


1. Introduction

The deep-inelastic scattering (DIS) is commonly considered as
the best place for testing quantum chromodynamics (QCD). Though
present DIS data are not éccurate enough to check the fundamental
QCD prediction on decreasing- the strong coupling constant o with
’increasing the momentum transfer squared Qz, the precision .of
recent BCDMS data [1-8] appears to be sufficient to quantitatively
test the specific QCD predictions fbr’scaling violations and to
reliably determine the QCD mass-scale parameter A. Clearly, for
this purpose a precise method of calculation of the QCD
predictions is required. Since the QCD analysis of the data
represents an extensive fit of the predictions to a large number
of experimental points, it is desirable that this method would be
fast. .

It is well known that these requirements are fulfilled by the
method based on Jacobi polynomial reconstruction of structure
functions (SF) suggested in ref. [9] and further. studied,
developed and applied to the analysis of experimental data in
refs. [10-13,4,5,7]. In particular, the method was used for the
- QCD analysis of nonsinglet SFs in refs. [10-12] and extended to
the singlet case in our previous paper [13].

In ref. [13], we have limited our analysis of the singlet.SF
to the leading order (LO) of perturbation theory. Here we describe
further development of the method for a complete singlet +
nonsinglet QCD analysis of SPFs, including next-to-leading order
(NLO) QCD corrections. Due to a substantial contribution of the
longitudinal SF at low values of the Bjorken x and a strong
correlation between the gluon density in a nucleon and A, the
complete QCD analysis requires a careful study of the
reconstruction accuracy and adjustment of the fit pafameters. The
corresponding computer code based on the standard MINUIT program
[14] has been already applied for QCD fits of the BCDMS carbon and
hydrogen data in refs. [4] and [5,7]}. Also included into the code
are‘procedures allowing to take into account the preasymptotic
corrections to the’ leading-twist massless theory: flavour
threshoid corrections (similar to refs. [15,16]), target mass- and
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higher twist-eorrections (according to refs. [17-19]). Detailed
description of these procedures, as well as the results of
calculations .of NLO-corrections to the 1longitudinal structure
function (according to ref. [20]) and estimates of the
uncertainties of the QCD fits due to the preasymptotic corrections
(including the higher-order ones), may be found in ref. [21].

The rest of this paper is organized as follows. In Section 2
we briefly review the perturbative QCD predictions for DIS. The
Jacobi polynomial method for calculation of the QCD predictions
for SFs is discussed in Section 3. The method is tested with the
help of the BCDMS hydrogen data in Section 4. The conclusions are

summarized in Section 5.

2. Perturbative QCD predictions for structure fdnctions

According to the QCD factorization theorem, the SFs are given
as the convolution of quark, q,r and gluon, G, (partons) densities
‘with the coefficient functions c, (wvhich are proportional to the
corresponding cross sections of the hard process of the absorption
of virtual photon or intermediate bosons by a parton):

dy '[@S(?QZM"S(Y,Q) - SN0+

1
2y -
f(x,07) = i‘ ¥

G X . .
+ 6502 (y.0D) ], | (1)

where fk, x = 1, 2, 3, are related to the usual SFs by:

1 =

1 EFl'b f, = F/x, 3 3

The functions a° = G, A% and A" are certain flavour singlet and
nonsinglet combinations of the parton densities. In the case of
charged lepton-proton scattering, assuming m doublets of zero mass
quarks with standard charge assignments, these combinations are

the following:

R T O

N

5 34 5 2 NS 1 2
A —§G(x Q ), 47 = IEZ(X,Q ), 47 = EA(X,Q )

A = (u-d+u-d+c-s+c-5+.. ). (2)
The coefflclent functlons C, can be expanded in powers of the
running coupllng constant o (Q ):. which obeys the QCD beta

function’ renormalization group equation, and, - in the
next-to-leading order, it is given by the implicit equation [22]:

2 B B .
Q 4an 1 4an 1
In=, = g - = InlgVo + —,). : (3)
A2 Boas 302' Boas Boz
wher _ 2 _ 38 o -
e Bo = 11 - §f, B1 = 102 - 3—f; f is the number of active

flavours. The A is .an unknown integration constant to  be

determined from experiment. Often the following NLO formula is
used [23]:

Qz
B, 1nlnx2

u)(Qz) = __32__.[1 - 1 ____A_]« . (37)
Qz 8 2 2
BoanZ 1} 1n%2

In the BCDMS Qz-range and at A ~ 200 MeV eq. (3’), .as conmpared
with the equally vaiid NILO expression (3), gives the as-value
lower by about 2%, and, leads to the A-value higher by _16 Mev.
Eq. (3’) is used in this paper. ’

The Q dependence of the .functions A(x Q ) is governed by
solutions of the generalized Altarelll-Parlsl-Llpatov integro-
differential evolution equations, the integration kernels of which
or the splitting functions P, (x, 0®) are the probabilities of the
partonic transitions j - 1. ' '

The coefficient functions, splitting functipns' and parton
densities are not physical quantities and depend -on the
renormalization (factorization) scheme. In the following, we use
the perturbative QCD results obtained in the modified minimal
subtraction (MS) renormalization scheme [23]. In particular, the

‘parton densities defined in this scheme are universal quantities

[24] and satisfy the usual momentum sum rule: ) *



1 .
<X > + <X> = fdx-x-[T(x,0%) + 6(x,0°)] = 1. (4)
X !

The  convolution integrals can be transformed into

;.ﬁultiplications of the Mellin moments
1 n-1

f(n) = dx-x f(x).
0

E.g., jistead of eq. (1) we have:

£,(n,0%) = (n0Ha%m ) + cn,0*)a" (n, Q%) +
+ cf(n, @) 2 (n,0%), ()

where the- @°-dependence of (h(n,Qz) is given by the series (the

indices denoting the Ns-, SI-quark and gluon contributions are:
omitted) :
' 2 2
a (@) a (Q7)
2 s 0 (1) Ts 2.(2) o 5
c;(n,Q ) =14 41 K,n + 1 4n‘-]an *+. (5)

The expaﬁéion coeffiéients Brl can be found in ref. [25].

Given +the initial moménts A}(n,Q:) at certain reference
point Qz " (which are not predicted by perturbative QCP), t?e
solution of the Mellin transformed evolution equations 1is

straightforward: o . k i

1

A5, 0% = ¢y(n,0%. 0] )A"S(n %),

a%(n, Q%) = ¢, (nQ Q)A Y(n,@%) + @ (n,0%,00)4° (nQ), . 3,

2%n,0%) = % (n,0° 02 (n,6)) + o (n, 050G (6)

The index + (-) in the NS case denotes the evolutlon of a crossing <

even (odd)  combination of parton densltles, i.e. of the one
contalnlng q, +q (q q ). The ¢~ -functions are determined by the
Mellin transformatlon of the splittind function. For example, the

nonsinglet ¢ - function has a form:

NS 2 2 aS(Q ) (0)
0000 = () ¥ ) / 281150, Q)), (7)
- a (Q))
with
H(n,0%,0%) = 1+ g2la (@) - o (@) 1-2)°(n),
Zym) = [v{V(n) - ‘°’(n)ra /B,1/28,
and
2 2 as (0) 2_(1)
(@) = - 2P0, @) = g2 7@ () + G2V n) . (®)

parton indices are omitted here and below. Similar expressions for
the singlet ¢-functions are given in eqs. (2.138) - (2.143) of the
review [25]. Note, that in the case of charged lepton-proton
scattering; the moments A’(n,Qz) are related to the ones
introduced in [25] by:

25(n,@%)=25<c(0®)>, A% (n,Q%)=3,<5(Q)>, A°(n,@%)F<a(’)> .

In fact, the QCD predictions in terms of the Mellin moments
have been orlglnally obtained with the help of the Wilson operator
product expansion (OPE); 7+(n,Q ) at even (odd) n are just the
anomalous dimensions of ﬁhe spin-n nonsinglet operators. The
anomalous dimensions have been calculated up to the
next-to-leading order in [26] and represented in a simple
analytical form in [27,28]. For the gluon—gluon anomalous
dimension we use a generally accepted result of refs. [28,29]
which slightly differs from the one of refs. {26,27].

It should be noted that in the crossing even (odd) case the’
anomalous dimensions beyond the leading order coincide with the
moments in eq. (8) only at even (odd) n {30]. To find out these
moments at any n, an analytical continuation should be performed
for even and odd n separately. As a result, the moments in'eq. (7)
are related to the OPE anomalous dimensions 7:S and 1:I by ‘the
following expressions: '



NS(1)

(1) NS(1)
+
N n,(n)dy o,

7, (n) =7

SI(1)

(1)
7 + m (n)dy T,

s1(1)
n

(n) =7

n,(n) = #1-(-1)",

where‘Avm) = 0, and, the corrections A7:)
n

small and vanishing very fast with n (Avfu 1/n6) [30]. For this

are known to be quite

reason the corrections are often neglected in the literature.
'However, they appear to be quite important for the Jacobi
polynomial SF-reconstruction due to factorially large coefficients
weighing the contributions of the moments. The corrections in the
crossing even (odd) case can be simply taken into account by the
following replacements in the OPE anomalous dimensions [31,32]:

(-7 i1,
sy(En) = (-1)™{s55(3n) + m(n)[-25,(n) + C(2)]}
si(En) -+ (-1)™(#55(3n) + n(n)[-45(n) +3 L(3)]}

S(ny). = (-1)™£8(n) + . (n) 3 &3)1. (9).

where the series Sm(n) and the alternating series Sm(%n), §(n) are
defined in [27] and {(z) is the Riemann zeta function, g(2) =
n/6, C(3) = 1.20205 69031 59594. ' ‘

To conclude this brief theoretical summary, the QCD
predictions for the moments of the nucleon SFs are given by eq.

(1’) together with egs. (5), (6), (8) and (9).

3. Jacobi polynomial reconstruction method

. The evolution equations allow one to calculate the
Qz—dependence of the parton densities a provided they are given
at a certain reference point Qoz. The densities Al(x,Qoz) are
usually parametrized on the basis of plausible theoretical
assumptions concerning their behaviour near the end points x =0,

1, e.g.:

u v
NS 2. _ NS _ NS
XA (x,Q,7) = a.x (1-x) (1+y, x),
) . u - v u v
sI 2. _ SI _ SI SEA, ., _ SEA
XA (x,Qo) = am[x (1-x) +a X (1~-x) 1,
u v
G 2 (] G .
XA (x,Q0 ) = ax (1-x) . (10)

The evolution equations can be solved and QCD predictions for
SFs obtained
[33'351.Although straightforward, these methods are not cheap in
terms of computer time and meet a problem of accumulation of the

with the help of various numerical algorithms

rounding errors. Therefore a number of'anaiytic methods has been
developed to solve these équations with a lower price. One of the
simplest and fastest possibilities is the SF reconstruction from
the QCD -~ predictions for its Mellin moments as- given in’ an
analytical form in eq. (1’). The Jacobi polynomials are eépecially
suited for this purpose since they allow one to - factor out an
essential part of the . x-dependence of the SF into the Qeight
function [9]. Thus, given the Jacobi moments am(Qz), a structure
function f(x,Qz) may be reconstructed in a form of the series

. M )
xf(x,0°) = lim xB(l—x)a T am(Qz)G:B(X), - o(11)
M- . m=0 )

where the Jacobi polynomials

of = - m J

® “(x) =L cj(a,B)x >
satisfy the orthogonality relation with the weight xB(l-x)a (see
ref. [10] for details). The Jacobi moments are just .linear

combinations of the Mellin ones:

a (@®) = § flca,p)f(1+2,0%) . (12)
Jj=0 L .

_ Their Qz—dependence thus simply follows from the QCD eq. (17).

It was shown that a fast convergence of the series (11) can
be achieved with an appropriate weight function. Originally, a
Qz-dependent weight function (with o = a(Qz)) was proposed [9].



Later on, it was recognized [10,12,13] that a good reconstruction
accuracy (better than 1%) can be obtained with constant values of
o« and B8, and with a reasonable number me of the terms retained
in the series. As expected, the choice a » 3 and 8 = 0.5 for the
weight function parameters appears to be optimal in the nonsinglet
case. For a singlet structure function parametrized at 002 = 5
GeVZ_ as the singlet density in eq. (10) with p,= 0.25, v _= 3,

SI

Hp,= 0 and Vo= 8, two sets of optimal «, B values have been

found [13]: a 3, 81 =% 0,2 and o, e€(-0.8, 3.3), Bz = ~-0,8, The
rel;tion Blz Bz+1 between the two B-values is merely a consequence
of the polynomial expansion.

The analysis of the SF reconstruction accuracy in ref. [13]
does not take into account a rapid Qz-evolution of the sea quarks
and gluons. Since the evolution effectively 1leads to the
appearance of a negative power of x in their x-distributions [36],
we may expect  decreasing the optimal g-value with Qz. This is
indeed confirmed (fig. 1) by the analysis. of the relative
reconstruction accuracy

2 test 2 . :
M, 2 1Y F:(XI'Q )_Fk (xx’Q) 2,2
M) ={(5L I vy > , N =11, (13)
1=1 F (x.,Q7)
X 1
of a singlet-like test function F'**'," «x = 2, L. The index

k r
test - . .
kes was reconstructed from its first

M +1 moments. We have approximated the singlet-like structure
function by

indicates that the function F

t t 2 3 8 «
Fot(x,Q%) = ex Y(1-x) Y, (14)
3=1

The parameters cj, aj, BJ, j = NS, SI and G at various values of
Q° are given in Table 1. They have been calculated with the help
of the results of a QCD fit to the BCDMS hydrogen data.- The
approximation (14) is sufficient for studying the reconstruction
accuracy, .an_d, as the moments of its rhs are exactly known, it

avoids the necessity of the "exact" solution of the evolution

10 A i

1+p

Fig. 1..“‘I‘he relative reconstruction accuracy (13) of.a ‘singlet-
like SF F,(x,Q°) (defined in eg. (14) and table 1) as a function
of the weight function exponent B; calculations are performed with:
@ =3, N_ =12 and o® = 10, 200 Gev®.
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Fig. 2. The same dependence as in Figb. 1 but as a function of the

weight function exponent « with fixed g + 1 = 107°.



Table 1. The parameters cj, o, B, in eq. (14) are given in the

) )
1-st, 2-nd and 3-rd column for each j. The two values at each Q2

correspond to the structure functions F} and Fl, respectively.

2

Q NS ST - G .

Gev?

10 .763 2.74 .901 | .618 3.22 .052 |-.553 12.6 .757
.034 4.44 .734 | .023 4.99 -.001 | .025 13.9 -.259

25 .723 2.88 .860 .513 3.26 -.037 |-.195 11.7 .436
.027 4.56 .694 .016 4.99 -.083 .019 14.4 -.340

200 .650 3.12 .790 .378 3.37 -.173 |-.049 10.9 .054
N .017 4.76 .626 .009 5.03 -.210 .012 14.3 -.454

equations for this purpose.

. It may be seen from figurés 1 and 2 that an optimal choice of
the weight function parameters « and B in the case of a
singlet-like structure(function F;‘would be o (0, 4) and‘B close
to -1 or B ~.=-0.15. In the BCDMS kinematic range this choice
guarantees A:< 0.3%. This result is more than one order of
magnitude better as compared with the case of the constant weight
function (Legendre polynomial -expansion). For the longitudinal
structure function, due to a substantial gluon contribution, the
reconstruction accuracy appears to be worse by an order of
magnitude (see fig. 3; the optimal values are o ~ 6 and B close to

-1). Such an inaccuracy is ~still acceptable since it is

compensated by a small Fl-contribution to the cross section (up to

several % in a few high-y BCDMS points). Fiqures 1-3 also
indicate, in contrast with the nonsirnglet case {12], the
sensitivity of the reconstruction accuracy to the analysed
@*>~interval. Clearly, this is a consequence of a fast singlet
evolution in the low-x region.

The dependence of the reconstruction accuracy on .the number
N;m( of the terms in the series and on the length of the IBM
computer word is displayed in fig. 4. It may be seen that the
single (double) pfecision is sufficient up to N =8 (22). The
reconstruction accuracy blows up at N = 44 even if the maximal

max

word length of REAL*16 has been used. It also follows from fig. 4

10

200 Gev?

- Fig. 3. The same dependence as in Fig. 2 but for a singlet-like

longitudinal SF'Fl(x,QZ)- .

g

T

16°! — P L
1 10 Naa T

Fig. 4. The. same dependence as‘in Fig.'1 but as a function of’the
:number N - = M + 1 of the terms retained in the reconstruction
series aZaVarious lengths of the IBM computer word: REAL*4 (dashed
curve), REAL*8 (dashed-dotted curvé) and REAL*16 (full curve); the
parameters are : a = 3, B + 1 = 10~ and Q2 = 25 Gev®. The dotted
curve corresponds to REAL*8 and a numerical integration of the

x-parametrizations in egs. (10).

Il



that the IBM double precision allows one to achieve the

reconstruction accuracy by about one order better than in the case -

of the single one, while further doubling of the word. length is
less effective. We may conclude that the computer precision
practically limits the number of the retained terms to N < 20.
Due to rapidly increasing computer time wi;h me, an optimum
seems to be Nnax = 10-15. In this case, as may be seen from figq.
4, there is only a minor differenece in reconstruction accuracies
corresponding to the exact and numerical calculations of the
initial moments from egs. (10).

It should be noted ([32] that the convergence of the
reconstruction series breaks at N;“> 10 if the OCD moments have
been calculated neglecting the corrections. to  the OPE
next—to-leéding anomalous dimensions Varising - from the
substitutions (9).

4. QCD fits to BCDMS proton data

The method has been used for QCD analysis of the BCDMS
hydrogen. data [5,6]. The initial parton‘dehsities at Qo2 = 5 GeV®
have been parametrized according to egs. (10). The corresponding
parametefs are determined (except By and [ assumed to be zero),
together with the QCD parameter A defined in eq. (3’), by fitting
the QCD predictions tO’the‘crbss section data. Note that these
points are often given in a form of the function Fg(x,Qz;E) which
coincides with the structure function F, calculated  under the
‘assumption R = o-L/crT =.0 (see, e.qg. [1,6,37]). We compare-r the
cross section data with the complete singlet + nonsinglet NLO QCD
prediction containing both the SFs F, and F, calculated in the MS
renormalization scheme. Different weight- functions are used to
optimize the Jacobi  reconstruction of these SFs: for Fz,- the
corresponding exponents «, 8 are treated as free parameters of the
fit, and, for FL, theyhare fixed at a = 6 and B close fo -1.

The main results have already been communicated [5,7]. An
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excellent agreement of the QCD predictions for F}(X,sz with the
data is demonstrated in fig. 5 (see also figs. 2, 3 of ref. [7]).

The values of the fit parameters are given in Table 2 for the

SI+NS analysis in a full kinematic range (x > 0.06) and for the NS
analysis in-a restricted domain (x >O.255. The kinematic cuts of
ref. [7] are applied. The momentum sum rule (4) is assumed.

Note that rather large errors of the parameters of the quark
densities are due to substantial correlations among them. However,
these parameters, being determined essentially by the x-dependence
of the SFs, are practically decorrelated from the QCD mass-scale
parameter A, which measures the "'size of the'scaling violations.

Table 2. Averaged results of the NLO QCD fits (me = 10-17) to
the 'BCDMS hydrogen data [6]. Only statistical errors are given.

29

. . X
FIt | u o Vo ¥y 8y Mgy Vg, X? Vora 3550 Yo ALS Tor
SI+NS| 0.5 3.5 10 1.1 0.8 4.5 0.45 13 0.17 9.0 207 258
$0.2 +0.2 *2 .%0.2 *0.1 *0.6 *0.08 *4 *0.05 *1.5 %21 270

Ns | 0.6 3.5 0.1 2.2 _  _ . _  _ _ 198 178
*0.2 *0.3 *0.8 *0.7 +20 198

A ratio xz/DOF ~ 1 indicates not only the consistency of the
data with the QCD predictions but also a sufficient flexibility of -
the quark parametrizations in egs. (10). We have confirmed this
with the help of polynomial modifications of these
parametrizations and found that the subsequent change of A is
negligible (< 2 MeV).

In the fits we have constrained the gluon density with the
help of the momentum sum rule (4). This may be questionable as it
requires an interpolation of the singlet gquark and gluon densities
into the unmeasured region of x < 0.06. It appears, however, when
treating both <x_> and <x > as free parameters and assuming u =
u,= 0, that the results of Table 1 remain practically unchanged
(except for 50% increase of the error in'vc), and, that the sum
rule is well satisfied: 1 = 1.05 + 0.13.

The softness of the gluon distribution‘ﬁermits to neglect its
contribution in the evolution equations at sufficiently large

ST+ |
[ 6/V£
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Fig. 5. Comparison of the BCDMS proton SF F,(x,0°) [5] with the
"result of a complete SI+NS QCD fit (full curves); the
corresponding parameters are given in Table 2.
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4
:
La20p . 1
13 * e e L
< 200] e o ° o e o ©
180!
10 12 % 16

Fig. 6. The N _ -dependence of the results of the NS (open
~circles) and the complete SI+NS (closed circles) NLO QCD fits to
the BCDMS hydrogen data [5]; 8 = xz(me) - x2(13). Typical
statistical errors are shown at N .= 13.
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x-values (x >_0.3) and to determine A with the help of a r'noi'e;;
constrained nonsinglet analysis. In an interval of x = o. 25; .th’ejj"
NLO nonsinglet approximation, as compared with the complete SI+NS
treatment, yields practically the same A (see Table 1 and ref.
(71). ' . - S

The N -dependence of the results of NLO fits is displéyed
in fig. 6. In agreement with the analysis of the reconstruction
accuracy,' the parametérs of NS and SI+NS fits show stable
behavipuf for N = 8 and N _ = 10, respectively. Note that a good
xz—stability is achieved by treating the weight function exponents
a and 8 in the Fz-reconstruction as free parameters of the fit.
Without such a tuning of the weight function the 2° oscillates
with N~ by =~ 5 units while the fitted "parameters remain
practically unchanged. Small fluctuations of A with N _ may be
considered as a measure of the systematic error of the method. As
is seen from fig. 6, the Nfluctuations are less than 2 MeV which is
negligible as compéred with the statistical and systematic errors
in A, ’ ' :

The results of the fits well agree with the ones [7,8]
obtained by a different method (based on a numerical solution of
the evolution equations ([35}), excépt for a small systematic
difference of ~ 10 MeV in the A-values which cannot be considered
as a significant one as compared with the errors. A part of this
difference (3-5 MeV) is due to a different treatment of the
R~-function (see discussion in Section 2.4 of ref. [21]); The
results obtained by the two methods would be fully identical
provided [12] the exact solution of the NLO equation>(3) for
as(Qz) is used instead of the equally valid NLO approximation in
eq. (37). ’

5. Conclusions

We may conclude that the simple procedure suggested for the
Jacobi ' polynomial reconstruction of both the transverse and
longitudinal SFs is possible to make the reconstruction
uncertainties in the predicted cross section less than a fraction

15



of "%, i.e. negligible as compared with the errors of present data.

The corresponding computer code for QCD fits was successfully
tested with the help of BCDMS hydrogen data. The results of the
SI+NS (NS) fits show a stable behaviour of the physical parameters

provided the number of the terms, N retained in the
reconstruction series is larger than ~ 10 (8). The typical time
for one full iteration in the SI+NS case at N =13 is about 30

CP seconds at the CDC 6500 computer.

The BCDMS data [6] show a perfect agreement with the QCD
predictions on scaling violations in the SFs: x°/DOF ~ 1. The QCD
mass scale parameter @E, determined for the first time from the
_full SI+4NS analysis of the proton SFs, is equal to 207 * 21 MeV.

This value is in a good agreement with the one (198 * 20 MeV)
obtained from the NS fit (neglecting the gluon contribution) in
the restricted kinematic rahge x z 0.25. This result as well as
the large exponent Veen = 13 + 4 at Qo2 = .5 GeV® confirm the
earlier observations from muon-nuclear and neutrino-nuclear
experiments that the dominant contribution to the SF F, at x >
_0.3 comes from valence quarks. The valence-guark exponents By =
0.5 + 0.2 and v, = 3.5 + 0.2 fitted at 0 = 5 Gev® agree with
the predictions based on the Regge theory and on the quark
counting rule, respectively.

Together with similar results obtained by the BCDMS
Collaboration using another method of the analysis [7,35], also
showing an excellent agreement of the data with the QCD
predictions, the best value of AiE is 205 * 22(stat) + 60(syst)
MeV, where the quoted systematical error is due to experimental
uncertainties [7]; the theoretical uncertainties are expected to
be of a similar size [21]. This is the most precise measurement of
the ME from deep inelastic lepton-proton scattering experiments.

A soft gluon distribution has been obtained at Qo2 = 5 GeV:
xG(x,5 GeVz) & (l—x)9 * %: the exponent DG is twice the one
predicted by the quark counting rule at low 0° and found in the 1O
analysis. This result . indicates the importance of the NLO
corrections for the SF analysis. The above gluon parametrization
should be however considered only as an effective one in the range

0.06 < x < 0.30, where an essentially nonzero gluon contribution

16

is required by the measured slopes alnF'z/aan2 characterizing the

scaling violations ‘(see. fig. 4 of ref. [7]). On the other hand,

diI;Ct photon production data are sensitive to the gluon density

in the' region 6.35A§ x < 0.6 [38]); they require v = 4.0 * 0.8 at
2 2

R, =2 GeV® in agreement with v = 6.4t determined at the same

Qf-from the BCDMS hydrogen data.
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Kpusoxuxui B.I'. u gp. E1-90-330
KXO-aHanus CTPYKTYDHBIX @yﬂxuuu

B cllefyomeM nopsnke TEOPHH C [OMOLBI

nosiuHoMoB fAxko6u

Hexoms us KXI-npenckasauuil OJ18 MeJUTHHOBCKHX MOMEHTOB,

. paem onucaHue MeTtoma KX[-aHamusa CHHIJIETHBIX . ¥ HECHHIJIeT -
HbIX CTPYKTYDHHX (GYHKUHI, OCHOBAHHOTO Ha HMX DEKOHCTPYKIHH
C MOMOWBI NOJTHHOMOB  Ako6H. TOYHOCTE U CTAGHIILHOCTL METO-—

~[Aa HpOAeMOHCTPHPOBaHbl C [IOMOWBLI BOLOPOOHLIX MOaHHHX, MOJIY—
YEHHHIX COTPYAHHYECTBOM BHHMC. s,

Pa60Ta BLINIOJIHEH Q B HaﬁopaTopHH cnepxamcoxnx 3Hepru
~OHAH,

‘penpunr O6BbeauHeHHOTO HHCTUTYTa ALEPHBIX MceneaoBannit. dy6ua 1990

Krivikhizhin V.G. et. al, _ E1-90-330
Next-to-Leading~Order QCD Analysis of

Structure Functions with the Help of

Jacobi Polynomials

The method of QCD analysis of singlet and nonsinglet
structure functions, based on their Jacobi polynomial
reconstruction from perturbative QCD predictions for the
Mellin moments, is described. The accuracy and stability
of the method are demonstrated with the help of BCDMS
hydrogen data,

The investigation has been performed at the Laboratoty
of Superhigh Energies, JINR.

Preprint of Ehe Joint Institute for Nﬁclear Research. Dubna 1990 ’




