ОБЬЕАИНЕННЫЙ ИНСТИTVT
ค $\triangle E P H D X$
ИССАЕАОВАНИЙ
R.Zulkarneev, Kh.Murtazaev, B.Khachaturov

CHECK UP OF THE T-INVARIANCE PRINCIPLE IN 635 MEV pn-SCATTERING

R.Zulkarneev, Kh.Murtazaev, B.Khachaturov

CHECK UP OF THE T-INVARIANCE PRINCIPLE IN 635 MEV pn-SCATTERING

Submitted to Physics Letters

Strong interaction invariance with respect to time inversion results in the well-known "polarization-asymmetry" ($\mathscr{P}=\mathbb{G}$) relation $/ 1,2 /$ which has been checked up only in protonproton collisions/3-7/. However, a possible contribution of T-odd terms to the pp-interaction amplitude according to the above investigations is comparatively small and from this point of view large angle neutron-ptoton scattering experiments at $450-700 \mathrm{MeV} / 8,9 /$ are more promising.

Thus, $\mathscr{P}(\theta)$ polarization in $635 \mathrm{MeV} p \mathrm{n}^{-}$ scattering in the angular range of (34 124) c.m.s. has been measured. The results have been compared with the values of the Q parameter obtained at this energy in/10/.

The polarization was determined in the double scattering experiment of the primarily unpolarized proton beam. Protons were scattered at a neutron-rich target ($C_{2}-C$). The polarization of protons scattered at this target was analysed by the repeated scattering by carbon at the angle $\theta_{2}=8^{\circ}$ lab.s. Recoil protons were registered by a special neutron detector. The experimental set-up and the experimental procedure have been described in detail in/ll/. The measurement of left-right asymmetry of scattering by carbon, $\mathbf{e p n}_{\mathrm{p}}$, made it possible to obtain the
\mathscr{P}_{p} polarization parameter in pn -scattering by using the following formula:

$$
\begin{equation*}
e_{p n}=\mathscr{P}_{p n} \cdot A_{c}, \tag{1}
\end{equation*}
$$

where A_{c} is the analysing power of carbon. The analysing power of the analyser was obtained together with measuring the epasymmetry. With this purpose a special coincidence circuit separated the events of quasielastic pp-collisions at a deuterium polarizing target. The measurement of the leftright asymmetry, $e_{p p}$, for quasi-elastically scattered protons allowed the determination of A_{c} from the following expression

$$
\begin{equation*}
e_{p p}=\mathscr{P}_{p p} \cdot A_{c}, \tag{2}
\end{equation*}
$$

where \mathcal{P} is polarization in quasi-elastic pp-scat ${ }^{\text {P }}{ }^{\text {P }}$ ering by deuterium. The value of A_{c} was obtained under the assumption that $\mathscr{P}_{\text {pp }}=$ $=\mathbb{a}_{p p}$, where $\mathbb{a}_{p p}$ is the asymmetry parameter for quasi-elasticpp-scattering by deuterium found earlier in $/ 10$ at 635 MeV . Our analysis and special experiments have shown that the systematic error caused by a method of determining the analysing power is several times smaller than the statistical error in the case of A_{c} determination and it does not exceed (0.02-0.05) A_{c}.

Our method and special apparatus had been tested previously in the runs described in/l1/.

The values of the measured quantities $\mathscr{P}(\theta)$ are presented in Table 1 without taking into account false asymmetries which were neglected. The errors given in Table l are total statistical ones. The total absolute value of
*In the calculations it has been suggested that $R e t \cong \operatorname{Im} t$.
the possible systematic error of our \mathcal{P}_{p} determination according to our evaluations and those of ref./9/ is $0.01 \div 0.02$.

On the basis of the obtained values of $\mathscr{P}_{-} \mathbb{G}$ the contributions of the T-odd term, t, i.e., the elastic 635 MeV pn-scatteringt-odd matrix $/ 1,2 /$ to the total amplitude of the process for each scattering angle were evaluated (see Table l).

The averaged results for all scattering angles areas follows:

$$
\begin{equation*}
\frac{\operatorname{Re~}_{p n}}{\sqrt{I_{p n}}}=\frac{I_{m} t_{p n}}{\sqrt{I_{p n}}}=(0.0 \pm 1.4) \%, \tag{3}
\end{equation*}
$$

where $I_{p n}$ is the differential cross section of pn-scattering. Our evalation (3) is in agreement with similar results obtained earlier by measuring the difference $\mathscr{P}_{-\mathcal{C}}$ in elastic 140-640 MeV pp-scattering/3-7/

For the T -odd scattering phase $\lambda_{1} / 2,8 /$ the following value has been obtained

$$
\begin{equation*}
\lambda_{1}=0.01 \pm 0.02 . \tag{4}
\end{equation*}
$$

The values of the phase shifts of the Bl(III) set of the phase shift analysis/12/ for $600-630 \mathrm{MeV}$ scattering were used.

As is seen from Table 2, the accuracy of our determination of the λ_{1} phase is larger than that for the λ_{2} phase in 635 MeV pp ${ }^{-}$ scattering/7\% and competes with (even may exceed) the accuracy of determining the value of λ_{2} at other energies.

Thus, our measurements make it possible to state that should the T-invariance violation appear in 635 MeV pn-scattering, the value of the T-odd scattering phase must not exceed (1-3)\% of the maximal value of the invariant phase $\lambda_{1}=\pi / 2$.

Our value of the $\mathscr{P}-\mathcal{G}$ difference can be compared with the results predicted theoretically for it. The calculations have been performed by Bryan et al. 8 ,9/ by using the potential models of $N N$-interactions based on the Sudarshan's hypothesis/13/. One of the results of such calculations for the 600 MeV energy/9/ is shown in Fig. 1. As is seen from the Figure, the theoretically predicted values of $\mathscr{P}-\mathfrak{A}$ differ considerably from zero and disagree with our experimental results. A similar conclusion has been drawn by Bryan/9/ after analysing the unpublished results of Kerth et al./14/ who have measured the parameters of triple 500 and 600 MeV np -scattering.

The authors consider it their pleasant duty to thank Professors R.Bryan, V.P.Dzhelepov and Yu.M.Kazarinov for interesting discussions of some problems considered in the present investigation.

REFERENCES

1. L. Wolfenstein. Ann. Rev. Nucl. Sci., 6, 43 (1956); R.I.N.Phillips. Nuovo Cim., 8, 265 (1958); I.Bell, F.Mandel. Proc. Phys. Soc., 71, 272A (1958).
2. A.E. Woodruff. Ann.Phys., 7, 65(1959); E.H.Thorndike. Phys.Rev., $138,586 \mathrm{~B}$ (1965).
3. P. Hillman, A.Johansson, G.Tibell. Phys. Rev., llo, 1218 (1958).
4. C.H.Hwang, T.R.Ophel, E.H.Thorndike, R.Wilson. Phys.Rev., ll9, 352 (1960).
5. A.Abashian, E.M. Hafner. Phys.Rev.Lett., l, 255 (1958).
6. R.Handler, S.Wright, L.Pondrom et al. Phys.Rev.Lett., 19, 933 (1967).
7. R.Zul'karneev, V.Nadezhdin, V.Satarov. Rev.Mod.Phys., 39, 509 (1967); (See Yu.M.Kazarinov's paper). R.Zul'karneev, V.S.Nadezhdin, V.I.Satarov. Yad. Fiz., lo, 973 (1966).
8. C.Chiang, R.J.Gleiser, M. Huo, R.P.Saxena. Phys.Rev., 177, 2167 (1969);
9. R.Bryan. Phys.Rev., D2, 902 (1970); R.Bryan, A.Gersten. Phys.Rev.Lett., 26 , 1000 (1971); 27, 1102 (E) (1971); Phys. Lett., 48B, 77 (1974).
10. R.Bryan. Phys.Rev., Dlo, 3854 (1974); R.Bryan, A.Gersten. Preprint RITP, 9-75, Helsinki, Finland, 1975.
11. V.P.Dzhelepov, B.M.Golovin, V.I.Satarov, V.S.Nadezhdin. Proc. XII Int. Conf. on High Energy Physics, V. I (1964), P. ll, Dubna. JETP (sov.Fiz), 36,433 (1959). See, Corrections to R.Wilson's book "Nuc-leon-Nucleon Interactions", Moscow, MIR, 1965; V.Satarov. Thesis, Dubna, l969.
ll. R.Zulkarneev, M.Murtazaev, B. Khachaturov. JINR Publication Pl-9385, Dubna, 1975.
12. L.N.Glonti, Yu.M.Kazarinov, V.S.Kiselev, I.N.Silin. JINR Publication, Pl-6387, Dubna, l972; S.Bilenkaya, L.Glonti, Yu.Kazarinov, V.Kiselev. JETP (Sov.Fiz.), 59, 1049 (1970).
13. E.C.G.Sudarshan. Proc. Roy.Soc., A305, 319 (1968).
14. K.C.Leung. UCRL-19705 (Unpublished Thesis) 1970; L.Kerth, K.Leung. Private Communication to R.Bryan.

Received by Publishing Department on December 16, 1975.

