

объвдиненнып инетитут Адериых иселедовании

V.S.Kurbatov, I.N.Silin

NEW METHOD FOR MINIMIZING REGULAR FUNCTIONS
WITH CONSTRAINTS ON PARAMETER REGION

Submitted to «Nuclear Instruments and Methods A*

1. Introduction

Approximately thirty years ago a linearization method for minimizing x^{2}. like functionals was proposed [1], subroutine FUMILI was developed by one of the authors (IN. Silin) [2] and lecame available for users. Few years later I.N. Silin implemented in FUMILI the simplest case of constrained fit for constraints of type $a \leq X \leq t$. Unfortunately at CERN during adapting FUMILI to new versions of FORTRAN this option was in fact lost : by default at the very beginning each parameter gets a equal to the smallest number;and b. to largest one. Such a setting is done in BLOCK DATA statement. But by mistake this setting was moved from BLOCK DATA to FUMILl itself, so when a user sets his bounds before call to FUMILI they are automatically erased at the entry to FUMILI.

As a rule, FUMILI efficiently mininizes χ^{2} - like functions (including the logarithm (f general type likelihood functions) which are in fact functionals F_{U} on the discrete set $Y_{C}(X$! of the functional argument $y(U, X)$ with the values defined by a finite number of parameters X. i.e. $F_{U}(y(U, X))=\sum_{i} f\left(y_{i}\left(u_{i}, X\right)\right)$. But sometimes it gets into trouble and the main reason is in the following : in FUMILI as tie second derivatives of minimized function their approximate values are used with the neglection of members containing second derivatives of the functional argument. For χ^{2} - like functionals such matrix of second derivatives is nonnegatively defined. The problem appears when approximate second derivatives matrix has eigenvalues close or equal to zero. In this case FUMILI not only cannot find the minimum but simply descend to the lower values of the function. Nevertheless under full unconditionness of the matrix the parameters responsible for this are being fixed. They may be fixed by the user too.

Firstly, the degeneration may happen when the user tries to determine too many parameters.

Secondly (it is the worst case), degeneration of the matrix happens to be when the first derivative of the functional argument over fitted parameters or any of their linear combination becomes equal to zero on the whole set U. Such degeneration may happen, for example, when one tries to take into account the linear bounds by change of variables and completely destroys convergence.

In addition to this FUMILI cannot minimize functions of arbitrary structure. During many years I.N. Silin worked on a new algorithm with the aim to overcome these restrictions. The work on such an algorithm was intensified when another author (V.S.Kurbatov) buitt a practically acceptable algorithm for reducing the order of the problem by taking into account nonlinear constraints [3] and [4]. The more constraints exists, the more stable solution search must be, if we do it accurately.

The idea is sets sinple Let us assume that we have a quadratic function

$$
\begin{align*}
\digamma=F\left(X_{0}\right)+\sum G_{1} \cdot\left(X_{1}-X_{1}^{0}\right) & +\frac{1}{2} \sum_{i \cdot 2}^{2}\left(X_{1}-X_{i}^{0}\right) \cdot Z_{3,3} \cdot\left(X_{j}-X_{j}^{0}\right) \\
& =\Gamma_{0}+\mathbf{G} \cdot \Delta \mathbf{X}+\frac{1}{2} \Delta \mathbf{X}^{T} \cdot \mathbf{Z} \cdot \Delta \mathbf{X} \tag{I}
\end{align*}
$$

and the constraints

$$
\begin{equation*}
f_{\lambda}(\mathbf{X})=0 ; \lambda=1 \div n c \tag{2}
\end{equation*}
$$

(superscript T means transposition).
If roustraints are regular functions of parameters we may linearize them in the vicinity of X_{0}.

$$
\begin{equation*}
\mathbf{f}=\mathbf{f}\left(\mathbf{X}_{0}\right)+\mathbf{D F} \cdot \Delta \mathbf{X} \tag{3}
\end{equation*}
$$

Here DF is the rectangular matrix ($n c \cdot n p$) of first derivatives of constraint functions over parameters X at $X=X_{C}$. We can subdivide vector $\Delta X^{T}=\left(\Delta X 1^{T}, \Delta X 2^{3}\right)$ where $\Delta X 1^{T}$ has ($n p-n c$) components and $\Delta \mathbf{X} 2^{T}$ has nc components. The main trick is how 10 do subdivision of vector \mathbf{X} into two subvectors. We shall talk about it later.

Using the previous equation we can express

$$
\begin{equation*}
\Delta \mathbf{X} \mathbf{2}=\mathbf{R}+\mathbf{S} \cdot \Delta \mathbf{X} \mathbf{1} \tag{4}
\end{equation*}
$$

After substitution (4) into (1) we will obtain another quadratic approximation of the minimized function

$$
\begin{array}{r}
F=F_{0}^{\prime}+G^{\prime} \cdot \Delta \mathbf{X 1}+\frac{1}{2} \Delta \mathbf{X 1} \mathbf{1}^{\mathbf{T}} \cdot \mathbf{Z}^{\prime} \cdot \Delta \mathbf{X 1} \\
F_{0}^{\prime}=F\left(X_{0}\right)+\sum_{i=1}^{n c} R_{i} \cdot\left[G_{p x 2(i)}+\frac{1}{2} \sum_{j=1}^{n c} Z_{p x 2(i), p x 2(j)} \cdot R_{j}\right] \\
G_{i}^{\prime}=G_{p x 1(i)}+\sum_{j=1}^{n c}\left[G_{p x 2(j)} \cdot S_{j, i}+R_{j} \cdot\left[Z_{p x 1(i), p x 2(j)}+\sum_{k=1}^{n c} S_{k, i} \cdot Z_{p x 2(k), p x 2(j)}\right]\right] \\
Z_{i, j}^{\prime}=Z_{p x 1(i), p x 1(j)}+ \\
\sum_{k=1}^{n c}\left[S_{k, i} \cdot Z_{p x 2(k), p x 1(j)}+S_{k, j} \cdot Z_{p x 2(k), p x 1(i)}+S_{k, i} \cdot \sum_{l=1}^{n c} Z_{p x 2(k), p x 2(l)} \cdot S_{l, j}\right] \tag{5}
\end{array}
$$

Here we use the following notation: $p x 1(i)$ - index function, meaning the parameter number of the i -th component of vector $\mathrm{X} 1, p x 2(i)$ - index function, meaning the parameter number of the i -th component of vector X 2 . Using such a technique we can take into account the constraints of general type : both the inequalities and equalities[4]

At the end a new code was created and called FUMIVI : FUnction MInimization by Vallies Investigation. The main features of the new code :

- Minimization of regular functions of arbitrary structure.
- When minimizing λ^{2} - like functions or functionals of more general case the linearization method can be used and in case of degeneration FUMIVI may automaticaliy switch to accurate calculation of second derivatives matrix.
- Nonlinear Constraints of arbitrary structure can be used.
- Hoth analytical and numerical calculation of derivatives can be used.

The new code was extensively tested both on model and real data, the results of tests are given in section 3 .

2. Algorithm

F(MIV] (as FIMHLI) use's parameter restrictors, defining multidimensional parallelepiped ("lox") atound a point - current approximation. The minimized function on such a box is appoximated by a quadratic [unction and at cach iteration unlike FUMILl, its approximate mininum is searched for during one or a lew substeps. An approximate quadratic [unction is built using the gradient and secontl derivatives either simplified as in FCMILI or full ones. If the guadratic [umetion is positively defined, minimization does not put any serions problems. If, on the other hand, it is not positively defined, it can have many manmat and there is no med to look for all of them during intermediate iterations. In principle, it is pussible to calculate cigenvalues and cigenvectors of the matrix and then to learn the relief of the function and choose a reasonable direction.

Another method proved to be very effective. At each substep we modify a nonpositivelydefined matrix so that it becomes weakly positively defined and in the valley direction a step becomes very big. The sides of the box prevent the movement outside of the box and the corresponding parameters are being temporarily fixed one by" one. The rank of the matrix is reduced. The final matrix may become positively defmed or minimum may occur in the corner of the box.

By the way, under consecutive fixing of parameters it is possible to decrease the ordel of inverse matrix by one without its full inversion. However it can be done only when the matrix became positively defined and wellconditionned because the lost accuracy cannot be returned. About the way of matrix regularization. During matrix inversion by the symmetric exclusion method we control the loss of accuracy and the sign of diagonal elcments. The negative or equal to zero (at the limit of machine accuracy) diagonal elements are replaced by small positive ones, but not too small to avoid overflowing during final stage of matrix inversion. Another precaution is made while calculating the parameter step.

While searching for the minimum on the box we control the sum of squares of dimensionless constraint discrepancies (if the fit is done with constraints).

About movement along multidimensional vallies. For speedy movement along the crooked vallies we are using the following method. After we found the minimum of the approximate fanction on the box, we calculate the function valne at the new point. If the function or the sum of dimensionless discrepancy squares decreased well enuugh then we move the box to a new point. Otherwise we are not hurring to decrease the step - we recalculate a new approximate quadratic function at a new point and try to find minimum on the same, not moved box. As we mentioned before few parameters will be fixed because of box sides, conditionness of the problem may become better and we will have better chances to descend to the valley bottom, which is sometimes called firing a "crooked rifle".

When using the correct second derivatives in the case of narrow vallies we encountered an unpleasant case. It is easy to understand that while moving across a crooked valley
the wome thenntios matrix may change from negatienly defined on the inner side of Un: calley tu a badly conditioned at the valley bottom and to a wellonditionned and ponitionte defined on its outer side. th the movement along the crooked valley centrifugal 1.f.....nge wis the mater side of the valley. In the ontcome the matrix reciprosal to the connd derixative matrix becomes small and after mulliplication by the gradient gises a suatl watue of the parmater steps. The final result of this is slow movement atong the wher vide of the salisy. A typical ign of this is the slow dampiag of the sepp though the
 athe aily bat hes theky w der rease the stap restricturs in order to demend to the valley bett: mafict whinh the principte of the "crooked rifle" begins to work.

A, we memtioned entier one of the features of FIMIVI in atomation dete cion of
 showed effetivenebs of the linearization method in mimmization of λ^{2} - like functionals. So me satellain option for surh typer of functions. But when degeneration of the secoad Sem Cake phace dhe estimates of second derivatives in the step direction sharply chatge

 cal otation of wemm derinatives.

 L. Whe ina, accom abinary constramts, it is not clear hos to receive good convergence withent calcalation of second derixatives.
A. is no! well knuwn, the necessary condition of the minimum of the regular function $F\left(A_{j}\right)$ mader regular constraints $f_{\lambda}(X) \geq 0$ is the following: the gradient of the minimized function should expated into a linear combination of gradients of the active constraints (i.c. equal to zero) with nonnegative coefficients. Since for nonlinear constraints we camat define the fact of correct equality to zero, we mast introduce the conception of approximate equality to zero.

Remember that comparison of different values has sense when they have the same dirminonaity. Used further down, the procedures of orthogonalization, sorling and selectim of main element are not invariant to the change of scale. So we took decision to work in a dimensionless coordinate system and as the unity for each parameter we selected their error estimates if they exist. If not, we take the parameter restrictors as the unities. As the scale unity for discrepancy we take their formally calculated errors as functions of paratacter errors(or parameter restrictors).

The logic of the work with the constraints is as follows. If inequality is satisfied and not equal to zero (in conception of approximate equality) we exclude such an inequality from romsidemation. Nomsatisfied inequalities are temporarily turned to equalities one by one in order to make mow to the permitted region. The step restrictors, defining the isox also take part together with inequalities but in case of noncompatibility have priority so that not to get ont of box. In case of inequalities approximately equal to zero we do the following. First we select the number of such inequalities. Then, using the orthogondization method we expand the gradient of minimized function $F(X)$ into a linear combination of their gradients and orthogonal addition. The constraints with negative expatasion coefficients ree excluded from consideration. Because in fact we minimize two functions we can investigate the components of the gradient of the sum of constraint squares. Then constraints are excluded only if the corresponding components of both gradients are negative.

St, hefore step caicuhtion we may have three types of active constraints : first and \therefore liw highen prority - constraints, defiang the box sides (approximately equal to zero). I he : : , cero. The seond group of mpalities is sorted by constraint discepancies. After
 Arst equation we seder the main eicment. Then we substract this equation from others
 'He main choment in the acond aheady trasformed equation and so on. At the end we - hite find ther formuine expersing the part of parameter steps over of hers or find the

 - .the sinc for examp $0^{t 0}$ (i depends on computer accuracy), we discard this equation. !3orat: the equatiote ase suted by reduction of discrepancies, we discard the equation
 : maticer of egadion correpunding to box sides.
 'in matimbe:i funtion on the box Then we analyze the second derivatives matrix, cor-

 : ise actination of one incquality may lead to the situation whon others become satisfied. Itring at least one for eely ativated inequality means that the minimmu condition is Thi fulfiled. After getitig final step we check if this step leeds to the decreasing of the $\cdots: a$ of the sa tor on of inequalitios. If this sum increases because of too many equations tivarifed, we stop further movement in the box. If we had forcely activated inequalities we mast repeal substep scric. from a new point with the same quadratic approximation of the function. But it is not practical to do them too many times. Cremerally speakwig the most "honest" way is to express few parameters over others from the minmum whition fon the sum of squares of all constraints. In particular it permits one to find - ane quanobilion when constraints are really incompatible. But for this we must also proform the substrartion procedine described higher to do parameter subdivision. But lig this moment we already have some solution and it is a pity to give it up.

Another important case is the rase when in addition to the inequalities we have equalities. In this case it is necessary to mention that the equality $f_{\lambda}(X)=0$ is equivalent to iwo inequalities $f_{A}\left(X^{\prime}\right) \geq 0$ and $-f_{A}\left(X^{\prime}\right) \geq 0$. In practice it means that while checking the minimum conclition we must expand the function gradient in gradients of inequalities and gradients of equalities(both approximately equal to zero j, but for equalities the analysis of signs of the corresponding components of the function gradient is not needed.

If mininization is going on succesfully the restrictors for which minimum is on the box side are increased four times. If on the contrary minimization process is rather difficult (as in FUMID f ihe precaution is made to avoid oscillations), all the restrictors are reduced 'Wut not more than 5 limes atatimes. The iteration is considered to be successfull if we have good decrease of either the minimized function or the constraint discrepancies. The function may not decrease if there are nonsatisfied constraints. The requirement of . ecessary decrease of the discrepancies may lead to slow movement along curved bounds. Technically we introduce the sum of dimensionless constraint squares. Their scales are
calculated at the beginning of iteration and comparison with the final value is made under the same scales.

The constraints may be linearized either simultaneously with the quadratization of minimized function or at each substep. The second variant is preferable if the function is undefined outside of the permitted region. In this case there is a possibility of satisfying constraints comparatively accurately at the end of every step. If the calculation of constraints is expensive, it is better to use the first variant.

In numerical calculation of derivatives as the natural differentiation step a small fraction (for example a hundredth) of restrictors may be used, at least before getting the final solution.

A few words about the control of the convergence. The end of the subiteration and iteration process may be controlled as in MINUIT by the value of expected function decrease. However under bad conditionnes even its sign can be wrong due to the accuracy loss. It is more reliable to compare steps with some fraction of error estimates as it is done in FUMILI. Here are also problems when one uses full second derivatives and has nonnegatively defined natrix during intermediate steps. Practice showed that good results take place when instead of parameter errors the small fraction of parameter restrictors is used. At the minimum the reasonable estimates of errors may be obtained.

One must remember that not only parameter steps must be small near the correct minimum, but crudely nonsatisfied or forcely activated constraints must be absent.

3. Tests

The new method, described here was developed as part of the software for an experiment on rare K^{-}decays [6]. It was extensively tested on model data for this experiment, in particular on $K_{\pi 2}^{\prime}$ - decays in topology, when momenta of the primary K-meson and both gamma rays are fully measured and caly the direction vector of the secondary π-meson is measured. For such a case we have four constraints in the form of equalities

$$
\begin{array}{r}
E_{\gamma 1} \cdot E_{\gamma 2} \cdot\left(1-\cos \theta_{\gamma \gamma}\right)-\frac{m_{\pi^{0}}^{2}}{2}=0 \\
E_{\gamma 1} \cdot\left[\mathbf{n}_{\pi} \times \mathbf{n}_{\gamma 1}\right]_{x}+E_{\gamma 2} \cdot\left[\mathbf{n}_{\pi} \times \mathbf{n}_{\gamma 2}\right]_{\mathbf{r}}+p_{K} \cdot\left[\mathbf{n}_{K} \times \mathbf{n}_{\pi}\right]_{x}=0 \\
E_{K}-E_{\pi}-E_{\gamma 1}-E_{\gamma 2}=0 \\
E_{\gamma 1} \cdot\left[\mathbf{n}_{\pi} \times \mathbf{n}_{\gamma 1}\right]_{V}+E_{\gamma 2} \cdot\left[\mathbf{n}_{\pi} \times \mathbf{n}_{\gamma 2}\right]_{v}+P_{K} \cdot\left[\mathbf{n}_{K} \times \mathbf{n}_{\pi}\right]_{\nu}=0 \tag{6}
\end{array}
$$

one nonlinear inequaiity

$$
\begin{equation*}
P_{\pi}-\left(P_{\pi}\right)_{\min } \geq 0 \tag{7}
\end{equation*}
$$

and \forall lincar constraints in the form $a \leq X \leq b$, corresponding to the necessary linear limitations on physical dimensions of the detectors. The conventions : $E_{\kappa^{\prime}}, E_{\pi}, E_{\gamma 1}, E_{\gamma 2}$. the energy of K-meson, π-meson and two gammas
$\mathbf{n}_{\mathrm{K}}, \mathrm{n}_{\pi}, \mathbf{n}_{\boldsymbol{\gamma} 1}, \mathrm{n}_{\gamma^{2}}$ - their directional vectors, normalized to unity.
P_{κ}, P_{π} - momenta of K and π mesons.
We generated 100 events with the kinematics of this decay. Before the entry to the fit we "smeared" true values of parameters by the Gauss distribution with the errors ten times more than anticipated under real accuracies of our detectors. The measured coordinates themselves were not smeared. The idea was to get during the fit to the true values of the parameters, the total number of which was 14 . We did not have a single failure of fit in
the sense that we ahays had convergence to some valuc. In 98 events of 100 we converged to the the values of the parameters, only in 2 we got wrong decision, but it is of common knowledge. lecatise a solution depends on how you select the initial approximation for fitted parametors.

Amother tyre of tests was done on real data with the same event topology. We analyal athont lill wems. taken pactically without any preliminary selection. All of them comerged to sume sohtion and them was not a single nonconverged. For 3 events the mamber of iterations was more than 15.

4. Acknowledgements

We would like to thank Gurevitch M.I. who drew onr attention to the correct form of the necessary condition of minimum.

References

[1] S.N. Sokolov, I.N. Silin, Preprint JINR D-810, Dubna 1961
[2] CERN Program Library, D510, FUMILI.
[3] A.J. Ketikian, E.V. Komissarov, V.S. Kurbatov, I.N. Silin, Nucl. Instr. and Meth. A314(1992)578.
[4] A.J. Ketikian, V.S. Kurbatov, I.N. Silin, Proceedings of CIIEP-92, CERN 92-07, 1992,p. 833
[5] F. James, M. Roos, CEIPN Program Library, MINUIT, D506
[6] V.N. Bolotov et al., Sov. J. Nucl. Phys. 45,1023, translated from Yad. Fiz. $45(1987), 1652$. from Yad. Fiz. 45(1987), 1652.

Received by Publishing Department on July 2. 1993.

