5 - 100

объединенный институт ядерных исследований дубна

E1-93-155

Yu.I.Ivanshin, V.A.Petrov, A.A.Tyapkin, I.M.Vasilevsky

EVIDENCE FOR A NEW 0⁻S RESONANCE IN THE DIFFRACTIVELY PRODUCED 3π-SYSTEM

Submitted to «Physics Letters B»

In the 5-th joint CERN-JINR experiment (Bologna-Dubna-Milan collaboration) at the IHEP accelerator (40 Gev π^- -beam) the reaction

$$\pi^- + A \to \pi^+ + \pi^- + \pi^- + A$$
 (1)

of the pion diffractive dissociation on nuclei, was investigated by the magnetic spark spectrometer (MSS-JINR) set-up. About 120 thousand events of the type (1) have been detected on 9 nuclear targets (Be, C, Al, Si, Ti, Cu, Ag, Ta, Pb) with the transferred momentum t' less than that for the first diffractive minimum for each target. The experimental set-up and obtained results were presented elsewhere t'.

In these papers we have reported on observation of two resonances in the threepion system with quantum numbers of π -meson which have been interpreted as pion radial excitations. The masses M and widths Γ of the resonances are:

$$\Gamma=360\pm35~\text{MeV}$$
 . $\Gamma=310\pm50~\text{MeV}$.

Now these both resonances have been independently confirmed $^{(4,5)}$. An attempt was undertaken to make a joint description of excitation levels of ρ and π mesons in paper $^{(6)}$. But the satisfying results have not been obtained and the authors suggested that there should be one more pion radial excitation with a mass in the range of 700-800 MeV. ¹ As is shown in work $^{(7)}$, the estimate of the situation in this mass range may be done with the earlier obtained data.

We have performed the partial-wave analysis of the experimental data of the old MSS set-up in the three-pion effective mass region lower than 900 MeV, which have not been studied, (Fig. 2) in papers^[1,2,3]. We have used the program of Illinois University^[8], as before. The difficulties of the analysis in this range are: a) the geometrical efficiency of the set-up decreases^[9], (Fig. 3); b) only about 5000 events are left for the analysis.

It has been found earlier f^{2l} that 5 partial waves 0^-S , 0^-P , 1^+S , 1^+P and 2^-D are enough to describe the process (1). The possible contribution of waves 0^+ , 1^- and 2^+ , was suppressed as soon as the spectrometer trigger system selected the events

in marks self A

This hypothesis does not contradict the results of works /1.2.3/ as soon as the experimental data analysis from MSS set-up was performed in the mass range higher than 900 MeV, Fig. 1.

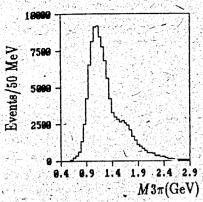


Fig.1. Distribution of 3-pion invariant masses with t' less than that for the first diffractive minimum

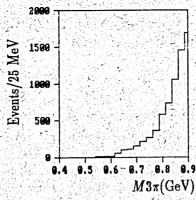


Fig.2. The same as in Fig.1., mass range less than 900 MeV

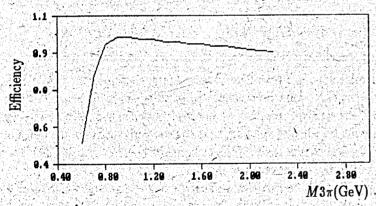


Fig.3. Geometrical efficiency of MSS-JINR set-up as function of the 3π effective mass

without excitation of the target nucleus. The description of the resonance decay into three pions, has been performed with the cascade model - through pion plus dipion. Dipions with state $J^p=1^-$ and 2^+ are very well described with $\rho(770)$ and $f_2(1270)$ resonances, respectively, and for dipion in state 0^+ we have used phase shifts of $\pi\pi$

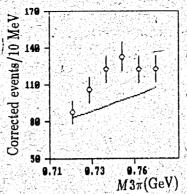


Fig.4. 3π mass dependence of intensity of the wave 0^-S

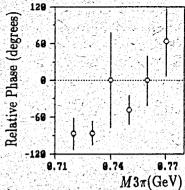


Fig.5. 3π mass dependence of $(0^-S - 0^-P)$ relative phase

elastic scattering^{/10/}. The data from all the nine targets were summarized for the analysis. The partial wave analysis has been performed in the range of three-pion effective masses from 600 up to 900 MeV. The results for the wave 0^-S are presented in Fig. 4. The variation in the relative phase $(0^-S - 0^-P)$ (Fig. 5) is observed from -90° to $+60^{\circ}$ for 3π -masses from 720 to 770 MeV (the arguments to use wave 0^-P as the reference wave, are the same as in paper^{/3/}). Such behavior of the relative phase indicates the existence of the resonance state in 0^-S wave. To determine the parameters of this resonance, the fit of 0^-S wave intensity has been performed with Brait-Wigner function and exponential background assuming that the phase of 0^-P wave in the region of 720–770 MeV, is constant. Non-resonance background is shown in Fig. 4 with full line (the parameters of this background exponent determined by using intensity of 0^-S wave beyond resonance region 720–770 MeV). The following resonance parameters have been obtained:

 $M=749\pm30 \text{ MeV}$ $\Gamma=32\pm17 \text{ MeV}$

where the errors are only statistical. The performed analysis allows one to conclude that there is some resonance state in the three-pion system with quantum numbers of π -meson in the mass range predicted in paper/6/ for the first radial excitation.

The authors are grateful to the participants of the Bologna-Dubna-Milan collaboration whose data were used in the present work, and to Dr.S.P.Kuleshov, Dr.V.I.Savrin and Dr.N.B.Skachkov whose resolute participation in work¹⁶ supported our permanent interest to search for the predicted new resonance. Also we should like to thank Prof. I.A.Savin for his helpful comments and encouragement.

References

- 1. G.Bellini et al. Nucl. Phys. B199,1,(1982)
- 2. G.Bellini et al. Nuovo Cimento 79A,3,282,(1984)
- 3. G.Bellini et al. Phys. Rev. Lett. 48, 1697, (1982)
- 4. Zielinski M. et al., Phys. Rev. D30, 1855, (1984)
- 5. S.I.Bityukov et al., Proceedings of the IV International Conference on Hadron Spectroscopy (HADRONS 91), 51, (1991)
- 6. Yu.l.Ivanshin et al., JINR Comm. P2-83-727, (1983)
- 7. Yu.I.Ivanshin, JINR Comm. P1-93-64,(1993)
- -8. Ascolli et al., Phys.Rev.Lett.25,962.(1970)
- 9. M.A.Ananieva et al., JINR Comm. P10-83-759, (1983)
- B. Hyams, Nucl. Phys. B64,134,(1973); K.L.Au, D. Morgan, M.R. Pennington, Phis. Rev. D35,1633, (1987)

Received by Publishing Department on April 29, 1993.