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In this paper it is presented an estimation of the
nHe3 H3 coupling constant using the Chew-Low equation and
and a semi-phenomenological analysis of the z*He3 elastic
differential cross sections at 93, 120, 135 and 156 MeV.

The investigation has been performed at the
Laboratory of Nuclear Problems.

Communication of the Joint Institute for Nuclear Research
Dubna 1975

@1975 O6Gredunennbil UNCRURYR R0ePNBIX UCCACO08ANUL dy6ua

1. Introduction

The theoretical estimations of the »He3H3
coupling constant are between f:“83H3=(L08

from simple impulse approximation/1/ and
fﬁneaua =0.16 from the dispersion relation

for the pionic formfactor of *@3 and Goldber-
ger-Treiman relations /% .

The experimental values for the =r-nucle-
us cougling constant are now available only
for Li' and Be? and are obtained from for-
ward dispersion relations/3.%

2 =~

(. =162 4 = 0.06.

The dispersion relations for the forward
amplitude provide one of the most accurate
phenomenolcogical determinations of the coup-
ling constants. With this method accurate
results for the pion-nucleon as well as for
the nucleon-nucleus coupling constants /5,6/
have been obtained. The well-known difficul-
ties of using this method are connected with
the treatment of the unphysical cut and of
the asymptotic behaviour of the amplitude.
But for the pion-nucleus scattering another
important problem in using the dispersion
relations method arises from the lack of



good information on #* total tross sections
especially in the low energy region.

On the other hand, the hypothesis about
the analyticity of the scattering amplitude
in the cosf plane can be used to obtain in-
formation on the coupling constants /7,8/,

But for the rHe®H?® coupling constant de-
terminations neither dispersion relations
nor analytical continuation in the cosf plane
can help because of the lack of the #*He 3
total cross sections and because of the lack
of measurements of the elastic differential
Cross sections at sufficiently large ener-
gies/9/*,

However information on the nlb3H3coupling
constant value can be obtained by using the
Chew-Low equation for m -nucleus scatter-
ing /1

In this paper we present a semi-phenomeno-
logical analysis of the #*He® elastic scattr-
ing (at 98, 120, 135 and 156 IeV/14/ ) ip
order to obtain information on the fine%ﬂ
coupling constant using the Chew-Low plot for
the P, partial wave.

*At low energies (up to 400 MeV) the analy-
tical continuation method in cos6 plane (with
the optimal conformal mapping) doesn’n work
even for a»*p scattering (the analog of our
n*He3 scattering) but this failure seems
to be connected with the existence of the
A,, resonance in the s channel.

2. The Chew-Low Equation for nHe3 Scattering

The spin and isospin of the He3 nucleus
are 1=8=1/2 and He® therefore together with
H3 forms an isodoublet like the proton and
neutron, and as a consequence of the charge
independent interaction, as in the pion-nuc-
leon case, absorption or emission of a pion
by He® is allowed.

The conservation of the angular momentum
and the parity implies that the pion can be
absorbed by He? only in the £=1, J=1/2

state ( P11 state) - the direct process, -
and, in the limit of mM 5 0 in all four P
waves - the exchange process (the nucleus

first emits the final pion and then absorbs
the initial pion). The strongest exchange
process can occur in the P33 state.

To obtain the Chew-Low equation for the
P wave we follow the simplified treatment
from the #p case according to Hamilton/“/.
Using the same basic theoretical ideas as in
the #p scattering, the singularity structure
in the s wvariable (s is the total C!MS ener-
gy) of the n=He partial waves turns out to
be the same, except the right hand cut:
so=(Md+M92§sgm (corresponding to the unphy-
sical cut from forward dispersion relations).

We will use the peripheral method in order
to reduce as much as possible the contribu-
tion of the short range parts of the inter-
action.

The partial wave amplitude

1 i 2i 8;:
fé:(5)=-§ﬂ;(nﬁ e -1 (1)



is replaced by the reduced partial wave amp-
litude

-

F;i (s):f;i k2 (2)

for which for ¢ 1 is no pole at g=0 and
the contribution of the cut -~<s< 0 is
strongly suppressed and can be ignored.

The contribution of the short cut:

M-m? /M)?< s <M2 4 9m2 to partial waves for
P

physical s is given by the angular integra-
tion of the exchange term (partial wave pro-
jection of the exchange term) which in the
static approximation (small mM ) is given
by:

¢ 2
-1 MES +1
FIE - (Mz)_s' 20 1 (2P (0-Pp, ,(x)dx(32)
FL? . (_1%+1 M2 +1

- S._mm,__{ (2xPy(x) =Py, (X)) dx. (3D)

Here f 1is called the equivalent pseudo-vec-
tor coupling constant

f2 - G (m (4)

and is 0.08 in a=p scattering.

The polar contributions to P partial waves
in the physical region are (in the static
approximation the above integrals vanish un-
less £ =1):

2 me? S mr?
,Fl_ = — Fl+ = 2 2 5
m?(s-M?) m%(s-M% (5)
4ane2
—-§Mf

1/2 _ ;3/2 _
Fp= =

m?(s-M?%

and adding the contribution of the direct
Born term to P,y 3

T

plrz__ 3

—_ —2———‘-
1 m?(s-M%

Now we can construct a new analytic func-
tions:

I _ 1 . 1 (6)
hgf (s) T th(s),

2
which has a cut along sg=(M,;+M )" <s<
and no pole at s=M%. . Using Cauchy theorem
we can write one substracted dispersion re-
lation for h(s):;

) 2 -3 4
1 s - M oo K?ds -
Rehly: (s)= - ? s - (7)
A'ei 4 So xe't(S’)(S’—MZ) (s—s)



where x(s) is the elasticity factor:

l Al
Tpt (5) etastic

I
x2¢(5)= - , (3)
%t () togar

with 12 x>0 (x=1 for the pure elastic
Cﬁse - for example #p up to ~200 MeV) and
,Ali are constants related to f?

And now we can use the hypothesis that the
integral

oo K*3ds’
(s)=L19 g
7 sg x(s87)(s"-M)%s’'- s) (10)

as in the a#p case, is a slowly decreasing
function ons. '

A simple approximation to the low energy
behaviour of P waves is I(s) = oonst.=.8 even
if in the sHe3 scattering the integral has
a contribution from unphysical region
So=(Mj+M )2 to s, =(M+m)? |

The equation which is obtained can be
used for continuation outside the physical
region (Chew-Low plot) in order to obtain in-
formation on the »He3H 3 coupling constant

(for P33 ) e

3
n::/2+sin(25r{% 1

k3
(s =M 1 eos(n?F) 1

2
mHe3n3

wloo

M
m?2

- (s-M?) B. (11)

This equation represents a straight line

y=a+fz (with z=s- M?) ),

In the #p case there is a good agreement
between experiment and the straight line up
to the resonance, but a disagreement appears
for larger energies (Fig. 5, curve a ). This
is due to the approximation which assumes the
cut-off function wv(k) to be constant. The
cut-off function is introduced in the inter-
action Hamiltonian and it can be thought of
some kind of Fourier transform of the partic-
le density and actually eq. (11) should con-
tain (v(k))?k3 in place of k3.

For example Layson’”ﬁ/ has used a Yukawa
type source distribution:

2 _-—ar
o(r) = —2% (12)
4rr

to obtain a smooth cut-off function w(k): :

>

v(k) = fe % p(x)dx = 1—+lk2::-2(a*‘=0.38ﬁn) (13)

for which he was able to extend the wvalidity
of the Chew-Low formula.

This correction due to the non-point in-
teraction between particles is more important
in our scattering case. Using Ingraham’s ex-
pression (eq. 4 from/!/ ) we can obtain the
following equation for the Born approximation
of the reduced partial wave:



? .
2% X (k)
nHe3H3 23 21

Fl. (s) = , (14)
7t s - M2 ™ 927 41
where Af (k) is given by:
21, 21
¢
’\2J,21= {al [?Vf_l+(f + 1)V9+1] +
ey -3y, v, g3 (15)
Pl WD =TT DIl -V,
with ag/, =1 and aqy/2 =~2.
Here we assumed equal spin and isospin
distributions pl(r)zer(r) and we defined
? 2 2
Vo(k) = Vy =4z J0(kn) p(r) 2 dr, (16)
with normalization V?(0)=3? 0
azkz
o0 T T2 . a®k?
Vo) =(=0)%e =y, i 2y (17)
1 —e2/.2

for p(r) =m2—e with a =1.38 fm.

For P33 the partial wave amplitude from
nHe? scattering we obtain Agh =2V (k) + V, (k)
instead of A§3==2 as in the 7 —nucleon.
Figure shows the Layson’s cut-off function
and our &g (k) as function of the pion ki-
netic energy.
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3. Semi-Phenomenological Analyéis of
*He3 Elastic Differential Cross Section

We have analysed experimental data on
~tHed elastic differential cross section at
four energies: 98, 120, 135 and 156 Mev / 14/

At those energies the last significant
partial waves seem to be the D and F, which
means that for a normal phase shift analysis
it is necessary to determine 20 or 28 phase
shifts.

On the other hand up to now only elastic
differential cross sections are available and
for a rigorous phase shift analysis total
cross section and polarization measurements
are also necessary.

For these reasons we have chosen a theo-
retical model of ~He3 scattering to support
our analysis.

We have performed an analysis of experi-
mental data using the computed phase shifts
from optical model and keeping as free para-
meters only few partial waves (fort>1).

The Kisslinger type of an optical model
seems to give a qualitative agreement with
exoerimental data/1?/: : the position for
the minima in the differential cross section
and the fact that the minima are less deep
for »—He3 reaction than for 7*tHed (Fig.2,3,

curve (a)).

But there remain large discrepancies at
small scattering angles (similar to those ob-
served for n*He! elastic scattering /13/ ).
In a preliminary fit of the differential
cross sections we have found for our energy
interval a common normalization factor (2/3)
to the scattering amplitude obtained from
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the optical model (Fig. 2,3, curve (b)) and
we have tested an optimal combination (from
the x? point of view for free parameters.
The least x ? is obtained if the S; and
P33 partial waves are free parameters (we
have fitted the »* and »~ differential Cross
sections together), all other phases being
fixed at the theoretical model values (and
the common normalization factor of the scat-

" tering amplitude being fixed at 2/3) - fig.2,

3, curve (c).

The xz/Npoints
energies is =1

The errors on phase shifts are determined
in a standard way: the change in parameter
that changes x? by 1 when all other parame-
ters are searched.

In fig. 4 both Res ), and Im&}3; obtained
from the fit to the differential cross sec-
tions and also computed from optical model
are presented. In this figure we can observe
that there is a resonant behaviour of the

at around 140 MeV where Res); is going
through zero and Ims I, has a maximum,
but for a definitive conclusion more experi-
mental information is necessary.

Using the values of 8§3 obtained from
our fit in eq. (11) we have found the follow-
ing value of the nHe* H?® coupling constant
(see the Chew-Low plot - fig. 5, curve (b))

2
f o33 = 0.048 £ 0.009.

obtained for these four

Taking into account the cut-off function
(which in 7He? scattering is more important
than in the 7np case) - eq. (15), we have
found the following value (fig. 5, curve (c))

IS
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