorname{dn}(++)}{d t}+\frac{\operatorname{dn}(+-)}{d t}}=D \cos \left(\frac{x_{s} l}{\tau}\right)
$$

asymmetry plots for $x_{s}=20$ and 35 .

Figure 1: Invariant mass distributions of three charge particle combinations, assuming $2 K+\pi$ (a) or 3π combination (b) as described in the text.

Figure 2: Three particle invariant mass distributions of reconstructed D_{s}^{-}a events.

Figure 3: Proper time (a) and transverse radius (b) rewolntions for the reconstructed B_{3}^{0} decay vertex.

Figure 4: Six particle invariant mass distribution corresponding to the B_{s}^{0} meson. Dashed line - expected upper limit for background from B^{0} decay.

Figure 5: Asymmetry distributions for $B_{s}^{0} \rightarrow D_{s}^{-} a_{1}^{+}(\mathrm{a}), B_{s}^{0} \rightarrow D_{s}^{-} \pi_{s}^{+}$(b) and when both channels are used (c), for $x_{s}=20$.

Figure 6: Asymmetry distributions for $B_{s}^{0} \rightarrow D_{s}^{-} a_{1}^{+}$(a), $B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+}$(b) and when both channels are used (c), for $x_{s}=35$.

7 Conclusions

It seems to us that $B_{s}^{0} \rightarrow D_{s}^{-} a_{1}^{+}$decay chamel is almost as good for the B_{s}-mixing exploration as previously studicd $B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+}$and cuables us to increase signal statistics about 1.5 times. lurther gain in signal statistics can be reached [9. 10] bs using $B_{s}^{0} \rightarrow . / /<h^{-}$decay mode and considering other decay channels of D_{s}^{-}. These possibilities are under studs.

We refrain from giving ang particular talue of r_{s} as an at tainable ypper limit. Too many uncertainties are left before a real experment will start. Note fore example, that about two times higger branching ratios for both $B_{s} \rightarrow D_{s}^{-} \pi^{+}$and $B_{s} \rightarrow D_{s}^{-} a_{1}^{+}$decay channel are predicted in [16]. $\sim 500 \mu b$ as a $b b$ production cross section can also have significant variation in real life [17].

So although the results of this investigation st rengthen confidence in reaching x_{s} as high as 40 [10], it shouk be realized that some theortical predictious about B_{s}. physies and collaider operation were inwoled and according to T'D. Lees first law of physicist [18] "without experimentalist. theotist tend to drift". Howerer maybe it is worthwhile to recall his second law also without theorist. experinentalists tend to falter".

Acknowledgements

Many suggestions of P. Werola strongly inllucnced this insestigation and lead to considerable improvenent of the paper. Commmications with S. Cadomski and N Ellis are also appreciated. Anthors thank N.V. Makhaldiani for drawing their attention to 'I'. D. Lece's paper.

References

[2] see for example:
UNi Coll., Il.C. Albajar ot al., Phys. Lelt. B186 (1987), 217:
262 (1991). 171.
(CLEO Coll., J. Bartelt ct al., Phys. Rev. Lett. 71 (1993), 1680 .
ARCuIS Coll., Il. Albrecht et al., Z. Phys, C55 (1992), 357.
ALEPII Coll., D. Buskulic at al., Phys. Lett. 284 (1992). 177.
OPAL (oll., l. D). Acton ct al., Plyss Lett. B276 (1992) . 379 .
13 Coll., B. Acleva et al., Plyss. Lett. B288 (1992), 395).
DELP'lll Coll., P. Abreu ct al. Plys. Lett. B332 (19991). Iss.
[3] 11.-(. Moser, B-mixing. Talk given at the $5^{\text {th }}$ luternational Symposimm on Ilcavy llavour Physics, Montreal. Canada, 1993. CERN-PPE/93-164.
[1] A. Ali. D. London. (PP violation and flavour mixing in the Standard Model, DESY-95-148 (hep-ph/9508:272).
A. Ali. D. London, Implications of the top quark mass measurement for the ChM parameters. x_{s} and. Cl asymmetrios. (JIRN-TH.7398/94 (hepph/9.4083:32).
[5] A.J. Buras. W. Slominsski. II. Steger Nuch. Phys. B245 (1984), 369.
P.J. Franzini. Phys. Rep. 173 (1989). 1.
[6] M.B. Voloshin et al. Yad. Fiz. 46 (1987), 181.
A. Datta. E.A. Paschos. C. Türke. Phys. Lett. 13196 (1987). 382.
[7] I.I. Bigi, Lifetimes of heary-flavour hadrons - whence and whither? UND-IIEP-95-BLG06 (hep-ph/9507364).
I. Dunietz. $B_{s}-B_{s}$ mixing, CP violation and extraction of (KM phases from untagged B_{s} data samples. FlELRMLLAB-PLB-94/361-T (hep-ph/9501287).
[8] ALEPII Coll., D. Decamp et al., Phys. Lett. B313 (1993), 498.
ALEPH Coll. ID. Buskulic et al., CERN-PPE/93-99 :
OPAL Coll., R. Akers et al., CERN-PPE/94-43.
[9] P. Eerola, S. Gadomski. B. Murray , B_{s}^{0}-mixing measurement in $\Lambda T L A S, A l$ LAS Internal Note PIIYS-NO-039, 1994.
[10] ATLAS technical proposal, CLRN/LIICC/94-43, 1994. p.255.
[11] T.Sjöstrand, PYTIIA 5.7 and JETSET 7.1 : physics and manual, CDRNT11.7112/93, 1993.
[12] Review of Particle Properties, Phys. Rev. D50, 1994:
[13] S. Rudaz, M.B. Voloshin, Phys. Lett. B252 (1990), 443.
[14] P. Eerola et al. Asymmetries in B decays and their experimental control, ATLAS Internal Note PIIYS-NO-054, 1994.
[15] P. Camarri, A. Nisati , Time-rependent analysis of CP-asymmetries in the $B_{d}^{0} B B_{d}^{0}$ system, ATLAS Internal Note PMYS-NO-065, 1995.
[16] P. Blasii, P. Colangelo, G. Nandulli, Phys. Lett. 13283(1992), 434.
[17] P. Eerola, Measurement of CP-violation in B-decays with the ATLAS experiment, A'LAS Internal Note, PlIYS-NO-009, 1992.
[18] T. D. Lee, 'The evolution of weak interactions, Talk given at the symposium dedicated to Jack Steinberger, (ieneva, 1986, CERN 86-07.

Received by Publishing Department on October 26, 1995.

[^0]: *Budker Institute of Nuclear Physics, 630090, Novosibirsk, Russia

