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0ueHK8 KOHCT8HTbl CBI!31I rrHe3H 3 IIp!I IIOMOmli 

ypaBH8HIIll Lfy-floy 

8 pa6ore rrony'!eHa oUeHK8 KOHCT8HTbl CBI!31I rrHe3 H 3 rrp!I IIOMOmii 

ypaBHeHHll 4y-floy. ITpoBelleH aHanH3 llH¢¢epeHUii anbHhiX ce'!eHHil yrrpyroro 
paccel!HHI! rr±-Me30HOB Ha He 3 rrp!I 3HeprHH 98, 120, 135 H 156 MsB. 

Pa6ora BhmonHeHa B fla6oparopHH llllepHhiX rrpo6neM O¥HU1. 

Coo6meHHe 06beAHHeHHOrO HHCTHTyTa HAepHbiX HCCJieAOBaHHit 

,ay6Ha 1975 
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The rrHe 3H 3 Coupling Constant Estimation 
Using the Chew-Low Equation 

In this paper it is presented an estimation of the 
rrHe

3
H

3 coupling constant using the Chew-Low equation anc 
and a semi-phenomenological analysis of the rr±He 3 elastic 
differential cross sections at 98, 120, 135 and 156 MeV. 

The investigation has been performed at the 
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1. Introduction 

The theoretical estimations of the rrHe3H3 
coupling constant are between f !ne 3"3 = 0 .OR 
from simple impulse approximation/U and 
f 

2
" 3"3 =0.16 from the dispersion relation rr e 3 

for the pionic formfactor of H~ and Goldber-
ger-Treiman relations/2/. 

The experimental values for the rr-nucle­
us cou~ling constant are now available only 
for Li and Be 9 and are obtained from for­
ward dispersion relationsh.~ 

f 2 
Li7 

::= f2 -Be 9 :;;:. 0.06. 

The dispersion relations for the forward 
amplitude provide one of the most accurate 
phenomenological determinations of the coup~ 
ling constants. With this method accurate 
results for the pion-nucleon as well as for 
the nucleon-nucleus coupling constants /5,6/ 
have been obtained. The well-known difficul­
ties of using this method are connected with 
the treatment of the unphysical cut and of 
the asymptotic behaviour of the amplitude. 
But for the pion-nucleus scattering another 
important problem in using the dispersion 
relations method arises from the lack of 
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good information on "± total bross sections 
especially in the low energy region. 

On the other hand, the hypothesis about 
the analyticity of the scattering amplitude 
in the rose plane can be used to obtain in­
formation on the coupling constants /7, s/. 

But for the TTHe 3 H3 coupling constant de­
terminations neither dispersion relations 
nor analytical continuation in the rose plane 
can help because of the lack of the "±He 3 

total cross sections and because of the lack 
of measurements of the elastic differential 
cross sections at sufficiently large ener­
gies/9/*. 

However information on the TTHe3 H3 coupling 
constant value can be obtained by using the 
Chew-Low equation for "-nucleus scatter­
ing /10/. 

In this paper we present a semi-phenomeno­
logical analysis of the "±H~ elastic scattr­
ing (at 98, 120, 135 and 156 I~ev/ 14 / ) in 
order to obtain information on the f~ue3u3 
coupling constant using the Chew-Low plot for 
the P 33 partial wave. 

*At low energies (up to 400 r1eV) the analy­
tical continuation method in cose plane(with 
the optimal conformal mapping) doesn'n work 
even for "+P scattering (the analog of our 
"+ He3 scattering) but this failure seems 
to be connected with the existence of the 
A 33 resonance in the s channel. 

4 

2. The Chew-Low Equation for TTHe3 Scattering 

The spin and isospin of the He 3 nucleus 
are I = S = 1/2 and He 3 therefore together with 
H3 forms an isodoublet like the proton and 
neutron, and as a consequence of the charge 
independent interaction, as in the pion-nuc­
leon case, absorption or emission of a pion 
by He 3 is allowed. 

The conservation of the angular momentum 
and the parity implies that the pion can be 
absorbed by He 3 only in the f = 1 , J = 1/2 
state ( P11 state) - the direct process, -
and, in the limit of m/M .... 0 in all four P 
waves - the exchange process (the nucleus 
first emits the final pion and then absorbs 
the initial pion) . The strongest exchange 
process can occur in the P33 state. 

To obtain the Chew-Low equation for the 
P wave we follow the simplified treatment 
from the "P case accordi~g to Hamil ton /H/. . 
Using the same basic theoretical ideas as in 
the "P scattering, the singularity structure 
in the s variable ( s is the total CHS ener­
gy) 6f the "He partial waves turns out to 
be the same, except the right hand cut: 
s8 =(Md+M0 )

2
:Ss.$_oo (corresponding to the unphy­

sical cut from forward dispersion relations) . 
He will use the peripheral method in order 

to reduce as much as possible the contribu­
tion of the short range parts of the inter­
action. 

The partial wave amplitude 

1 2i o/+ tl± (s) = 2ik (T/~± e - -1) ( 1) 
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is replaced by the reduced partial wave amp­
litude 

F;± ( s) = f :± I k 2f (2) 

for which for e ~ 1 
the contribution of 
strongly suppressed 

is no pole at s = 0 and 
the cut -oo < s < 0 is 
and can be ignored. 

The contribution of the short cut: 

(M -m2 /M)2.::; s .::;M2 + 2m2 to partial waves for 

physical s is given by the angular integra­
tion of the exchange term (partial wave pro­
jection of the exchange term) which in the 
static approximation (small mM ) is given 
by: 

F 3/2 
e ± 

F 1/2 e± 

(- 1) f 

M2 -s 

2M f 2 + l 
--=-r2 e.-- f ( 2xPe (x)-Pe ± 

1
(x))dx.( 3a) 

m -1 

(-tl+ 1 Mf 2 +1 
M2- s·~ _{ (2xPe(x)-Pe±l(x))dx.(3b) 

Here f is called the equivalent pseudo-vec­
tor coupling constant 

2 
r2 = __Q_<_!!!._>2 (4) 

4rr 2M 

and is 0.08 in rrp scattering. 
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~he polar contributions to p partial waves 
in the physical region are (in the static 
approximation the above integrals vanish un­
less e = 1 ) : 

F 1/2 
.- = 

.!Mr 2 

3 

2 2 m (s-M ) 

F3/2 
1+ 

F 1_(2 = -F 3/2 - _4 3 Mf 2 
1 .- = 2 ( , m s -M2) 

!Mr 2 

3 
2 2 

m ( s -M ) ( 5) 

and adding the contribution of the direct 
Born term to. P 11 : 

- l6\1f2 
F I/2 _ -...,,...:3 __ -=-

1- - m 2 ( s - M ~ • 

Now we can construct a new analytic func­
tions: 

h;± ( s) = _1 
F;±-(s) ' 

( 6) 

which has a cut along s 0 =(Md + M ) 
2 < s < "" 

2 n - -
and no pole at s= M .• Using Cauchy theorem 
we can write one substracted dispersion re­
lation for h( s):: 

I 1 s - \12 ""' K ,3 ds, 
Rehe± (s)= --- P f ,(7) 

A
1e:t 77 8 0 x;±{s')(s'-M~2 (s'-s) 
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where x( s) is the elasticity factor: 

1 a[± ( s) elastic 

xe+ (s) = ------
- a1+(s) e- total 

(8) 

with 1;::: x;::: 0 ( x = 1 for the pure elastic 
case - for example~ up to ~200 MeV) and 
A~ are constants related to f 2 

1-

A1/2 __ 16 ~f2· A 1/2 _ A3/2 __ .! ~f2· A3/2 _ ! ~ r2 
· c - 3 2 ' 1 + - r - 3 2 ' 1+ - 3 2 m m m 

And now we can use the hypothesis that tpe 
integral 

K ' 3ds' 
1 "" _ _::____:--=--=--:---:-

l(s) = -;P / x(s')(s'-M2)~s'-s) 
0 

( 10) 

as in the rrp case, is a slowly decreasing 
function on s. 

A simple approximation to the low energy 
behaviour of P waves is I( s) = ronst.=.f3 even 
if in the rrHe 3 scattering the integral has 
a contribution from unphysical region 
s 0 =(Md+M

0
)
2 to s 1 =(M+m) 2 . 

The equation which is obtained can be 
used for continuation outside the physical 
region (Chew-Low plot) in order to obtain in­
formation on the rrHe3H 3 coupling constant 
(for P33 ) : 

8 

8 M k 3 

3. m 2. x 3/2 ( s) ( s - M 2 ) 
1+ 

- ( s- M 2) {3. 

3/2 . 3/~ 
TJ 1 + sm ( 20 r- ) 

3/2 3/2 
1- TJ + cos ( 20 + ) 

1 1 

1 

f2 
rr ue3 8 3 

( 11) 

This equation represents a straight line 
y=a+{3z (withz=s-M2

).). 

In the ~ case there is a good agreement 
between experiment and the straight line up 
to the resonance, but a disagreement appears 
for larger energies (Fig. 5, curve a ) • This 
is due to the approximation which assumes the 
cut-off function v(k) to be constant. The 
cut-off function is introduced in the inter­
action Hamiltonian and it can be thought of 
some kind of Fourier transform of the partic­
le density and actually eq. (11) should con-
tain (v(k)) 2 k3 in place of k3. 

For example Layson I 15 / has used a Yukawa 
type source distribution: 

p( r) = 

2 -ar a e 

4rrr 
(12) 

to obtain a smooth cut-off function v(k) : : 

...... 
ikx 1 -1 v(k)=Je p(x)dx = --:-2=2(a =0.~fin)(13) 

1 + k a 

for which he was able to extend the validity 
of the Chew-Low formula. 

This correction due to the non-point in­
teraction between particles is more important 
in our scattering case. Using Ingraham's ex­
pression (eq. 4 from/10 1 ) we can obtain the 
following equation for the Born approximation 
of the reduced partial wave: 
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F 1+ ( s) = e-

2 r2 

rrue3u3 

s- M2 

where A e ( k) 
2J' 21 

M 
m 

/ ( k) 
2J' 21 

2e + 1 

is given by: 

e 
A 2J, 21 la 1 [fVe_ 1+(f + 1)Ve+

1
J + 

+ q + eu + 1) - J (J + 1) H'f + .- v e _ 
1 
J 1 

. th - 1 Wl a3/2 - and a 1/2 = - 2 · 

( 14) 

( 15) 

Here we assumed equal spin and isospin 
distributions p 1 ( r) = p J ( r) and we defined 

Ve ( k) '= V e = 4rr J J ~ ( k r) p ( r) r 2 dr , (16) 

with normalization V e ( 0) = 8 e 
0 

' 
a2k 2 

e - -2-- a2 k 2 
v e ( k ) = ( - i ) e J e ( i -2--) {17) 

1 - r2 /a 2 
for P ( r) 

-(-
17
-a-2=-) -::-3;'7':2:-- e with a = 1. 38 fin . 

For P33 the partial wave amplitude from 
rrHe

3 
scattering we obtain A 3~=2V 0 (k) +V

2
(k) 

instead of ,q3 = 2 as in the rr -nucleon. 
Figure shows the Layson's cut-off function 
and our A~ (k) as function of the pion ki­
netic energy. 
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3. Semi-Phenomenological Analy~is of 
rr±He3 Elastic Differential Cross Section 

We have analysed experimental data on 
rr±He3 elastic differential cross section at 

four energies: 98 1 120 1 135 and 156 HeV 1 14 /. 
At those energies the last significant 

partial waves seem to be the D and F 1 which 
means that for a normal phase shift analysis 
it is necessary to determine 20 or 28 phase 
shifts. 

On the other hand up to now only elastic 
differential cross sections are available and 
for a rigorous phase shift analysis total 
cross section and polarization measurements 
are also necessary. 

For these reasons we have chosen a theo­
retical model of rr He 3 scattering to support 
our analysis. 

We have performed an analysis of experi-
mental data using the computed phase shifts 
from optical model and keeping as free para­
meters only few partial waves (for£;:: 1) • 

The Kisslinger type of an optical model 
seems to give a qualitative agreement with 
exoerimental data/12/: : the position for 
the minima in the differential cross section 
and the fact that the minima are less deep 
for rr-He 3 reaction than for rr +He 3 (Fig. 2 1 3 1 

curve (a)). 

But there remain large discrepancies at 
small scattering angles (similar to those ob­
served for rr± He 4 elastic scattering 1131 ) . 
In a preliminary fit of the differential 
cross sections we have found for our energy 
interval a common normalization factor (2/3) 
to the scattering amplitude obtained from 

12 

d(5 
dQ 
[mb/srl 

10. 

5. 

30 

98 MeV 1r+He3 

90 120 150 BcMs 

Fig. 2. The differential cross section for 
rr+He

3 elastic scattering. curve (a) Op-
tical model calculations/ 12/ ; curve (b) 2/3 
normalization of scattering amplitude from 
the optical model~ curve (c) the S3 and P

33 as free parameters. 
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Fig. 3. The same as in fig. 2 - for rr-He3 
elastic scattering. 
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the optical model (Fig. 2,3, curve (b)) and 
we have tested an optimal combination (from 
the x2 point of view for free parameters. 

The least x 2 is obtained if the s
3 

and 
P33 partial waves are free parameters (we 
have fitted the rr + and rr- differential cross 
sections together) , all other phases being 
fixed at the theoretical model values (and 
the common normalization factor of the scat­
tering amplitude being fixed at 2/3) - fig.2, 
3, curve (c) . 

The x 2 IN points obtained for these four 
energies is "' 1. 37. 

The errors on phase shifts are determined 
in a standard way: the change in parameter 
that changes x2 by 1 when all other parame­
ters are searched. 
In fig. 4 both Reo ~3 and Im o ~ 3 obtained 
from the fit to the differential cross sec­
tions and also computed from optical model 
are presented. In this figure we can observe 
that there is a resonant behaviour of the 
o ; 3 at around 14 0 MeV where Reo J

3 
is going 

through zero and Imo ~3 has a maximum, 
but for a definitive conclusion more experi­
mental information is necessary. 

Using the values of o k obtained from 
our fit in eq. (11) we have found the follow­
ing value of the rrHe3 H3 coupling constant 
(see the Chew-Low plot- fig. 5, curve (b)) 

r!ue3u3 "'0.048 ± 0.009. 

Taking into account the cut-off function 
(which in rrHe 3 scattering is more important 
than in the rrp case) - eq. (15), we have 
found the following value (fig. 5, curve (c)) 
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Fig. 4. The Rea;3 and lm8~3 from 
the fit and also computed from optical mo­
del (full line) . 
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(<1) 1t p 
(bl x3 He 
( c l n 'He With Cut-otf Function 

Fig. 5. The Chew-Low plot for P33 partial 
wave. (a) for rrp scattering (from phase 
shifts analysis); (b) for rrHe 3 without 
cut-off function~ (c) for rrHe3 with cut-off 
function (eq. (15)). 

17 



f 2 3 = 0. 10 1 ± 0 .0 18 . 
rrHe H 3 

Authors thank Yu.A.Shcherbakov for a help 
during the preparation of this analysis, 
V.I.Falomkin for useful discussions. 
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