

СООбщения Объединенного института ядерных исследований дубна

E1-91-490

1991

Z.Strugalski, B.Średniawa¹, N.Hassan², E.Mulas², A.Tunia², Z.Zawisławski, M.Zielińska³

INTENSITY OF THE NEUTRON EMISSION FROM NUCLEI, INDUCED BY HIGH ENERGY HADRONIC PROJECTILES

¹Institute of Physics, Jagiellonian University, Cracow, Poland ²Institute of Physics, Warsaw University of Technology, Warsaw, Poland ³Institute of Physics, University of Lodz, Lodz, Poland

1. INTRODUCTION

The subject matter of this work is to present experimental characteristics of the neutron emission from nuclei, induced by high energy hadronic projectiles. This paper is a sequel to the author's last paper: Neutron emission from target nuclei, induced by high energy hadronic projectiles '1'. It is based on the newly obtained experimental data from the 180 litre xenon bubble chamber^{/2/}, exposed to 3.5 GeV/c momentum negati-vely charged pion beam^{/3/} from the accelerator of the Moscow Institute of Theoretical and Experimental Physics.

ine di ster Se dina Se

and the set

w - neither 2. EXPERIMENTAL PROCEDURE

in the state of th

Neutrons are registered in the bubble chamber by means of "neutral stars" recorded on photographs; in the 180 litre chamber the registration efficiency $^{\prime 17}$ is about 28%.

ALLENSE DE

e and for the 2000

S (F trep)

S. C. S. Start

For a simplicity, in the analysis of the events recorded on the stereophotographs, the single hadron-xenon nucleus collision event photographs were analysed only. The pictures selected in such a manner were clear and without background from other collision events inside the chamber. The neutrons emitted in the hadron-xenon nucleus collision reactions cause characteristic "neutral stars" in collisions of the neutrons with the downstream xenon nuclei - observed protons are emitted from the nuclear targets radially; the proton tracks form stinds to exidention the "stars".

Information about the experimental procedure, and especially about the photograph scanning and measurements on the selected pictures can be found in our former works '1, 4' and in the papers cited in them. an angle sol of the solutions a

The neutron emission intensity we determine as the number.

n of the emitted neutrons, or as the neutron emission multiplicity not obtag out to not and ristb of 2 olds T. Inflath out notes are anone louranted and and share that and A start at state at Minubac

3. EXPERIMENTAL DATA

About 40000 photographs were scanned and rescanned. 1128 single event pictures were recorded on them. The number n_p ,

Concellection Sherteryy часиных есследования БИБЛИОТЕНА

or multiplicity n_p , of the tracks caused by the protons emitted in neutron-xenon collision reactions are from $n_p = 1$ up to $n_p = 7$; the "stars" were observed with n_p prongs therefore.

3.1. The Background Neutral Stars

On the chamber photographs, there are recorded not only the stars produced by the neutrons emitted in the collision reactions of the incident hadrons with the xenon nuclei inside the chamber. Some of stars are produced by other neutrons - from other various sources, from some kind of reactions outside the chamber. Such stars form the background against which the neutral stars which we are looking for are registered.

In order to take into account the background neutral stars per one picture, 2237 chamber pictures were singled out on which no any collision reaction of the beam hadrons with the xenon nuclei inside the chamber were registered. In this sample of photographs, 294 were found on which neutral stars are recorded; in total, 379 such neutral stars are seen on them - we call them the background stars later. And so, the percentage of the background stars on the photographs is k = 379/2237 = $= 16.9\pm0.2\%$ per a photograph.

3.2. Characteristics of the Neutral Stars

The characteristics of neutral stars are presented in Tables 1+5. The data presented in Table 1 are based on the sample of 684 pion-xenon nucleus collision events; in total 2341 protons and 3339 neutrons are emitted in them. The neutron registration efficiency¹¹ is taken into account. The ratio between the number of the emitted protons and of the emitted neutrons, in the total sample of events, is 0.70; it is as large as the ratio Z/(A-Z), where A = 131 and Z = 54 are the mass and charge numbers of the Xe nucleus.

The distribution of the neutral stars with various numbers of the emitted protons in them is characterized in Table 2. In about 95% of the stars, the pion-xenon nucleus collisions, reactions at 3.5 GeV/c momentum are accompanied by, multiplicity of the emitted protons is no more than $n_p = 3$. The proton multiplicity distribution in the background neutral stars is similar, Table 3. The distribution of the proton multiplicities in the neutral stars when the background stars are taken into account is shown in Table 4.

The background neutral stars could be recorded when the multiplicity n_p of the emitted protons at least equals to 1. Let

us suppose then that the photographs without the background neutral stars are in fact the photographs with the 0 prong neutral stars. Then, instead of the n_p distribution presented in Table 3, the proton multiplicity n_p distribution in the background neutral stars will be as presented in Table 5. In the light of such interpretation, the relatively significant number of the background neutral stars is when $n_p < 3$, Table 5

and the second s

1. 1. 2 (1. 1. 1. 1. P.

Table 1. General information about the intensity of the neutron emission from target nuclei, in pion-xenon nuclear collisions at 3.5 GeV/c momentum. Designations: n_p - the number of protons emitted in a collision event, N_{ev} - number of collision events with a given n_p , N_n obs - the number of neutrons observed in collisions with a given n_p , N_n cor - the number of neutrons in all collisions with a given n_p after correction for the neutron registration efficiency, $< n_n >/$ event - mean multiplicity of the emitted neutrons per collision event with a given n_p , $< n_N >/$ event - number of nucleons emitted per event with a given n_p , $< n_N >/$ event - number of nucleons emitobtained by extrapolation

and and a second and a second	i o manina madalan ing		s till a samplare er men makener T	ilia narrana Ziri	and the second second	- manana ang sanang sanang Sanang sanang	and a second	a deserver de la constance d	المستجرية فستقس
np	N _{ev}	ret kajsta anda Seneral seneral seneral Seneral seneral	N _{n obs}	2	_N _{n co}	or	n_>/ever	it <n th="" ŋ<=""><th>/event</th></n>	/event
Ger		8.85 7 - 1			63 2		11.6 2.13	ti stati je se s Like	
0	122		185		557		5.4*	5.	4* S
. 1	98		172		518		5.3	6.	3
2	81	e E i Herrie	142 [.]		428	·	5.3	7.	3
	76	an and a second second		- Norman - Contraction - Contr		entronomorphic obtenues.	4.9		9
4	78	n no go an no go a	129	********	388	a name and an el	5.1		1
5	70)	106		319		4.6	9.	6
6	48		72		217		4.5	10.	5
7	45		7.3	. (* .	220	-276,833	4.9		9
. 8	36	n en	56		169	an the second	4.7	12.	7
9.	12	al estata	18		52	nativen.	4.3	13.	3
10	11	,	21	1997 - 1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997	63		5.8		8
, 11 .,	Second 4	ha i ta i anali i		ander ander References f	30	n an station an an Se en station à s	7.5	18.	5 -
12	100 0001		11	er un un Les Nes	ຸ 3	ini Ng kilas	3.0		Ò
13,	2		2	H Challes	6	e danadar	6.0	-19.	0
المسافية التي مربقة التي ال	a and a second secon			an ann an	en a constante A constante a constante A constante a c	이 가지 않는 것이 이번 것 같은 것이	egne internet sola. Generalista	م معرف الدري. المحولة أول	anna Carrain

l fan allenen geleen ned leiter al verser e beterkkrijten ist begrepping. Sie ji Hener werde geleiningen is die eren is geleine neer weer het begrepping. De finge Table 2. Characteristics of the neutral stars registered in the 180 litre xenon bubble chamber exposed to negatively charged pion beam at 3.5 GeV/c momentum. Denotations: n_p - the number of protons emitted in the star or the number of star prongs, N_{ev} - number of the pion-xenon nuclear collision events with n_p -prong stars, N_n the number of the neutral stars, $N_{ev}(n_p)$ - the percentage of the n_p -prong stars

N_{ev} $N_n \pm \Delta N_n$	$N_{ev}(n_p)$ %
695 1036 3 3	61.6
nellen in men selme 22695 giller medan i ver 401 die 18 schwere der bei	23.9
1	8:0
49 73 9	4.3
16 24 4	1.4
7	
	and the state of the second

Table 3. Prong multiplicity n_p distribution $N_n(n_p)$ in the background neutral stars; N_n - the number of the neutral stars with the n_p prongs

1	n P	" N "	an an an ganar an 12 stanair an 1995. Na stàitean an 1997 an	$N_n(n_p)$ %	
् ा	a an ann an tao an taon an tao an Tao an tao an	305	an an an that and a second	2015	
2		.63	and a second	16.6	*જેર
3	}	5		1.3	[
- Z - 5		4			et i
6		ج		0.3	

4. DISCUSSION AND RESULTS

-0

On the basis of experimental data presented above, it may be concluded that:

1. The mean number $< n_n > of$ the neutrons emitted in pion-xenon nucleus collisions at 3.5 GeV/c momentum is almost constant⁰-it does not depend on the multiplicity n of the emitted protons in the collisions; $< n_n > \approx 5.1\pm0.9$ neutrons.

2. The ratio between the number of the emitted protons Σn_p and of the emitted neutrons Σn_n in total sample of the pion-

n_p - the prong m $N_n(n_p)$ % - the prongs	ultiplicity, N _n - the ercentage of the stars	number of the neutral st s with a given number n	ars, of
$\mathbf{n_p}$ of Lemma transformed to the second	$N_n \pm \Delta N_n$	N _n (n _p) %	
1 2 3 4	807 33 354 18 130 10 70 20	57.7 25.3 9.3	
5 6 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.0 1.6 0.7 0.2	
Table 5. The dist with various numb	cribution $N_n(n_p)$ of the protons P_p	e background neutral sta emitted in them	rs
n _p	N <u>n</u>	N _n (n _p)	7
1 2 3 4 5 6 7	1858 305 63 5 4 1 1	83.1 13.6 2.8 0.2 0.2 0.1	
		Charlow de la Charles de la Ch	

xenon nucleus collisions is $\Sigma n_p / \Sigma n_n = Z/(A-Z)$; where A and Z are the mass and charge numbers of the xenon nuclei.

3. The mean numbers $< n_N > = < n_p > + < n_n >$ of the nucleons emitted in the pion-xenon nucleus collisions at 3.5 GeV/c momentum is $< n_N > = 8.3\pm0.9$; the value of the $< n_p >$ is from our former work 5 . Corresponding value of $< n_N >$ expected in our calculations 6 is $< n_N > = 8.52$. It is just as large as the value 8.3 ± 0.9 obtained here experimentally. This agreement means that the number of nucleons emitted in hadron-nucleus collisions equals the number of nucleons met by the projectile

5. The information about the dependence $< n_N >$ /event on the multiplicity n_p of the emitted protons in the pion-xenon nucleus collisions at 3.5 GeV/c momentum contains the data on the matter density distribution inside the target nuclei⁽⁸⁾.

6. The prong multiplicity n_p distribution N(n_p) in the neutral stars, the pion-xenon nucleus collisions are accompanied by, can be described by simple formula a.e α^{n_p} , where a = 158, α = +0.92 ± 0.02, χ^2 = 10.6, ndf = 5, fig.1.

Shortly, we are in the position to state that: the neutron emission from target nuclei, induced by high energy hadronic projectiles proceeds according to the laws known'^{5,7} for the proton emission.

REFERENCES

1. Zielinska M. et al: JINR Commun., E1-91-386, Dubna, 1991. 2. Kuznetsov E. et al. - Instrumentation and Experimental Techniques (Russian PTE), 1970, 2, p.56. 3. Strugalski Z. et al. - JINR Commun., R1-83-564, Dubna, 1983. 4. Peryt W. et al. - JINR Commun., E1-81-803, Dubna, 1981. 5. Strugalski Z. - JINR Commun., E1-86-579, Dubna, 1986. 6. Pawlak T. et al. - JINR Commun., E1-86-643, Dubna, 1986. 7. Strugalski Z. - JINR Commun., E1-84-543, Dubna, 1984. 8. Zielinska M. et al. - JINR Commun., E1-91-256, Dubna, 1991. antente ner spink it and company a 一 一連載電影部 一次報告書的 一 1 1 161 suplication on collective intropend .11 Vela asketterilare translated. Insue Mich. 2012 bie which have the faith the set of a large france when the set The state of the second second state that the second second second second second second second second second se in the state of th Received by Publishing Department on November 12, 1991. 이는 이렇게 물건을 많다. 관금 7 Second States of the