

СООБЩЕНИЯ Объединенного института ядерных исследований

дубна

E1-92-68

Z.Strugalski, M.Sultanov*

CHARACTERISTICS OF THE PION PRODUCTION AND PROTON EMISSION PROCESSES IN PROTON-CARBON NUCLEAR COLLISIONS AT 4.2 GeV/c MOMENTUM

*SamSU, Uzbekistan

Стругальски З., Султанов М. Е1-92-68 Характеристики процессов рождения пионов и испускания протонов в протон-углерод ядерных столкновениях при импульсе 4,2 ГэВ/с

Получены характеристики интенсивности рождения пионов и испускания протонов в протон-ядерных столкновениях чри импульсе 4,2 ГэВ/с в зависимости от толщины слоя внутриядерной материи, вовлеченной в реакцию. Наблюдаются пионы с большими поперечными импульсами, больше чем ~1,2 ГэВ/с.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1992

Strugalski Z., Sultanov M. E1-92-68 Characteristics of the Pion Production and Proton Emission Processes in Proton-Carbon Nuclear Collisions at 4.2 GeV/c Momentum

The intensities of the pion production and proton emission in p-carbon collisions at 4.2 GeV/c momentum are obtained in dependence on the intranuclear matter layer thickness involved in the collision reaction. Pions with large transversal momenta, larger than about 1.2 GeV/c, are presented in the reactions.

The investigation has been performed at the Laboratory of High Energies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1992

1. INTRODUCTION

The aim of this work has been to gain insight in the physics of the nucleon emission and pion production processes in hadron-nucleus collisions. The experimental data were collected using the 2 meter long propane bubble chamber of the Joint Institute for Nuclear Research exposed to 4.2 GeV/c momentum proton beams. The investigations are performed additionally to our similar works performed by means of xenon bubble chambers irradiated in pion beams at 2.34 - 9 GeV/c momentum.

and the second second

a set the set of a new set as it set with

The intensities of the emitted protons and of the produced pions are studied first of all. As the measure of the proton emission intensity the multiplicity of the emitted protons is used; the intensity of the produced pions is expressed by the multiplicity of the ejected pions in any of the collision events under study.

According to experimental data obtained in our investigations of the hadron-nucleus collisions in the xenon bubble chambers /1,2/, the number of the nucleons emitted from the target nucleus in a collision determines the collision impact parameter; larger number of the emitted nucleons corresponds to smaller value of the collision impact parameter. Approximately, the number of the emitted protons only can be used instead of the numbers of the emitted nucleons. The distributions of the multiplicities of the produced pions at definite numbers of the emitted protons contain information about the pion production process, and the distributions of the multiplicities of the emitted protons in events with various numbers of the ejected pions contain information about the nucleon emission process in the collisions under study.

2. EXPERIMENTAL PROCEDURE

The photographs of the 2 m propane bubble chamber exposed to 4.2 GeV/c momentum proton beams from the Joint Institute for Nuclear Research Synchrophasotron were scanned and rescanned for the p-C collision events which could occur in a chosen region centered inside the chamber the methodical ques-

васияны всследованой БИБЛИОТЕКА tion concerning the expositions of the chamber and the analysis of the photographs are described in former works/3-5/; the selection criteria are described as well / , 7/, they are:

111

$n_{+} - n_{-} > 1$	+ Z _{Ai} ,	· · · ·	(1)
$n_{\rm p} > 1$,			(2)
$n_{D}^{b} > 0,$		*	(3)
n > 1,			(4)
- n ₊ - odd,			(5)

where n_+ is the number of positively charged particles in the event; n_, the number of the negatively charged particles in it; n_p , the number of the protons with $P_{1ab} < 0.75$ GeV/c momentum; nb, the number of protons ejected into backward hemisphere in lab system.

In total, 7328 p-C collision events were selected which makes 82% of the all $p-C_3H_8$ collisions registered on the chamber photographs under analysis and fulfilled the selection criteria. The lower limit of the momentum value of the emitted protons was Plab ~ 150 MeV/c; it is known that protons may be distinguished by ionization from the pions when of momenta $P_{lab} \leq 800 \text{ MeV/c}$; pions with $P_{lab} \geq 800 \text{ MeV/c}$ can be identified by delta-electrons. The positively one-charged particles with the momentum $P_{1ab} \ge 800 \text{ MeV/c}$ were accepted to be protons; the admixture of the positively charged pions in such "proton" sample is about /5/ 12%.

3. EXPERIMENTAL DATA

The collision reactions $p + C_6^{12} + n_p + n_{Pi} + f$ were studied; n_p is the number of the emitted protons, n_{Pi} is the number of the ejected pions with negative and positive charge, f are secondary hadrons if not protons or pions.

In tables I and II general characteristics of the experimental material are presented. In figures 1 - 6 characteristics of the emitted protons are shown in dependence on the multiplicities n_{Pi} of the produced pions. In figures 7 - 12 characteristics of the ejected pions are given in dependence on the numbers np of the emitted protons. The characteristics of the distributions in figs. 1 - 12 contain tables III - XIV.

W WATER PARTY AND A LANGER AND A

Table I. Numbers Nev of collision events and numbers Npi of the produced pions in dependence on the multiplicity np of protons emitted in a collision; in parentheses - the numbers without corrections for the efficiency

np	0	1	2	3	4	5	6	≩ 0	
Nev	310	2814	2342	1011	451	277	94	7328	
N _{Pi} ±	338	1120	1342	978	523	332	121	4754	

Table II. Numbers Nev of collision events and of the emitted protons N_p in dependence on the multiplicity n_{p} ; t of the produced pions; in parentheses - the numbers without correction for registration efficiency

n _{Pi} ±	0	1	2	3	4	5	≥ 0
Nev	2441	1620	886	316	81	17	7328
Np	3154	3117	1838	688	210	37	9044

Table III. Characteristics of the distributions shown in fig.1

 ▶ 0 7328 1.48 1.26 1.2342 1.8299 0 2441 1.39 1.20 1.4768 2.0887 1 1620 1.77 1.50 0.6687 0.3576 2 885 1.90 1.49 0.7775 0.1320 3 316 1.95 1.51 0.6757 0.5975 4 81 2.30 1.46 0.1611 -0.3871 5 17 2.03 1.85 0.7050 -0.0795 	ⁿ Pi	Nev	< n _p >	s.d.	skewness kurtosis
	≥ 0 1 2 3 4 5	7328 2441 1620 885 316 81 17	1.48 1.39 1.77 1.90 1.95 2.30 2.03	1.26 1.20 1.50 1.49 1.51 1.46 1.85	1.2342 1.8299 1.4768 2.0887 0.6687 0.3576 0.7775 0.1320 0.6757 0.5975 0.1611 -0.3871 0.7050 -0.0795

Table IV. Characteristics of the distributions shown in fig.2

$n_{Pi} N_p < P_p \text{ tot} s. d.$	skewness kurtosis
 ≥ 0 9048 0.720 0.626 0.3154 0.731 0.636 1.3117 0.723 0.637 2.1838 0.730 0.626 3.688 0.673 0.586 0.468 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table V. Characteristics of the distributions shown in fig.3

n Pi	Np	<pp lon=""> s.d.</pp>	skewness	kurtosis
≥ 0	8594	0.436 0.567	1.0838	0.1365
0	2991	0.429 0.579	1.0566	0.0142
1	2944	0.435 0.567	1.1241	0.2331
2	1742	0.454 0.569	1.0795	0.1245
3	667	0.428 0.520	1.0280	0.1614
4	209	0.438 0.524	1.0124	0.0860
5	36	0.349 0.256	1.7744	0.5808

Table VI. Characteristics of the distributions shown in fig.4

n _{Pi} N _p < P _p	tr' s.d.	skewness	kurtosis
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.349 0.256	1.7744	4.9630
	0.352 0.261	1.6978	4.3445
	0.350 0.253	1.7669	5.0459
	0.348 0.256	1.9606	6.5374
	0.345 0.245	1.5982	3.0791
	0.336 0.262	2.2118	7.0630
	0.247 0.152	0.8990	0.5400

Table VII. Characteristics of the distributions shown in fig.5

n Pi	Np	< e _k >	s.d.	skewness	kurtosis
≥0	9737	0.459	0.619	1.6092	1.5869
0	3479	0.509	0.670	1.4656	0.9753
1	3342	0.453	0.611	1.5781	1.4552
2	1956	0.446	0.599	1.6482	1.8320
3	709	0.345	0.474	2.0024	3.6716
4	210	0.269	0.334	1.5736	1.7506
5	37	0.229	0.312	2.3456	5.4741

Table VIII. Characteristics of the distributions presented in fig.6

n Pi	Np	< cos 0 _p	>s.d.	skewness	kurtosis
≥ 0	10862	0.5633	0.5016	-1.2851	0.6486
0	4431	0.5971	0.5036	-1.4116	0.9662
1	3475	0.5372	0.5040	-1.1752	0.3555
2	1991	0.5496	0.4889	-1.2525	0.6716
3	714	0.5254	0.4987	-1.1917	0.3656
4	210	0.5321	0.5018	-1.2755	0.6628
5	37	0.6175	0.4848	-2.0022	3.1499

Table IX. Characteristics of the distributions shown in fig.7

n _p N _{ev}	< n _{Pi} >	s.d.	skewness	kurtosis
 2 0 7328 0 310 1 2814 2 2342 3 1011 4 451 5 277 6 94 	1.38	0.97	1.0593	0.9737
	2.13	0.83	1.3954	0.8320
	1.24	0.86	1.2432	0.8600
	1.28	0.98	1.0201	0.9797
	1.53	1.03	1.0534	1.0311
	1.65	1.08	0.8103	1.0769
	1.68	1.08	0.9500	1.0831
	1.76	0.93	0.2581	0.9333

Table X. Characteristics of the distributions shown in fig.8

'np	N _{Pi}	<p<sub>Pi tot></p<sub>	s.d.	skewness	kurtosis
≥ 0 0 1 2 3 4 5 6	4783 339 1120 1324 978 523 332 120	0.43 0.45 0.46 0.46 0.43 0.41 0.38 0.36	0.29 0.24 0.28 0.30 0.28 0.31 0.28 0.25	1.3412 0.8950 1.2310 1.2816 1.3854 1.6772 1.5701 1.4710	0.2877 0.2448 0.2835 0.2974 0.2832 0.2832 0.3085 0.2793 0.2504

Table XI. Characteristics of the distributions shown in fig.9

'np	N _{Pi} <	P _{Pi lon} >	s.d.	skewness	kurtosis
≥ 0 4 0 1 1 2 1 3 4 5 6	709 336 103 299 960 514 330 120	0.28 0.32 0.33 0.30 0.26 0.23 0.22 0.22 0.20	0.28 0.26 0.27 0.29 0.28 0.29 0.28 0.29	9.5610 0.2036 0.4762 0.4740 0.6215 0.8348 0.8830 1.2059	0.2817 0.2566 0.2771 0.2863 0.2768 0.2850 0.2850 0.2788 0.2654

Table XII.	Characteristics	of	the	distributions	shown
in fig.10					

np	N _{Pi}	< P _{Pi tr} > s.d.	skewness kurtosis
≥00123456	4810 342 1124 1333 983 527 333 120	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.3828 0.1574 1.2271 0.1542 1.3719 0.1451 1.2307 0.1560 1.4462 0.1617 1.3790 0.1701 1.6427 0.1639 1.6586 0.1676

6

Table XIII. Characteristics of the distributions shown in fig.11

np	N _{Pi}	< E _{k Pi} >	s.d.	skewness	kurtosis
≥ 0 1 2 3 4 5 6	4794 339 1122 1328 979 526 332 120	0.33 0.35 0.35 0.35 0.32 0.31 0.28 0.26	0.28 0.25 0.27 0.29 0.27 0.30 0.27 0.24	1.6371 1.5398 1.4728 1.6674 1.6083 1.8983 1.7348 1.6953	0.2792 0.2474 0.2722 0.2913 0.2732 0.3014 0.2655 0.2380

Table XIV. Characteristics of the distributions shown in fig.12

And the Real Property lies of the Real Prope				
n _p N _{Pi}	<cos 0<sub="">Pi</cos>	> s.d.	skewness	kurtosis
 > 0 4811 0 342 1 1125 2 1333 3 983 4 527 5 333 6 120 	0.5491 0.6259 0.6293 0.5764 0.5142 0.4403 0.4438 0.3880	0.4827 0.4194 0.4318 0.4625 0.4974 0.5308 0.5342 0.5322	-1.4253 -1.7760 -1.7472 -1.4957 -1.2835 -1.0884 -1.0659 -1.1327	0.4827 0.4194 0.4318 0.4625 0.4974 0.5308 0.5342 0.5322

4. DISCUSSION AND RESULTS

Experimental results are presented in figs.1-12. The most interesting fact is: pions with large transversal momenta, larger than about 1.2 GeV/c, are presented in the transversal momentum spectra (Fig.10).

The admixture of the beam protons among the protons accepted as the emitted ones is visible clearly, figs.2,3,4,5,6; it amounts about 15-20%. It should be taken into account in investigating the proton or nucleon emission process on the basis of nucleon-nucleus collision experimental data at momenta of about a few GeV.

Fig.1. Emitted protons multiplicity n_p distributions $N(n_p) = 1/\Sigma N$, in samples of collision events with various multiplicities n_{pi} of ejected charged pions

63 (N)-

8

Fig.4. Emitted protons transversal momenta P_{tr} distributions $N(P_{tr})$ in events with various multiplicities n_{pi} of the ejected pions

Fig.ll. Ejected pions kinetic energy E_k distributions $N(E_k)$ in events with various multiplicities n_p of the emitted protons

REFERENCES

Strugalski Z. - JINR E1-81-576, E1-81-577, Dubna, 1981.
 Strugalski Z. et al. - JINR E1-90-459, Dubna, 1990.
 Abdurakhimov E.O. et al. - JINR P1-10779, Dubna, 1977.
 Gasparian A.P. et al. - JINR P1-80-778, Dubna, 1980.
 Baldin A.M. et al. - JINR P1-88-331, Dubna, 1988.
 Agakishiev G.I. et al. - JINR P1-83-662, Dubna, 1983.
 Kladnitskaya E.N. et al. - JINR P1-88-412, Dubna, 1988.

Received by Publishing Department on February 21, 1992.