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1. Introduction 

The deep-inelastic scattering (DIS) is c9mmonly considered as 

the best place for testing quantum chromodynamics (QCD) . Though 

present DIS data are not accurate enough to check the fundamental 

QCD prediction on decreasing- the strong coupling constant a
5 

with 

increasing the momentum transfer squared Q2
, the precision . of 

recent BCDMS data [1-8) appears to be sufficient to quantitatively 

test the specific · QCD predictions for scaling violations and to 

reliably determine the QCD mass-scale parameter A. Clearly, for 

this purpose a precise method of calculation of the QCD 

predictions is required. Since the QCD analysis of the data 

represents an extensive fit of the predictions to a large number 

of experimental points, it is desirable that this method would be 

fast. 

It is well known that these requirements are fulfilled by the 

method based on Jacobi polynomial reconstruction of structure 

functions (SF) suggested in ref. [9] and further- studied, 

developed and applied to the analysis of experimental data in 

refs. [10-13,4,5,7). In particular, the method was used for the 

QCD analysis of nonsinglet SFs in refs. [ 10-12) and extended to 

the singlet case in our previous paper [13). 

In ref. [13), we have limited our analysis of the singlet.SF 

to the leading order (LO) of perturbation theory. Here we des_cribe 

further development of the method for a complete singlet + 
nonsinglet QCD analysis of SFs, including next-to-leading order 

(NLO) QCD corrections. Due to a substantial contribution of the 

longitudinal SF at low values of the· Bjerken x and a strong 

correlation be.tween the gluon density in a nucleon and A, the 

complete QCD analysis requires a careful study of the 

reconstruction accuracy and adjustment of the fit parameters. The 

corresponding computer code based on the s~andard MINUIT program 

[14) has been already applied for QCD fits of the BCDMS carbon and 

hydrogen data in refs. [4] and [5,7). Also included into the code 

are procedures allowing to take into account_ the preasymptotic 

corrections to the leading-twist massless theory: flavour 

threshold corrections (similar to refs. [15,16]), target mass- and 



higher twist-corrections (according to refs. [17-19]). Detailed 

description of these procedures, as well as the results of 

calculations ,of NLO-corrections to the longitudinal structure 

function (according to ref. [20]) and estimates of the 

uncertainties of the QCD fits due to the preasymptotic corrections 

(including the higher-order ones), may be found in ref. [21]. 

The rest of this paper is organized as follows. In Section 2 

we briefly review the perturbative QCD predictions for DIS. The 

Jacobi polynomial method for calculation of the QCD predictions 

for SFs is discussed in Section 3. The method is tested with the 

help of the BCDMS hydrogen data in Section 4. The conclusions are 

summarized in Section 5. 

2. Perturbative QCD predictions for structure functions 

According to the QCD factorization theorem, the SFs are given 

as the convolution of quark, q , and gluon, G, (partons) densities 
I 

with the coefficient functions Ck (which are proportional to the 

corresponding cross sections of the hard process of the absorption 

of virtual photon or intermediate bosons by a parton): 

2 
fk(X, Q ) 

where fk, k 

1 

J ;y {c;:s(~, Q2 JANS (y, Q2) • + c:1c~, Q2 )ASI (y, Q2) + 

X + C~(~,Q2)AG(y,Q2)], (1) 

1, 2, 3, are related to the usual SFs by: 

f 
1 

1 
2F1, f = F /x, 

2 2 f3 F3. 

The functions AG ex· G, As
1 and ANS are certain flavour singlet and 

nonsinglet combinations of the parton densities. In the case of 

charged lepton-proton scattering, assuming m doublets of zero mass 

quarks with standard charge assignments, these combinations are 

the following: 
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G 5 2 SI 5 2 NS 1 2 
A = w(x,Q ), A = 18:E(x,Q ), A = -gA(x,Q ), 

2m 

:E L (ql+ql), 
1=1 

A (u-d+u-d+c-s+c-s+ .. ). (2) 

The coefficient functions c .can be expanded in powers of the 
k . 

running coupling constant a (Q
2 J, which obeys the QCD beta 

s 
function renormalization group equation, and, in the 

next-to-leading order, it is given by the implicit equation [22]: 

lng_2 
ti.2 

4TC 

{3oas 

(3 (3 
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(3 2 /3 0 a
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0 0 

(3) 

where (30 = 11 - if, (3
1 

= 102 - ;
8
f; f is the number of active 

flavours. The A is an unknown integration constant to be 

determined from experiment. Often the following NLO formula is 
used [23]: 

au> (Q2) 
s 

~-{1 
2 

f3a1n~2 

2 

(3 lnln9.2 
1 A 

-2--2-J • 

(30 1n9.2 
A 

( 3 I> 

In the BCDMS Q
2
-range and at A "' 200 MeV eq. (3'), . as compared 

with the equally valid NLO expression (3), gives the a
5

-value 

lower by about 2%, and, leads to the A-value higher by 16 MeV. 
Eq. (3') is used in this paper. 

The Q
2 

dependence of the functions A 1 (x; Q2
) is governed by 

solutions of the generalized Altarelli-Parisi-Lipatov integro­

differential evolution equations, the integration kernels of which 

or the splitting functions P (x, Q2
) a're the probabilities of the 

lj . 

partonic transitions J ➔ 1. 

The coefficient functions, splitting functions and parton 

densities are not physical quantities and depend . on the 

renormalization (factorization) scheme. In the following, we us·e 

the perturbative QCD results obtained in the modified minimal 

subtraction (MS) renormalization scheme [23]. In particular, the 

parton densities defined in this scheme are universal quantities 

[24] and satisfy the usual momentum sum rule: 

-3 



<x> + <X> 
q G 

l 2 2 
Jdx•x•{L(X,Q) + G(x,Q )} 
0 

The convolution integrals can 

multiplications of the Mellin moments 

be 

f(n) 

E.g., istead of _eq. (1) we have: 

1 
J dx•x0

-
1f(x). 

0 

1. 

transformed 

2 
f/n,Q ) 

d's(n,Q2 )ANS(n,Q2) + c5\n,Q2 )ASI(n,Q2) + 
k k 

G 2 G 2 
+ CJn,Q )A (n,Q ), 

(4) 

into 

(l') 

where the, Q2-dependence of C (n,Q
2

) is given by the series (the 
k 

indices denoting the NS-, SI-quark and gluon contributions are 

omitted): 

<X (Q2J <X (Q2) 
C (n,Q2 ) = 1 + -• - BClJ + {-·· -•-J2BC

2
l + •• • 

k 41l k,n 4Tr · }.c,n 
(5) 

The expansion coefficients Bu> can be found in ref. [25]. 
k,n -

Given the initial moments A1
(n,Q

0

2
) at certain reference 

point Q~ (which are not predicted by perturbative QCD), the 

solution of the Mellin transformed evolution equations is 

straightforward: 

A:s(n, Q2) 

ASI(n,Q2) 

AG(n,Q2) 

NS 2 2 NS 2 
</>± (n,Q ,Q

0
)A± (n,Q0 ), 

2 2 SI 2 2 2 G 2 <f>q/n,Q ,Q
0

)A (n,Q) + <f>qln,Q ,Q0 )A (n,.Q0 ), 

2 2 SI 2 ' . 2 . 2 G ' 2 
<l>c/n,Q ,Qo)A (n,Q) + <l>cln,Q ,Qo)A (,n,Qo)· (6) 

The index+ (-) in the NS case denotes the evolution of a crossing 

even (odd) combination of parton densities, i.e. of the one 

containing q +q (q -q ) . The </>-functions are determined by the 
I I I I . 

Mellin transformation of the splittind function. For example, the 

nonsinglet </> - function has a form: 
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I 

1 
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</>:s(n, Q2, Q2) 
- 0 

2 
<X 5 (Q )) (Ol NS 2 2 
-.-,-2- ·[7+ (n) / 2/3

0
]·H+ (n,Q ,Q

0
), 

cx.(Qo) - -
(7) 

with 

HNS( Q2 Q2) = l + ___±_[ (Q2) _ (Q2)] .zNS( ) ± n, I O 4rr aS (XS Q ± n I 

z:\nJ £7 t (n) - 7 t (n)/31/1301/213 0 

and 

7(n,Q2) = 
(X (X 

2P(n Q2
) = __::_ 7co> (n) + (__::_/7C1> (n) + 

' 4rr 4rr 
(8) 

parton indices are omitted here and below. Similar expressions for 

the singlet </>-functions are given in eqs. (2.138) - (2.143) of the 

review [25]. Note, that in the case of charged lepton-proton 

scattering, the mome1:1ts A
1 
(n, Q

2
) are related to the ones 

introduced in [25] by: 

G 2 5 2 SI 2 5 2 NS 2 1 2 
A (n,Q )=lB<G(Q )>n, A (n,Q )=1s<L(Q )>n, A (n,Q )=6<t.(Q )>n. 

In fact, the QCD predictions in terms of the Mellin moments 

have been originally obtained with the help of the Wilson operator 

pr~duct expansion (OPE) ; 7 ±(n, Q2) at even (odd) n are just the 

anomalous dimensions of the spin-n nonsinglet operators. The 

anomalous dimensions have been calculated up_ to the 

next-to-leading order in [26] and represented in a simple 

analytical form in [27,28]. For the gluon-gluon anomalous 

dimension we use a generally accepted result of refs. [28,29] 

which slightly differs from the one of refs. [26,27]. 

It should be noted that in the crossing even (odd) case the 

anomalous dimensions beyond the leading order coincide with the 

moments in eq. (8) only at even (odd) n [30]. To find out these 

moments at any n, an analytical continuation should be performed 

for even and odd n separately. As a result, the moments in eq. (7) 

are related to the OPE anomalous dimensions 7Ns and 7sr by ·the 
n n 

following expressions: 

5 



7!1)(n) = 7NS(l) + 7l+(n)Ll.7NS(l), 
_ n _ n 

7<1>(nJ = 7s1m + 7J (nJLl.7sl(o, 
n + n 

n 
71±(n) = ±1-(-1) , 

where· t,.7<o> = o, and, the corrections Ll.7<1J are known to be quite 

small an~ vanishing very fast with n (Ll.n7N5
cx 1/n6

) [30]. For this 
n 

reason the corrections are often neglected in the literature. 

However, they appear to be quite important for the Jacobi 

polynomial SF-reconstruction due to factorially large coefficients 

weighing the contributions of the moments. The corrections in the 

crossing even (odd) case can be simply taken into account by the 

following replacements in the OPE anomalous dimensions [31,32]: 

(-l)n 

s;(½n) 

S' (!n) 
3 2 

s(nJ. 

,.-t ±1., 

(-l)n{±s;(½n) 

(-1 )n (±s; (½n) 

(-l)n{±S(n) + 

+ 1J±(n) {-2S2(n) 

+ 1J±(n){-4S
3
(n) 

5 
1J±(n) 8 ((3)), 

+ ((2)) }, 

+3 ((3)1}, 

(9) . 

where the series Sm(n) and the alternating series Sm(½n), S(n) are 

defined in [27] and ((z) is the Riemann zeta function, (:(2) = 
n216, ((3) ~ 1.20205 69031 59594. 

To conclude this brief theoretical summary, the QCD 

predictions for the moments of the nucleon SFs are given by eq. 

(1') together with eqs. (5), (6), (8) and (9). 

3. Jacobi polynomial reconstruction method 

The evolution equations allow one to calculate the 

Q2-dependence of the parton densities A1 provided they are given 

at a certain reference point Q
0

2
• The densities A

1(x,Q
0

2
) are 

usually parametrized on the basis of plausible theoretical 

assumptions concerning their behaviour near the end points x = 0, 

1, e.g.: 

6 

r 
1 

r 

/l V 
XANS(x,Qo2) = aNSX NS (1-x) NS (1+7NSX), 

/l ·• V /l V 
'ASI( Q 2) = { SI (1-x) 51 + a X SEA(l-x) SEA] 

X X., 0 a SI X SEA ., 

XAG(X, Q/) 
µG VG 

= acx (1-x) (10) 

The evolution equations can be solved and QCD predictions for 

SFs obtained with the help of various numerical algorithms 

[33-35].Although straightforward, these methods are no·t cheap in 

terms of computer time and meet a problem of accumulation of the 

rounding errors. Therefore a number of analytic methods has been 

developed to solve these equations with a lower price. One of the 

simplest and fastest possibilities is the SF reconstruction from 

the QCD predictions for its Mellin moments as given in· an 

analytical form in eq. (1'_). The Jacobi polynomials are especially 

suited for this purpose since they allow one to factor out an 

essential part of the x-dependence of the SF into the weight 

function [9]. Thus, given the Jacobi moments a (Q2 J, a structure 

function f(x,Q2
) may be reconstructed in a form ~f the series 

. 2 
xf(x, Q ) 

H 

lim xf3(1-x/x I: a (Q2 Jerx.f3(x), 
m m 

H ➔ co m=O 

where the Jacobi polynomials 

9<X.f3 (X) 
m 

m 

L cm(rx.,(3)XJ 
J=O J 

(11) 

satisfy the orthogonality relation with the weight xf3(1-x)rx. (see 

ref. [10] for details). The Jacobi moments are just linear 

combinations of the Mellin ones: 

a (Q
2

) = E cm(rx.,(3)f(J+2,Q
2

) 
m J=O j 

(12) 

Their Q2-dependence thus simply follows from the QCD eq. (1'). 

It was shown that a fast convergence of the series (11) can 

be achieved with an appropriate weight function. originally, a 

Q2-dependent weight function (with ex = a(Q
2 
)) was proposed [9]. 

7 



Later on, it was recognized [10,12,13] that a good reconstruction 

accuracy (better than 1%) can be obtained with constant values of 

er: and~. and with a reasonable number N of the terms retained 
max 

in the series. As expected, the choice er:~ 3 and~~ 0.5 for the 

weight function parameters appears to be optimal in the nonsinglet 

case. For a singlet structure function parametrized at Q 2 = 5 
0 

Gev2 as the singlet density in eq. (10) with µ = O. 25, v = 3, 
SI SI 

µSEA= 0 and vSEA= 8, two sets of optimal er:, ~ values have been 

found [13]: cr:
1 

~ 3, ~
1 

~ 0.2 and cr:
2 

e(-0.8, 3.3), ~
2 

~ -0.8. The 

relation ~1 ~ ~
2
+1 between the two ~-values is merely a consequence 

of the polynomial expansion. 

The. analysis of the SF reconstruction accuracy in ref. [ 13] 

does not take into account a rapid Q
2-evolution of the sea quarks 

and gluons. Since the evolution effectively leads to the 

appearance of a negative power of x in their x-distributions [36], 

we may expect decreasing the optimal ~-value with Q
2

• This is 

indeed confirmed (fig. 1) by the analysis. of the relative 

reconstruction accuracy 

llK (Q2) 
k <~ f 

1=1 

of a singlet-like 

indicates that the 

M + l moments. We 

function by 

f"1(x , Q2 J-Ftes\x, Q2) 112 
[ k I k I /J 

F~est(X
1
,Q2J 

N 11, (13) 

test function Ftest , k = 2, L. The index M 
k 

function F~e
st was .reconstructed from its first 

have approximated the singlet-like structure 

F~ e s t ( X, Q2) 
3 ~ er: 
E c x J (1-x) J 

j 
j =1 

(14) 

The parameters c , a , ~ , j = NS, SI and G at various values ·of 
2 j j j 

Q are given in Table 1. They have been calculated with the help 

of the results of a QCD fit to the BCDMS hydrogen data. The 

approximation (14) is sufficient for studying the reconstruction 

accuracy, arid, as the moments of its rhs are exactly known, it 

avoids the necessity of the "exact" solution of the evolution 

8 

't 

~ 

<l~ 

102 
200Gev' 

103 

, 10' o. 
l•P 

Fig. 1. The relative reconstruction accuracy ( 13) of. a ·singlet­

like SF F (x,Q2
) (defined in eq. (14) and table '1) as a 'function 

2 
of the weight function exponent~; calculations are performed with-

er:= 3, N = 12 and Q
2 

= 10, 200 GeV
2

• 
max 

<l 

10' 

-3 
10 

~ 

200 Gev' 

10 

10'~__._L-L-L.,_.._-:--.,___.~.._......,_J 
1•Q 10 

Fig. 2. The same dependence a's in Fig. 1 but as a function of the 

weight function exponent er: with fixed~+ l = 10-5
• 
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Table 1. The parameters c, a, f3 in eq. (14) are given in the 
J J J 2 

1-st, 2-nd and 3-rd column for each j. The two values at each Q 

correspond to the structure functions F
2 

and FL, respectively. 

Q2 NS SI G 

Ger 

10 .763 2.74 .901 .618 3.22 .052 -.553 12.6 .757 
.034 4.44 .734 .023 4.99 -.001 .025 13.9 -.259 

25 • 723 2.88 .860 .513 3.26 -.037 -.195 11.7 .436 
.027 4.56 .694 .016 4.99 -.083 .019 14.4 -.340 

200 .650 3.12 .790 .378 3.37 -.173 -.049 10.9 .054 
.017 ., 4.76 .626 .009 5.03 -.210 .012 14.3 -.454 

equations for this purpose. 

It may be seen from figures land 2 that an optimal choice of 

the weight function paramet~rs a and f3 in the case of a 

singlet-like structure function F
2 

would be a e(O, 4) and f3 close 

to -1 or f3 "' -0.15. In the BCDMS kinematic range this choice 

guarantees 6~1< 0.3%. This result is more than one order of 

magnitude better as compared with the case of the constant weight 

function (Legendre polynomial expansion). For the longitudinal 

structure function, due to a substantial gluon contribution, the 

reconstruction accuracy appears to be worse by an order of 

magnitude (see fig. 3; the optimal values are a"' 6 and f3 close to 

-1). Such an inaccuracy is still acceptable since it is 

compensated by a small FL-contribution to the cross section (up to 

several % in a few high-y BCDMS points). Figures 1-3 also 

indicate, 

sensitivity 

Q
2
-interval. 

in contrast with the nonsirtglet case (12], the 

of the reconstruction accuracy to the analysed 

Clearly, this is a consequence of a fast singlet 

evolution in the low-x region. 

The dependence of the reconstruction accuracy on the number 

Nmax of the terms in the series and on the length of the IBM 

computer word is displayed in fig. 4. It may be seen that the 

single (double) precision is su'fficient up to Nmax = B (22). The 

reconstruction accuracy blows up at Nmax = 44 even if the maximal 

word length of REAL*l6 has been used. It also follows from fig. 4 

10 

1 
) 

1 
·} 

<l 

16' 

-2 
10 

1+<X 10 

Fig. 3. The same dependence as in Fig. 2 but for a singlet-like 

longitudinal SF F (x,Q2
). , L 

,o:2r-~..--r,-~,-----,-,-,..-~-
.; 

10 

11l'' 

111
5 

10 N,..a• ta1 1 

Fig. 4. The. same dependence as in Fig. 1 but as a function of the 

.number N = H + 1 of the terms retained in the reconstruction 
max 

series at various lengths of the IBM computer word: REAL*4 (dashed 

curve), REAL*8 (dashed-dotted curve) and REAL*l6 (full curve); the 

parameters are : a = 3, f3 + 1 = 10-s and Q
2 = 25 Gev2. The dotted 

curve corresponds to REAL*8 and a numerical integration of the 

x-parametrizations in eqs. (10). 

ll 



that the IBM double precision allow·s one to achieve the 

reconstruction accuracy by about one order better than in the case· 

of the single one, while further _doubling of the word length is 

less effective.· We may conclude that the computer precision 

practically limits the numl>er of the retained terms to Nmax< 20. 

Due to rapidly increasing computer time with Nmax an optimum 

seems to be Nmax = 10-15. In this case, as may be seen from fig. 

4, there is only a minor difference in reconstruction accuracies 

corresponding to the exact and numerical calculations of the 

initial moments from eqs. (10). 

It should be noted (32) that the convergence of the 

reconstruction series breaks at N > 10 if the QCD moments have 
max 

been calculated neglecting the corrections. to the 

from 

OPE 

the next-to-leading anomalous dimensions arising 

substitutions (9). 

4. QCD fits to BCDMS proton data 

The method has been used 

hydrogen. data ( 5, 6) . The initial 

have been parametrized according 

for QCD analysis of the BCDMS 

parton densities at Q 
2 = 5 Gev2 

0 

to eqs. (10). The corresponding 

parameters are determined (except µSEA and µc assumed to be zero), 

together with the QCD parameter A defined in eq. (3'), by fitting 

the QCD predictions to· the. cross section data. Note that these 

points are often given in a form of the function F
0 (x,Q2

;E) which 
2 

coincides with the structure function F
2 

calculated under the 

assumption R = uL/uT = 0 (see,· e.g. (1,6,37))". _We compare• the 

cross section data with the complete singlet+ nonsinglet NLO QCD 

prediction containing both the SFs F and F calculated in the MS 
2 - L . 

renormalization scheme. Different weight functions are -used to 

optimize the Jacobi reconstruction of these SFs: for F
2
,. the 

corresponding exponents a,~ are treated as free parameters of the 

fit, and, for F, they are fixed at a= 6 and~ close to -1. 
L . 

The main results have already been communicated (5, 7). An 

12 

excellent agreement of the QCD predictions for F / x, Q2
) · with the 

data is demonstrated in f_ig. 5 (see also figs. 2, 3 of ref. (7)). 

-The '...ralues of the fit parameters are given in Table 2 for the 

SI+NS analysis in a full kinematic range (x > 0.06) and for the NS 

analysis in a restricted domain (x >0.25). The kinematic cuts of 

ref. (7) are applied. The momentum sum rule (4) is assu-,ed. 

Note that rather large errors of the parameters of the quark 

densities are due to substantial correlations among them. However, 

these parameters, being determined essentially by the x-dependence 

of the SFs, are practically decorrelated from the QCD mass-scale 

parameter A; which measures the ·size of the scaling violations. 

Table 2. Averaged results of the NLO QCD fits (Nmax = 10-17) to 

the BCDMS hydrogen data (6). Only statistical errors are given. 

~ 

Fit µNS V °¥NS a µSI V <X > V a V A-_L 
NS NS SI q SEA SEA G HS DOF 

Sl+NS 0.5 3.5 10 1.1 0.8 4.5 0.45 13 0.17 9.0 207 258 
±o. 2 "±o. 2 ±2 ±0.2 ±0.1 ±0.6 ±0.08 ±4 ±0.05 ±1.5 ±21 270 

NS 0.6 3.5 0.1 2.2 198 178 - - - - - -±0.2 ±0.3 ±0.8 ±0~7 ±20 198 

A ratio x2/DOF ~ 1 indicates not only the consistency of the 

data with the QCD predictions but also a sufficient flexibility of 

the quark parametrizations in eqs. 

with the help of polynomial 

(10). We have confirmed this 

modifications of these 

parametrizations and fou~d that the subsequent change of . A is 

negligible (< 2 MeV). 

In the fits we have constrained the gluon density with the 

help of the momentum sum rule (4). This may be questionable as it 

requires an interpolation of the singlet quark and gluon densities 

into the unmeasured region of x < 0.06. It appears, however, when 

treating both <xq> and <Xe> as free parameters and assuming µSEA= 

µc= o, that the results of Table 1 remain practically unchanged 

(except for 50% increase of .the error in ·vG), and, that the sum 

rule is well satisfied: 1 = 1.05 ± 0.13. 

The softness of the gluon distribution permits to neglect its 

contribution in the evolution equations at sufficiently large 

S/-+ JN--r 
13 
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result 

Comparison of the BCDMS proton SF F/x,Q2 J 
of a complete SI+NS QCD fit (full 

[5] with the 

curves) : the 

corresponding parameters are given in Table 2 . 
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Fig. 6. The N -dependence of the results of max 
circles) and the complete SI+NS (closed circles) 

the BCDMS hydrogen data [ 5] ; t:.x
2 = x2 

( N ) max 
statistical errors are shown at N = 13, 

max 

14 

the NS (open 

NLO QCD fits to 

:l(13). Typical 

x-values (x > _o. 3) and to determine A with the help of a more, 

constrained nonsinglet analysis. In an interval of x 2: o. 25 the· 

NLO nonsinglet approximation, as compared ~ith the complete SI+NS 

treatme~t, yields practically the same A (see Table 1 and ref. 

[7]). 

The Nmax-dependence of the results of NLO fits is displayed 

in fig. 6. In agreement with the analysis of the reconstruction 

accuracy, the parameters of NS and SI+NS fits show stable 

behaviour for N 2: 8 and N 2: 10, respectively. Note that a good 

x2-st~bility is m;~hieved bym~reating the weight function exponents 

ex and f3 in the F
2
-reconstruction as free parameters of the fit. 

Without such a tuning of the weight function the x2 oscillates 

with Nmax by - 5 units while the fitted parameters remain 

practically unchanged. Small fluctuatic,ms of A with Nmax may be 

considered as a measure of the systematic error of the method. As 

is seen from fig. 6, the fluctuations are less than 2 HeV which is 

negligible as compared with the statistical and systematic errors 

in A. 

The results of the fits well agree with the ones [7, 8] 

obtained by a different method (base~ on a numerical solution of 

the evolution equations [35]), except for a small systematic 

difference of - 10 MeV in the A-values which cannot be considered 

as a significant one as compared with the errors. A part of this 

difference (3-5 MeV) is due to a different treatment of the 

R-function ( see discussion in Section 2. 4 of ref. [ 21]) • The 

results obtained by the two methods would be fully identical 

provided [ 12] the exact solution of the NLO equation ( 3) for 

ex (Q2
) is used instead of the equally valid NLO approximation in 

s 

eq. (3'). 

5. Conclusions 

We may conclude that the simple procedure suggested for the 

Jacobi polynomial reconstruction of both the transverse and 

longitudinal SFs is possible to make the reconstruction 

uncertainties in the predicted cross section less than a fraction 
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of·%, i.e. negligible as compared with the errors of present data. 

The corresponding computer code for QCD fits was successfully 

tested with the help of BCDMS hydrogen data. The results of the 

SI+NS (NS) fits show a stable behaviour of the physical parameters 

provided the number of the terms, Nmax' retained in the 

reconstruction series is larger t·han - 10 (8). The typical time 

for one full iteration in the SI+NS case at N = 13 is about 30 
max 

CP seconds at the CDC 6500 computer. 

The BCDMS data [6] show a perfect agreement with the QCD 

predictions on scaling violations in the SFs: x2/DOF ~ 1. The QCD 

mass scale parameter AMS, determined for the first time from the 

full SI+NS analysis of the proton SFs, is equal to 207 ± 21 MeV. 

This value is in a good agreement with the one (198 ± 20 MeV) 

obtained from the NS fit (neglecting the gluon contribution) in 

the restricted kinematic range x "' O. 25. This result as well as 

the large exponent v = 13 ± 4 at Q 2 = 5 GeV
2 confirm the 

SEA 0 

earlier observations from muon-nuclear and neutrino-nuclear 

experiments that the dominant contribution to the SF F
2 

at x > 

_o.3 comes from valence quarks. The valence~quark exponents µNs 

o. 5 ± 0. 2 and v = 3. 5 ± 0. 2 fitted at Q 2 = 5 Gev2 agree with 
~ 0 

the predictions based on the Regge theory and on the quark 

counting rule, respectively. 

Together with similar results obtained by the BCDMS 

Collaboration using another method of the analysis [ 7, 35] , also 

showing an excellent agreement of the data with the QCD 

predictions, the )::>est value of AMS is 205 ± 22(stat) + 60(syst) 

MeV, where the quoted systematical error is due to experimental 

uncertainties [7]; the theoretical uncertainties are expected to 

be of a similar size [21]. This is the most precise measurement of 

the AMS from deep inelastic lepton-proton scattering experiments. 

A soft gluon distribution has been obtained at Q 
2 = 5 Gev2: 

+ 0 
xG(x,5 Gev2) ex (1-x/ - 1.s; the exponent vG is twice the one 

predicted by the quark counting rule at low Q
2 and found in the LO 

analysis. This result indicates the importance of the NLO 

corrections for the SF analysis. The above gluon parametrization 

should be however considered only as an effective one in the range 

0.06 < x < 0.30, where an essentially nonzero gluon contribution 

16 

is required .by the measured slopes alnF
2
/alnQ

2 
characterizing the 

sca!ing violations (see .. fig. 4 of ref. [7]). On the .other hand, 

dir.ect photon Eroduction data are sensitive to the gluon density 

in the region o. 35 .< x < o. 6 [38]; they require ':'G = 4. o ± o. B at 

a/ = 2 GeV2 in agreement with v = 6. 4 ± •. 
2 determined at the same 

2 
G 3 

Q
0 

· from the BCDMS hydrogen data. 
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KpHBOXIDKHH B.f. H gp. 
KX~-aHanH3 CTPYKTYPHbIX cpyHKQHH 
B cnegyIO~eM nopRgKe TeopHH C ITOMO~h!O 
nonHHOMOB 5IK06H 

El-90-330 

HcxogR H3 KX~-npegcKa3aHHH gnH MennttHOBCKHX MOMeHTOB, 
gaeM onncaHHe MeToga KX~-aHaJIH3a CHHrneTHbIX H HeCHHrneT­
Hb!X CTPYKTYPHblX cpyHKQHH, OCHOBaHHoro Ha HX peKOHCTPYKQHH 
C nOMO~blO nonHHOMOB 5IK06H. ToqHocTh H cTa6HnhHOCTh MeTO­
ga npogeMOHCTPHPOBaHbl C ITOMO~b!O BogopogHbIX gaHHbIX, nony­
qeHHblX coTpygHnqecTBOM BIJ.aMC. 

Pa6oTa BhlnonHeHa B fla6opaTOPHH CBepXBhlCOKHX 3HeprnH 
· -·OH5IH. 

_IlpenpHHT 06-&e~ueuuoro eucnnyra .RAepHI>IX eccneAOBaHHH. ,Ily6ua 1990 

Krivikhizhin V.G. et. al. 
Next-to-Leading-Order QCD Analysis of 
Structure Functions with the Help of 
Jacobi Polynomials 

E 1-90-330 

The method of QCD analysis of singlet and nonsinglet 
struct4re functions, based on their Jacobi polynomial 
reconstruction from perturbative QCD predictions for the 
Mellin moments, is described. The accuracy and stability 
of the method are demonstrated with the help of BCDMS 
hydrogen data. 

The investigation has been performed at the Laboratoty 
of Superliigh Energies, ·JINR. 
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