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1. Introduction 
Approximately thirty years ago a linearization method for minimizing x 2 • like functionals 
was proposed [1], subroutine FUMILI was developed by one of the authors (I.N. Silin) [2] 
and became available for users. Few years later I.N. Silin implemented in FUMILI the 
simplest case of constrained fit for constraints of type a < X < t. Unfortunately at CERN 
during adapting FUMILI to new versions of FORTRAN this option was in fact lost : by 
default at the very beginning each parameter gets a equal to the smallest number;and b 
to largest one. Such a setting is done in BLOCK DATA statement. But by mistake this 
setting was moved from BLOCK DATA to FUMILI itself, so when a user sets his bounds 
before call to FUMILI they are automatically erased at the entry to FUMILI. 

As a rule, FUMILI efficiently minimizes x2 - 'ike functions (including the logarithm 
<•( general type likelihood functions) which are in fact functionals Гц on the discrete set 
l(,'(A'i of the functional argument y(U,X) with the values defined by a finite number of 
parameters X, i.e. Fu(y{U, X)) — £),- f(yi(ui, X)). But sometimes it gets into trouble and 
the main reason is in the following : in FUMILI as the second derivatives of minimized 
function their approximate values are used with the neglection of members containing 
second derivatives of the functional argument. For x2 - like functionals such matrix of 
second derivatives is nonnegatively defined. The problem appears when approximate 
second derivatives matrix has eigenvalues close or equal to zero. In this case FUMILI not 
only cannot find the minimum but simply descend to the lower values of the function. 
Nevertheless under full unconditionness of the matrix the parameters responsible for this 
are being fixed. They may be fixed by the user too. 

Firstly, the degeneration may happen when the user tries to determine too many 
parameters. 

Secondly (it is the worst case), degeneration of the matrix happens to be when the 
first derivative of the functional argument over fitted parameters or any of their linear 
combination becomes equal to zero on the whole set U. Such degeneration may happen, 
for example, when one tries to take into account the linear bounds by change of variables 
and completely destroys convergence. 

In addition to this FUMILI cannot minimize functions of arbitrary structure. During 
many years I.N. Silin worked on a new algorithm with the aim to overcome these restric
tions. The work on such an algorithm was intensified when another author (V.S.Kurbaiov) 
buili a practically acceptable algorithm for reducing the order of the problem by tak
ing into account nonlinear constraints [3] and [4]. The more constraints exists, the more 
stable solution search must be, if we do it accurately. 
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'Пи idea i.' ven simple. Let us assume that wc have a quadratic (unction 

f = /-Ч-Vol -f Y. С (* . - A?) + i £ > ' , - A'°) • Z w • (.V, - A'°) 
' • J 

= /u + G - A X + ^ A X T - Z - A X (I) 

and the constraints 
/л(Х) = 0; А = 1н-тгс (2) 

(superscript-T means transposition). 
If consl raints arc regular functions of parameters we may linearize them in the vicinity of 
X o • 

f = f(Xo) + D F - A X . (3) 

Here D F is the rctianiuilar matrix (nc • np) of first derivatives of constraint functions, over 
parameters X at X = X 0 . We can subdivide vector Д Х 1 = ( Д Х 1 Т , ДХ2 1 ) -where Д Х 1 Т 

has (np — nc) components and Д Х 2 1 has nc components. The main trick is how to do 
subdivision of vector X into two subvectors. We shall talk about it later. 

Using the previous equation,we can express 

A X 2 = R + S - A X 1 (4) 

After substitution (4) into (1) we will obtain another quadratic approximation of the 
minimized function 

F=F"B + G'-AX1 + ^ Д Х 1 Т • Z ' Д Х 1 
2 

ПС j ПС 

/•о = F(X0) + 2_,Ri- [G,«j(i) + 5 X / ZJ>*2(,)J«2(J) • tfjl 
,•=1 z j= l 

nc nc 
G'i = GprHi) + 2^[Gp l 2 ( j ) • Sj,i + Rj • lZpiHi),pr2{j) + 2 J Sk,i • Zpx2[k),px7U)\] 

j=i *=i 

£ ij = £prl(;),P*l(j) + 

nc nc. 

/ , \^k.i ' ZpT2[t).pzHJ) + Stj ' Zpi2(t),prl(i) + Sk,i • 2_, 2 f»! (4 , f r t ( ' ) ' ^ ' j l • (•*) 

Here we use the following notation : pxl(i) - index function, meaning the parameter num
ber of the i-th component of vector X I , px2(i) - index function, meaning the parameter 
number of the i-th component of vector X 2 . Using such a technique we can take into 
account the constraints of general type : both the inequalities and equalities[4] 

At the end a new code was created and called FUMJVI : FUnction Minimization by 
Vallies Investigation. The main features of the new code : 

• Minimization of regular functions of arbitrary structure. 

• When minimizing д г - like functions or functional of more general case the lineariza
tion method can be used and in case of degeneration FUMIVI may automatically 
switch to accurate calculation of second derivatives matrix. 
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• Nonlinear Constraints of arbitrary structure can be used. 

• Both analytical and numerical calculation of derivatives can be used. 

The new code was extensively tested both on model and real data, the results of tests 
are given in section 3. 

2- Algorithm 
l-'CMIV) ( as 1-ТМ11Л) uses parameter restrictors, defining multidimensional parallelepiped 
("box") around a point - current approximation. The minimized function on such a box is 
approximated hy a quadratic function and at each iteration unlike FUMILI, its a p p r o x i 
m a t e m i n i m u m is searched for during one or a few substeps. An approximate quadratic 
function is built using the gradient and second derivatives either simplified as in FUMILI 
or full ones. If the quadratic function is positively defined, minimization does not put 
any serious problems. If. on the other hand, it is not positively defined, it can have many 
iiiitiima and there is no need to look for all of them during intermediate iterations. In 
principle, it is possible to calculate eigenvalues and eigenvectors of the matrix and then 
to learn the relief of the function and choose a reasonable direction. 

Another method proved to be very effective. At each substep we modify a non-
positivclydelined matrix so that it becomes weakly positively defined and in the valley 
direction a step becomes very big. The sides of the box prevent the movement outside 
of the box and the corresponding parameters are being temporarily fixed one b y one. 
The rank of the matrix is reduced. The final matrix may become positively defined or 
minimum may occur in the corner of the box. 

By the way, under consecutive fixing of parameters it is possible to decrease the ordei 
of inverse matrix by one without its full inversion. However it can be done only when the 
matrix became positively defined and wellconditionned because the lost accuracy cannot 
be returned. About the way of matrix regularization. During matrix inversion by the 
symmetric exclusion method we control the loss of accuracy and tlie sign of diagonal 
elements. The negative or equal to zero ( at the limit of machine accuracy) diagonal 
elements are replaced by small positive ones, but not too small to avoid overflowing 
during final stage of matrix inversion. Another precaution is made while calculating the 
parameter step. 

While searching for the minimum on the box we control the sum of squares of dimen-
sionless constraint discrepancies ( if the fit is done will) constraints). 

About movement along multidimensional vallies. For speedy movement along the 
crooked vallies we are using the following method. After we found the minimum of the 
approximate function on the box, we calculate the function value at the new point. If 
the function or the sum of dimensionless discrepancy squares decreased well enough then 
we move the box to a new point. Otherwise we are not hurrying to decrease the step 
- we recalculate a new approximate quadratic function at a new point and try to find 
minimum on the same, not moved box. As we mentioned before few parameters will be 
fixed because of box sides, conditionness of the problem may become better and we will 
have better chances to descend to the valley bottom, which is sometimes called firing a 
"crooked rifle". 

When using the correct second derivatives in the case of narrow vallies we encountered 
an unpleasant case. It is easy to understand that while moving across a crooked valley 

3 



l b - M-cuiii! (tc:iv.iiiv-i> matrix may change from negativelly defined o;i tin* inner side of 
(he VAIICV in a badly conditionned at the valley bottom and to a weilconditionned and 
po.-iilUelv deliurd on з 1 ь outer side. In the movement along the crooked valley centrifugal 
1.4... i^in^s пь tu tlit- outer side of the \ alley. In the outcome tlie matrix reciprocal to the 
-е.-(did derivative.- iiiri!rix becomes small and after multiplication by Ihe gradient gives a 
small value of the par.'.meter steps. The final tesult of this is slow movement along the 
outer Mde of the \ali' ,y, Л typical sign of (his is the blow d.-tmpin^ of [lie step though the 
Мер i< jtrietors do not work, lo cope with llie situation it is possible to increa>e the step 
at! ;••• i.-ii!y bu*. i t » i i>k\ to dei rea.se the step rest rictors in r:rder to descend I o the valley 
but :;•!!! after which the principle of the ' crooked rifle' begins to work. 

Л -. we mentioned earlier one of the features of Fi'MIV'l is automatic detection of 
si'.uatuin- when iinev.iization method does not woik. The long experience v. ith FUMILI 
showed effectiveuebj of Lhe linearization method in m'mimizaiion of \ 2 - like fnnctionals. 
So >ve sawd Ihis option for .inch types of functions. But when degeneration of the second 
type lakes place .he estimates of second derivatives in the step direction sharply change 
and their value, arc much ie.v-. compared with accurale o\iv< which can he estimated from 
fuiii'tmri v;t!ue.->. fii thc-ье сл.-es we switch off the linearization method and go to accurate 
ca'i ulafion *.if--eeond derivatives. 

-\i;utit cuititrrtittts. As is well known popuhir package MINUIT[5] uses the variable 
Щ' ' i \r met hod which, does not require t alculation of second derivatives. But if you want 
it* bike iuto acomnt aibitrary constraints, jt is not clear how to receive good convergence 
without Crtlculaiion of second derivatives. 

A- is no! well known, the necessary condition of the minimum of the regular function 
f'"[X) under regular constraints / , \ (Л) > 0 is the following : the gradient of the minimized 
function should expand into a linear combination of gradients of the active constraints 
(i.e. equal to zero) with nonnegative coefficients. Since for nonlinear constraints we 
cannot define the fact of correct equality to zero, we must introduce the conception of 
approximate equality to zero. 

Remember that comparison of different values has sense when they have the same 
dimensionality. Used further down, the procedures of orthogonaiization, sorting and se
lection of main element are not invariant to the change of scale. So we took decision to 
work in a dimensionless coordinate system and as the unity for each parameter we selected 
their error estimates if they exist. If not, we take the parameter restrictors as the unities. 
As the scale unity for discrepancy we take their formally calculated errors as functions of 
parameter errorsfor parameter restrictors). 

The logic of the work with Lhe constraints is as follows. If inequality is satisfied and 
not equal to zero (in conception of approximate equality) we exclude such an inequality 
from (ousideratioii. Nousatisfied inequalities are temporarily turned to equalities one by 
one in order to make move to the permitted region. The step restrictors, defining the 
box also take part together with inequalities but in case of noncompatibility have priority 
so that not to get out of box. Jn case of inequalities approximately equal to zero we do 
the following. First we select the number of such inequalities. Then, using the orthog-
onalization method we expand the gradient of minimized function F(X) into a linear 
combination of their gradients and orthogonal addition. The constraints with negative 
expansion coefficients a;e excluded from consideration. Because in fact we minimize two 
functions we can investigate the components of the gradient of the sum of constraint 
squares. Then constraints are excluded only if the corresponding components of both 
gradients are negative. 
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Su. before sli'|j cnirul.tiion wo may have three types of active constraints : first and 
' ilie highe-l piioiity - constraints, defining the box sides (approximately equal to zero). 

i l.e next ,tr • с п п И у nn'isalisfied inequalities and the last are those approximately equal 
: • /rv:>. The seconii group of equalities is sorted by constraint discrepancies. After 
[Wining ,s:rh i -у.-П-ш of lineaiized equalities we start the step calculation, in the very 
1.Ы equation we seit'cl the main element. Then we substract (his equation from others 
- i 1 h it lo Л'го t!r- ^R'llicienls. ronesponding to the selected element. Then, we select 
'in' main clement in the .-econd aheady transformed equation and so on. At the. end we 
• iihi'i hud !he foiimihic expressing the part of parameter steps over others or find the 
linear dependence or hi'M'tipatibility of equations. This fact is detected by controlling 
•::•• re'leetujr: -..f n.'iiih .<ftransformed equation coefficients. If the reduction is more than 
-.•me -.•-line foi example tO ! 1 (:; depends on computer accuracy), we discard this equation. 
lic-au.-e the equati.u.- lire soiled by reduction of discrepancies, we discard the equation 
. iiiili is better :.ati.-he'i Пи- typical cause of equation redundancy is activation of a big 
: mnber of equation.- corresponding io box sides. 

Afti-i i-..' e.i.ind т lij.stit'it.on formulae we tiausform the quadratic form approximating 
'i.c minimize;! fun lion on the box Then we analyze the second derivatives matrix, cor-
:;ч! it if it i.-, not po- Л ively defined and calculate the steps. However, when, as the result of 
•ui t. a <-tcp, t!i" inequalities excluded earlier become nonsatisfied, we activate them (turn-
• -.; them into equalities) one by one, starting with the one with the biggest discrepancy. 
: iie activation of one inequality may lead to the situation when others become satisfied. 
Having at least one fot:eiy activated inequality means that the minimum condition is 
и • ! fulfilled. After getting final step we check if this step leeds to the decreasing of the 
• :;;i of the sq i-.-es of inequalities. If this sum increases because of too many equations 
•uscarded, we stop further movement in the box. If sve had foicely activated inequalities 
we must repeal subslep series from a new point with the same quadratic approximation 
oi the function. Hut it is not practical to do them too many times. Generally speak-
.ng the mosi "honest'" way is to express few parameters over others from the minimum 
oi.dition fo: the sum of squares of ail constraints. In particular it permits one to find 

•• ;ue qiiasixohilion when constraints are really incompatible. But for this we must also 
p-rform the substraction procedure described higher to do parameter subdivision. But 
by this moment we aheady have some solution and it is a pity to give it up. 

Another important case is the case when in addition to the inequalities we have equal
ities. In this case it is necessary to mention that the equality J\(X) = 0 is equivalent to 
two inequalities/л(А') > 0 and - /л( (Л ' ) > О. In practice it means that while checking 
the minimum condition we must expand the function gradient in gradients of inequalities 
and gradients of equalities( both approximately equal to zero ), but for equalities the 
analysis of signs of the corresponding components of the function gradient is not needed. 

If minimization is going on succesfully the restrictors for which minimum is on the box \ 
side are increased four times. If on the contrary minimization process is rather difficult \ 
(as in FUMIhf the precaution is made to avoid oscillations), all the restrictors are reduced | 
(but not more than S times ai.uime). The iteration is considered to be successfull if 
we have good decrease of either the minimized function or the constraint discrepancies. 
The function may not decrease if there are nonsatisfied constraints. The requirement of 
necessary decrease of the discrepancies may lead to slow movement along curved bounds. 
Technically we introduce the sum of dimensionless constraint squares. 'Their scales are 
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calculated at the beginning of iteration and comparison with the final value is made under 
the same scales. 

The constraints may be linearized either simultaneously with the quadratization of 
minimized function or at each substep. The second variant is preferable if the function 
is undefined outside of the permitted region. In this case there is a possibility of satis
fying constraints cojnparatively accurately at the end of every step. If the calculation of 
constraints is expensive, it is better to use the first variant. 

In numerical calculation of derivatives as the natural differentiation step a small frac
tion ( for example a hundredth) of restrictors may be used, at least before getting the 
final solution. 

A few words about the control of the convergence. The end of the subiteration and 
iteration process may be controlled as in MINUIT by the value of expected function 
decrease. However under bad conditionnes even its sign can be wrong due to the acctiracy 
loss. It is more reliable to compare steps with some fraction of error estimates as it is 
done in FUMIL1. Here are also problems when one uses full second derivatives and has 
nonnegatively defined matrix during intermediate steps. Practice showed that good results 
take place when instead of parameter errors the small fraction of parameter restrictors is 
used. At the minimum the reasonable estimates of errors may be obtained. 

One must remember that not only parameter steps must be small near the correct 
minimum, but crudely nonsatisfied or forcely activated constraints must be absent. 

3. Tests 
The new method, described here was developed as part of the software for an experiment 
on rare K~ decays [6]. It was extensively tested on model data for this experiment, in 
particular on A'»j - decays in topology, when momenta of the primary K-meson and both 
gamma rays are fully measured and only the direction vector of the secondary 7r -meson 
is measured. For such a case we have four constraints in the form of equalities 

£ , 1 • [n„ X n 7 i ] , + £ , 2 • [П„ X ГЦ 2 ] Г + PA" • [ n K X П»]х = 0 

EK — £» — £ , I — £ 7 2 = 0 
£ , , • [n„ x n.,1],, + £ , 2 • (n , x n l 2 J v + PK • [ n K x n»]„ = 0 (6) 

one nonlinear inequality 
P. ~ (/V)min > 0 (7) 

and 8 linear constraints in the form a < X < 6, corresponding to the necessary linear 
limitations on physical dimensions of the detectors. The conventions : EK, £*, £» ] , £y2 -
the energy of K-meson, тг -meson and two gammas 
П к , п » , п 7 1 , п 7 2 - their directional vectors, normalized to unity. 
Рк,Р* - momenta of К and к mesons. 
Wc generated 100 events with the kinematics of this decay. Before the entry to the fit we 
"smeared" t rue values of parameters by the Gauss distribution with the errors ten times 
more than anticipated under real accuracies of our detectors. The measured coordinates 
themselves were not smeared. The idea was to get during the fit to the true values of the 
parameters, the total number of which was 14. We did not have a single failure of fit in 
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the sense th.it wo always bad convergence to some value, in 98 events of 100 we converged 
to the true values of the parameters, only in 2 we got wrong decision, but it is of common 
knowledge, because a solution depends on how you select the initial approximation for 
litted parameters. 

Another type of tests was done on real data with the same event topology. We ana
lyzed ahoul loll events, taken practically without any preliminary selection. All of them 
converged to some solution and there was not a single noneonverged. For 3 events the 
number of iterations was: more than 15. 
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