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1 Introduction

The calorimeters have been used extensively in high energy physics experiments in
the last decade and they will play a significant role at the new.detectors designed
to operate at energies in the TeV range at future supercolliders. At these energies
the electromagnetic sector of the calorimeter might play an important role in the
search of the new physics, for examplein the identification of nggs boson production
signals from H — v decays. : ¥

The observation of such signals requires very good energy resolution and in
order to obtain it, all factors which might influence the value of resolution must be
taken into account. Going to higher energies, the behaviour of the'energy resolution
changes; it is no more dominated by sampling effects, but by the systematic effects
such as response nonuniformity of sensitive elements, finite containment, intercell
calibration, energy leakage [1]. So that, a more detalled study of the influence of
these effects becomes now necessary. ’

Usually, if the electronics noise is not taken into account, the energy resotution
is parametrized by a quadratlc addition of a Poisson-like term due to effects such as
sampling and photostatlstlcs and of a constant term due to systematlc effects: .
obh . ; ‘ (1)

S

a
E .
According to our present understanding, all the above-mentioned systematic ef-
fects, expected to dominate the behaviour of energy resolution at very high energies,
will contribute to b-term from equ (1). Hawever the concrete form of the &-term de-
pendence on each of these effects remains still to be studied. '
In the present paper we have investigated how-the tile to tile nonuniformity in-
fluences the energy resolution of a sampling tile electromagnetic calorimeter, in our
case a sampling calorimeter using scintillator plate with wavelength-shifting fiber
readout as a sampling medium and lead as an absorber. This type of calorime-
ter was considered as one of the possible options for calorimetry. (electromagnetic
or hadronic) at future supercolliders. To be able to isolate the nonuniformity ef-
fects, some parameters of the calorimeter which was simulated in this paper were
deliberately exaggerated in order to switch-off the contribution of other systematic
effects. For example, to remove the effect of the energy leakage, the dimensions of
the calorimetric tower were chosen much larger than they are in real calorimeters.
In the first section the notations used in the paper are introduced and explained.
Some details are given on the Monte-Carlo simulation of what will be called the ideal
case and on the way the tile to tile response nonuniformity is taken into account. A
qualitative description of the tiles nonuniformity influence on the energy resolution
is given. It results that in b, the systematic term, there are two components: an
intrinsic one and a component which depends on the calibration.
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In the next section some previously obtained analytical results concerning the &
term calibration component are reviewed. Different calibration procedures are then
applied to the simulated data, that are calibrated either globally, or tower by tower
in order to test the qualitative description given in the first section. It is shown that
the contribution of the tile to tile nonuniformity to the b-term increases linearly
with opon, the standard deviation of nonuniformity. The observed deterioration of
the energy resolution, due to nonuniformity, can be restricted inside resonable limits
if the tower by tower calibration is used. A good agreement between the simulation
and analytical computations is found.

Finally, in the third section the conclusions are presented.

2 Monte Carlo simulation

2.1 Ideal case

Firstly, it was simulated what w111 be called in the following the ideal case, i.e.
a sandwich-tile calorimeter tower, whose dimensions are chosen large enough to
avoid any energy leaka.ge (longltudmal transversal) and where the tiles are identical
regarding their response.

The calorimeter tower considered in the simulation program consisted of a stack
of alternative layers of absorber (lead) and plastic scintillator. The lead and scin-
tillator plates were chosen to have identical 0.4 em thickness and 30 x 30 ém?
transversal dimensions. The tower is composed from Ntzle = 64 of such pairs of
a.bsorber/ scintillator plates, which corresponds to a total tower length of 51.2 cm,
or 46.2 radiation lengths.

' The GEANT program [2] version 3.15 was used to simulate the’ electromagnetic
showers produced in this tower by an electron beam at nine values of the incident
energy: 10, 20, 50, 100, 150, 200, 300, 400 and 500 GeV. The incident beam
direction is perpendicular to the tiles surface and the incidence point is just in the
tile center. The energy cuts for both electrons and gammas were traced down to
10 KeV, the limit permitted by the actual version of the GEANT program. The
snnulatlons were performed on a SUN workstation and the mean computing time
was 1.8 sec/event/GeV.

In what follows, by E; it is denoted the deposited energy in the i** tile. As a
result of our GEANT simulation, for one incident electron, the output consisted of

the set {E;,i = 1, Nyij,} of depos1ted energies in all scmtll]ator layers of the tower.
‘Their sum:

Ntile

5=3. 8 ®

i=1

will be called a calorimetric signal, and it characterises the calorimeter response to
an individual electron, which in the ideal case is strictly related to the amount of
deposited energy in the tiles. The distribution of the signals simulated at a definite
value of the incident energy is Gaussian. The tower energy resolution is given as the
ratio of the standard deviation to the mean value of this distribution.

A summary of the number of simulated electromagnetic showers and of the energy
resolution obtained at each of the nine above-mentioned energies can be found in

Table 1.

Table I The energy resolution in the ideal case

Energy [GeV] | No. of simulated events | Resolution [%)
10 1000 3.95 + 0.09
20 1000 2.77 4 0.06
50 1000 1.72 £0.04
100 ] 600 1.24 +0.04
150 500 0.99 +0.03
200 : 325 0.80 +0.03
300 300 0.73 £ 0.03
400 : 300 0.60 +£0.02
500 300 0.56 + 0.02

For the ideal calorimeter, taking into account that in this case there is only the
sampling phenomenon which contributes to the energy resolution, one should expect
for it to behave like a/v/E. Therefore, by fitting the Table I values with the general
formula given by equ. (1), we ought to obtain for 4 a value consistent with zero, and
this is obtained indeed. In fig. 1 the energy dependence of the energy res8lution,
with 1/v/E on the abscissa, is represented. With squares are represented data points
and with continuous line is drawn the energy dependence as predicted by equ.(1),
with fitted values of the parameters a and b a=1223+0. 12% and & = 0.00+0.12%
for x*/ndf = 0.92.

2.2 Inclusion of the tile to tile nonunifbrm response

The tile response nonuniformity is introduced *by hand” over the simulated in the
ideal case deposited energies for-each event. In GEANT simulation all scintillator
layers were considered identical, which is not very far from the quality provided
by the manufacturers. The imperfections from the machining of the groves in the
scintillator plates or damages of the wavelength shifting fibers during the operation
of their insertion inside these groves may affect the reproduc1b1hty of the light output
among the tiles.
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Fig. 1. Energy resolution o(E)/E vs. 1/v/E from Monte Carlo simulation of the
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Fig. 2 . An illustration of the tile to tile nonuniformity effects for the distribution
of calorimetric signal in a random tower in the ideal case and in on,, = 30%

real case.

The GEANT simulation results in the ideal case were stored in separate files -
for each energy. The i** tile response nonuniformity is introduced in a form of a:
coeflicient C; which weights the energy deposition in that tile. The calorimeter
signal in this case, which in the following will be called "the real signal”, now reads:

Ntile
S=> CiE:i . (3)
=l
The coefficient C; characterises the conversion efficiency of the deposited energy
in the i** tile into a light signal. The set {C;,7 = 1, Ny, } characterises an individual
calorimeter tower and equ.(3) is used to compute its real signal to each simulated
event at all energies. ’ ‘
~ - In this paper, the tile nonuniformity is considered to be Gaussian distributed
with standard deviation 0,,,,. The standard deviation is interpreted as a measure of
the nonuniformity. Such an approach is justified in the case when the tiles individual
characteristics are not méasured separately and the calorimeter towers are assembled
without any selection of the tiles. 'With this considerations, the C; coefficients can

+.be defined as: ;

) Ci =1 + OnonTi ] (4)
where:

o 7; is a random number generated according to the standard Gaussian distri-
bution; ’

® Ouon 1S the tile response standard deviation, characterising the degree of nouni-
formity, or the quality of the tile party.

About the use of a global coefficient C; to characterise the tile response, some
comments are in order. The response variations of a tile at different points on its- '

surface are observed from measurements made using collimated radioactive sources "+ :

[3] and the effect is important in the case of electromagnetic showers. In practice
there are already invented some ways to reduce this unpleasant phenomenon, for:
example by the use of a suitable response flatteriing mask. In this way, the response
variation across the tile surface may be reduced at the level of about 3% or less [3).-
Therefore, our simplification, of using a single coefficient C; and not“a function of. "
the coordinates (z,y) on the tile surface to describe the characteristics of its light
output, goes not very far from the real situation. : o

In order to investigate the effect of the nonuniformity, we assume to have several
calorimeter towers, each of them characterised by its own set of the tower response
coefficients {C;,7 = 1, N.}. We can reconstruct, using equ.(3), the response of
any tower at any incident energy (the real signal) using the bank of the simulated
ideal case events at this energy and the set of its response coefficients C;. From the



real signal distribution for all generated events at a given energy one can obtain the
tower resolution at this energy. In the ideal case all the towers are identical and the
tower energy resolution coincides with the value of the calorimeter resolution. In
the real case the nonuniformities are statistically distributed and different values of
energy resolution are obtained for different towers.

Therefore, in the real case the calorimeter resolution cannot be identified with
the resolution of a tower. It has to be defined as a global characteristic of whole
calorimeter. Our choice was to define the calorimeter energy resolution from its
averaged response obtained over all towers that compose it In other words we
considered the calorimeter response for different incident points distributed on the
whole calorimeter surface in the center of its towers. In order to calculate the energy
resolution we need to compute the real responseof a large number of different towers
and then to treat them in the frame of a certain calibration procedure (see bellow).
In this paper we have computed the responses of 1000 different towers using, for each
tower, a different set of response coefficients {Cs,i =1, Ny}, generated according
to formula (4), and the banks of simulated ideal case events for all incident energies.

In order to study the dependence of the energy resolution on the tile response
nonuniformity 0, for each tower were generated five independent sets of response
coeflicients, each set being characterised by a different value of o,,,: 5, 10, 15, 20
and 30%.

The nonuniformity affects the real signal distribution in two ways: by a shift of
the mean value and by an increase of its width, while the distribution itself remains
Gaussian. For illustrative purposes, the distribution of the ideal signal and that of
a particular tower real signal for 0,,, = 30% at the incident energy F;,. = 100 GeV
are shown in fig. 2. The mean value E and the standard deviation SD of these two
distributions are: £ = 8.056 £0.004 GeV and SD = 0.102+0.004 GeV for the ideal
case and E = 8.523 £ 0.003 GeV and SD = 0.141 % 0.005 GeV for the real case.
In the real case the magnitude of the effect differs from tower to tower and depends
also 'ovn the nonuniformity 6,,,,. In fig. 3 the distributions of the E values (fig. 3a)
and of SD (fig. 3b) for all the 1000 towers are plotted at two values of Onon: 10%
and 30%. o ,

Therefore, we expect these two effects to influence each in its own way the energy
resolution b term and to contribute to it with two independent terms. The shift of
the mean value could be corrected by different calibration procedures, so we called
its contribution calibration term and denoted it. by b.. The other contribution, due
to the broadening of the calorimetricsignal distribution, cannot be influenced by
calibration, so we called it intrinsic term and denoted by bo.

The effect of the calibration is considered in detail in the next section.

Fig. 3.
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3 Calibraﬁon

By calibration we mean a correspondence, established between the calorimeter signal
and the incident electron energy. In our case this correspondence takes a very simple
form:

E=KS (5)

where K is the callbratlon coefﬁc1ent S the calorimeter signal and E the recon-
structed energy.
Assuming a calorimeter linear response, the calibration coefficient K is given by
the ratio of the calibration energy Fo to the average signal S
Eo

K== . (6)

We discuss two situations: a global calibration when a unique calibration coeffi-
cient K is used to calibrate all towers, and a tower by tower calibration , when for
each tower is used its own calibration coefficient. In addition we also use the term
of absolute cahbratlon to designate a spec1a1 procedure which will be defined later
and that was introduced in order to help us in our analysis.

In our previous paper [4] some analytical expressions were obtained for the
calibration term b, in global and in tower by tower calibration. The universal
parametrisation of the electromagnetic shower mean longitudinal profile by a gamma
distribution [5]:

dE 8

"E = Eincl—‘(_a)'(l@t)a—le_ﬁt ) v (7)

was used there to compute the calorimeter signal. The parameters a and £ contain
the shower profile energy dependence. For instance, for electron induced showers:

- vﬂzO.S; 3—;—1-:1113;—{—0e , (8)

where Co = —0.5 [5), or C. = —1.0 [6], but choosing one or another of the C.
values will little affect our results. Asin [4] we used here C, = —1.0.
The shower parametrisation is expressed in the scaled variables y and ¢ [5]:

Dine, o 2 - ©)
Ec X()
with y, the incident energy, measured in units of the calorimeter averaged material
critical energy F, and ¢, the coordinate along the shower axis,considered relative
- to the front edge of the calorimeter, and expressed in radiation lengths Xo of the
calorimeter averaged material.

y:

After global or, tower by tower calibration of the calorimeter signal one obtains
[4] that b term is not a constant, but it has a slow dependence on energy. For global
calibration the following dependence was predicted [4]:

3 1/4
bzl = o'rwn(/At)l/2 T ’ (10)
4rlny

where At is the thickness of an averaged medium layer composed from one layer of
lead plus one layer of scintillator, measured in units of the average radiation length
Xo.

Assuming that we calibrated tower by tower at the energy Ej, the following
expression was found in [4] for the energy dependence of the b:

3/4
B = anon(2mz)1/2(—ﬁ——) In (5)
Ey

47 Inyp
where yo represents the calibration energy expressed in the scaled variable y.

The b, term energy dependence, is illustrated in the fig. 4 for the case of calorime-
ter simulated in previous section, namely for global calibration in fig. 4a and for
tower by tower calibration in fig. 4b. The numerical values of different parameters
entering in the expressions for &' and for ! given above are: E. = 10.48 MeV,
At = 0.72 and calibration energy Fy = 100 GeV.

In this section, our goal was that for the b term, obtained from the simulated
data sample, to separate the intrinsic by and cahbra.tlon b. components, to study
their dependence on the nonuniformity .., and to compare the found values with
the values predicted in [4].

In the following, equ. (11) is written in the form:

O

and in the comparlson with simulated data the logarithmic dependence on energy
and the c coefficient linear dependence on o,,, is checked.

As it can be seen from fig. 4b, b is zero at the calibration energy Ey. This
result looks very plausible, because the tower average signal shift in respect with
the mean signal in the ideal case could be completely compensated only at that
energy where the tower is for these shifts at the level of the whole calorimeter may
happen only when each of the towers is calibrated individually. At another energy,
a total correction cannot be achieved because the mean shower profile depends on
energy and in consequence the different tiles relative contribution to the calorimetric
signal changes also with energy. The shower profile energy dependence is slow of
logarithmic type, therefore it was also expected for the 4*“ value to depend on energy
in the same manner. As regards the intrinsic term we made the assumption that it
doesn’t depend on energy.

btw:C




The equ.(11) prediction that b2 = 0 at E = Ej is used to separate in the b term
the calibration contribution from the intrinsic one. We proceeded calibrating tower
by tower simultaneously at all the energies. At each energy where the tower was
calibrated, only intrinsic effects will contribute to the & term. In the following we
will refer to this procedure as to an absolute calibration. In Table II the values of
the calorimeter energy resolution after the absolute calibration are given.

Table IT Absolute calibration, the energy resolution for different nonuniformities

Energy Nonuniformity
[GeV] 5% 10% 15% 20% 30%
10 1396+0.13 |4.01 £0.13 | 409 +£0.13 |{4.22+0.14 | 4.52+0.14
20 2.78+0.09 1 2.83+£0.09 | 2.91+0.09 |3.02+0.10 ] 3.29 £0.11
50 1.73+0.06 [ 1.78 £ 0.06 | 1.86 £6.06 | 1.98 £ 0.06 | 2.26 £ 0.07
100 | 1.26+0.06 | 1.32+0.06 | 1.41 +£0.06 | 1.52 £ 0.07 | 1.81 £ 0.08
150 | 1.01 £0.05|1.07+£0.05 | 1.17 £ 0.052 | 1.30 £ 0.06 | 1.62 £ 0.07
200 |0.83+0.05]0.89£0.05| 1.00+0.06 |1.13 £+ 0.07 | 1.46 &+ 0.08
300 10.76+£0.04 | 0.84+0.05| 0.96+0.06 |1.09+0.06 | 1.45+ 0.08
400 |0.62+0.04 [ 0.69+0.04 | 0.80 £0.05 | 0.91 +0.05 | 1.20 & 0.06
500 ]0.58 £0.03}0.65+0.04 | 0.76 £0.04 {0.87£0.05| 1.17 £+ 0.08

~ From a comparison of Table /I data with the corresponding values of the ideal
case energy resolution given in Table I, one can notice the deterioration in the energy
resolution, produced by intrinsic effects of nonuniformity, that increases with: o,0n,
as expected. In order to express this quantitatively, for each oy, the corresponding
set of energy resolution values was fitted with a formula as that given by equ.(1),
where by, the intrinsic component, stands here for b.

(3) = @b 13
E abs.cal. B \/E o ( )

The results of the fit are given in Table I71.

\

Table II1 Absi)lute calibration, the results of the fit with a/\/EEB by

Nonuniformity
5% 10% 15% _20% - 30%
a 12.35+0.16 | 12.55 + 0.17 | 12.81 £ 0.18 | 13.24 £+ 0.19 | 14.06 + 0.23
by 0.14+0.08 | 0.32+£0.04 | 0.51 +0.03 | 0.67+0.03 | 1.06 & 0.03
x%/ndf 0.72 0.60 0.58 0.71 1.23
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3.1 Calibration tower by tower

In this case the calibration coefficients were determined from equ.(6) for Eq =.
100 GeV and they were used for energy reconstruction at all energies. The calorime-
ter energy resolution was determined from the calibrated signals following the pro-
cedure described previously and the results are given in Table IV.

Table IV Tower by tower calibration, the energy resolution for different

nonuniformities
Energy Nonuniformity :
[GeV] 5% 10% 15% 20% 30%
10 3.99+0.09 | 4.12+0.09 | 4.31 £0.10 | 4.64 £0.10 | 5.30 £ 0.12
20 2.80 £0.06 | 2.90 £ 0.07 | 3.05 £ 0.07 | 3.30 £ 0.07 | 3.79 £ 0.09
50 1.74 +0.04 | 1.80 & 0.04 | 1.89 £ 0.04 | 2.04 £ 0.05 | 2.36 £ 0.05
100 |1.26+0.06|1.3240.06 | 1.41 £0.06 | 1.52 £ 0.07 | 1.81 +0.08
150 |1.01£0.031.0940.03|1.204+0.04 | 1.35£0.04 | 1.71 £ 0.05
200 |0.84+0.03 | 0.934-0.04 | 1.07 £0.04 | 1.25 £ 0.05 { 1.65 £ 0.07
300 |0.794+0.03}0.934+0.04]1.13+0.05|1.37+0.06 | 1.88+0.08
400 |0.67+0.03|0.85+0.04 | 1.08%0.04 | 1.35 +0.06 | 1.88 £ 0.08
500 10.64+0.03|0.844+0.03(1.10+0.05 ! 1.40+0.06 | 1.98 +0.08

i .
A comparison of Table IV results with those from Table II indicates the pres-
ence of an additional source of fluctuations which contribute to the energy resolution
deterioration. As can be seen, the energy resolution is worse in the case of tower by
tower calibration than in absolute calibration and this effect is more pronounced as
the energy is further away from the calibration energy Ey. According to our treat-
ment, this new energy dependent effect can be taken into account by introducing an
additional term (the calibration term b) in the energy resolution parametrisation
formula (13) used for the absolute cahbratlon case.
Taking into account the predicted energy dependence of the calibration term-
given by equ.(12), the Table IV energy resolution values corresponding to a given
Onon Were fitted with:

(B = 750 @eln (&) - (14

In fig. 5 the energy dependence of energy resolution predicted by equ. (14) for
Table IV data is plotted at three values of onon: 10%, 20%:and 30%. The fig. 5
curves are drawn with fitted parameters given below in Table V. On the same
picture the curve that fits Table I simulation data for the ideal case (represented by
open circles) is also drawn. As a reference value for the real life situation could be

11
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Fig. 5. Calorimeter enefgy resolution after tower by tower calibration, for difl
ent nonuniformities o,,4y.

taken o0, = 10%. Recent determinations [7], made by a Florida State Unive
group, have given op,., = 7% for the tiles light yield standard deviation.
The fitted parameters for all nonuniformity values are presented in Table V

Table V Tower by tower calibration, the results of the fit with

a/VE & by ® cln (E/ Eyp)
Nonuniformity
5% 10% 15% 20% 30%
a 12.34 +0.14 | 12.63 +0.19 | 12.89 £ 0.20 | 13.45 4 0.23 | 14.44 + 0.
bo 0.14+0.08 | 0.29+0.10 | 0.53+0.06 | 0.71 £0.06 | 1.11+0.
c 0.18£0.03 | 0.36+0.04 | 0.50+0.04 | 0.68£0.04 | 0.99+0.
X% /ndf 0.67 0.60 0.59 0.58 0.81
12

The results from the tables 111 and V indicate that within the errors the obtained
values of parameters a and by from the fit of absolute calibration and tower by tower
calibration data coincide. This might be interpreted as an indication in favour of
the hypothesis of two independent components which appear in the b term due to
tile to tile nonuniformity and which are added quadratically:

Table V' data permit an investigation of fitted parameters dependence on nonuni-
formity. Equ.(12) indicates that ¢ depends linearly on opn.,. This is illustrated in
fig. 6 where Table V ¢ values were well fitted with ¢ = 0.0340,,,, while the theo-
retical prediction of equ.(11) is ¢ = 0.0360,,,,. In fig. 6 the dependence on Onon Of
the other two parameters a and by was also fitted using very simple assumptions.

o/E=a/JE®b, @cin(E/E,)
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Fig. 6. Dependence on 0,,, of the parameters a, b and ¢ from equ.(14) used to
fit the calorimeter resolution in the case of tower by tower calibration;
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For example, for b, we supposed also a linear dependence which was fitted with
bo = 0.0360,0n. As regards a coefficient, the best fit was obtained supposing that:

a ‘—‘ao@a] (16)

and that a;, depends linearly on ¢,,.,. The fitted ag value is ag = 12.31+£0.12, which
is consistent within the errors with the value of a that was found in the ideal case.
The fitted coeflicient of linear dependence of a; on 0., is 0.26 £ 0.02.

Some comments are necessary for the unexpected dependence, as it appears at
first sight, of the coefficient a on the 0,,,. To understand it let us remind how
the resolution of the whole calorimeter in the presence of the tile to tile nonuniform
response was defined. The calorimeter signal distribution was obtained by collecting
the signals from all towers. Because in this case we used the real signals which
already incorporate the effect of the tile response nonuniformity, which is normal
distributed, this fact manifests itself as if the sampling fraction varies from a tower to
another. For the parameter a, which characterises the sampling properties of whole
calorimeter, this effect appears as an apparent amplification of sampling fluctuations.

Looking at the dependence of the a and b coefficients on ¢,,, one can notice that
they permit a consistency check of our results: switching off the nonuniformity, the
values from the ideal case are reobtained.

The fitted coefficients of the b, and c linear dependence on ¢,,, introduced in the
equ.(15) can be used now to evaluate, for the calorimeter considered in this paper,
the total contribution of the nonuniformity to the b term for a given energy value.
In fig. 7a the b term energy dependence in the 10 —500 GeV range, for different 0,,,
values is plotted. A more precise measure of this variation can be expressed by a
quantity £(E) defined below, which has the property that it is independent of o,,n :

HE) —b(Ey) -
b(Eo)

It describes the relative variation of b, with respect to its minimum value reached

at the calibration energy (i.e. Ey = 100GeV). In fig. Tb the quantity £(E) versus

energy E in the 10— 500 GeV range is plotted. A variation of about 80% is observed

between 100 and 500 GeV.

Using the knowledge of the energy resolution dependence on o,,, gained so far,
one can extract the value of % at every energy. A comparison between the obtained
and the predicted values might be an additional test of our analytical results.

Taking into account (13) and (14) one can estimate the value of b!* from:

2 2
b = (_"_) - (i) , 18
¢ \/ E tw.cal. E abs.cal. ( )

£(E) = 100
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Fig. 7. (a) total contribution (i.e. by @ b2) of tile nonuniformity to the & term
for different o,,, evaluated from results of the fit;

(b) a measure of b variation over the whole energy interval, taking b(Eo) as a
reference value. : ‘

In the fig. 8 the & values obtained by this method are plotted. The curves
represent the predictions based on equ.(11). One must notice that any free parameter
doesn’t enter in equ.(11) and the curves are described only in terms of general
characteristics of our calorimetertowers: their dimensions, their material physical
constants and the tile response nonuniformity. The good description of the simulated
data by these curves proves the validity of equ. (11) predictions for calibration term )
in the case of tower by tower calibration.

3.2 Global Calibraﬁon §

To complete the calibration dependence investigation we also treated the case when
a single coefficient” K was used to calibrate the response of all towers. The main
reason was to obtain an estimation of the level of energy resolution degradation
introduced by nonuniformity. After the energy reconstruction, using equ.(5), the
energy resolution values were obtained. They are presented in Table VI.
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Table VI Global calibration, the energy resolution for different nonuniformities

Energy Nonuniformity

[GeV] 5% 10% 15% 20% 30%
10 4.1940.09 | 4.59+0.10 | 5.45 4+ 0.12 ] 6.19 £ 0.14 | 8.51 £ 0.19
20 3.01 £0.07 | 3.57 £ 0.08 | 4.56 +£0.10 | 5.35 £ 0.12 | 7.84 £ 0.18
50 2.06 +0.05 | 2.76 £ 0.06 | 3.87 £0.09 | 4.73 £ 0.11 | 7.34 £ 0.16
100 |1.68+0.05|2.48+0.07 | 3.6240.10 { 4.51 +0.13 | 7.17 +0.21
150 }'1.484+0.05|2.34+0.07|3.47+0.11 | 4.41 £0.14 | 7.05 £ 0.22
200 |1.36+0.05|2.26+0.09 |3.39+0.13 | 4.36 £ 0.17 | 6.98 £ 0.27
300 |1.314£00512244+009)3.36+0.14[435+£0.18]6.95+£0.28
400 11.23+0.05|2.1940.09|3.30+0.13 | 4.31 £0.18 | 6.90 £ 0.28
500 |1.21+£0.052.18+0.09 | 3.28+0.13 | 4.31 +0.18 | 6.89 + 0.28

One can clearly see the resolution deterioration in comparison with ideal case
and also with the resolution after tower by tower calibration. This effect is more
pronounced for high energies where the systematic effects dominate the energy Tes:
olution behaviour and it also increases with nonuniformity. This is due to the 4%,

g 35 prre— e ———— )
e . F ]
5 L ]
& ~ [ Tower colibrated ot 100 GeV ]
© i ]
£ 25 | -
o 5 .
o N ]
2 | ]
L T ron=30% ]
15 | =
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05 |- Goen=10% 1

L . Lol

0 3

10 10
Einc [GeVl

Fig. 8. b vs. incident energy for dlfferent Oon: continuous-lines represent ana-
lytlcal formula (11) and the points are obtained using equ.(18) from simulated -
data
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which - as was predicted [4] (see also fig. 4) - is significantly larger than . A
fit with a formula analogous to (14) where the calibration term is now given by.
equ.(10) was not able to separate the two contributions of nonuniformity by and b3’
as in tower by tower case due to the very slow energy dependence of b¢'.

What can be done instead, is to use the same procedure as in the case of tower by
tower calibration to extract the value of 43 at every energy, using a relation similar
to equ.(18), which in this case reads:

§ 2 2
b = (f’_> - (i> . 19
¢ \J E gl.cal. E abs.cal. ( )
In fig. 9 the b¢ dependence on incident energy for some values of o,,,, is present-
ed. The points were obtained from equ.(19) and the curves represent the equ. (10)

predictions. One can notice also the good agreement between the simulated data
and the theoretical predictions.
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Fig. 9 b vs. incident energy for different o,.n: continuous lines represent ana- -
lytical formula (10) and the points are obtained using equ.(19) from simulated
data. :



4 Conclusions

The influence of the tile to tile nonuniformity on the energy resolution of a sandwich
tile electromagnetic calorimeter was investigated in detail. Our treatment was based
on the simulation in idealised conditions of a tile calorimeter signal (only sampling
has contributed to the energy resolution and all tiles had identical response). After-
wards, on this ideal case results the tile response nonuniformity was superimposed
in the form of some weighting factors generated for each tile with a Gaussian dis-
tribution with the mean equal to one and with the standard deviation oy,,. The
standard deviation ¢,,, which measures the degree of the tile response nonunifor-
mity was chosen as a variable to express the variation of calorimeter resolution with
nonuniformity. In respect with ideal case a deterioration of calorimeter energy res-
olution was observed. Both terms of the resolution parametrisation formula were
affected, but mostly the systematic term b. It was shown that the nonumformlty
contributes to b term in two independent ways: - : :

e by broadening the calorimeter signals distribution. This is due to the term by,
that we called intrinsic term, which depends only on ¢,,, and this dependence
is linear;

¢ by shifting the mean value of the calorimetric signal distribution. This effect
gives another contribution to the systematic term, that we denoted in this
paper by b., which depends also linearly on ¢,.., but depends as well on
incident energy. The type of b, energy dependence is different for global and
tower by tower calibration.

It was shown that these two terms are added quadratically, i.e. b = by @ b, and
the main contribution comes from b,. The b term increases linearly with oy, and
depends on incident energy. For a fixed 0'non value, b is significantly smaller in tower
by tower calibration than in global calibration.

A method was proposed to separate these two contributions. The obtained b,
values in global and tower by tower calibration were compared with our theoretical
predictions [4] and a good agreement was found.

It was also observed a slow increase of the sampling factor a in comparison with
the ag value obtained in the ideal case. The contribution of tile to tile nonuniformity
can be represented as an additional term which depends also linearly on ¢,,, and is
added quadratically to a,.

The present results have a general character and might be valid for a large variety
of sampling calorimetérs. They have a practical importance for the design of large
calorimeters with a good energy resolution.
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