

объединенный институт ядерных исследований дубна

A-32
E1-90-305

SEARCH FOR NARROW BARYONIA

BIȘ-2 Collaboration: Dubna - Alma-Ata - Budapest -
Moscow - Plovdiv - Prague - Sofia - Tbilisi

Submitted to XXV International Conference on High Energy Physics, 2-8 August 1990, Singapore
A.N.Aleev, V.A.Arefiev, V.P.Balandin, V.K.Berdyshev, V.K.Birulev, A.S.Chvyrov, I.I.Evsikov, T.S.Grigalashvili, B.N.Gus ${ }^{\text {Kovov, I M. Ivanchenko, M.N.Kapishin, N.N.Karpenko, }}$ D.A.Kirillov, I.G.Kosarev, N.A.Kuz'min, M.F.Likhachev, A.L.Lyubimov, A.N.Maksimov, P.V.Moisenz, A.N.Morozov, V.V.Pal chik, A.V.Pose, T.B.Progulova, A.Prokes, V.V.Rybakov L.A.SLepets, A.I.Zinchenko

Joint Institute for Nuclear Research, Dubna
A.F.Kamburyan, A.A.Loktionov, Yu.K. Potrebenikov, V.I.Skorobogatova

Institute of High Energy Physics of the Kaz.SSR Academy of Sciences, Alma-Ata
I. Pazoni, I. Veress, P.Zalan

Central Institute for Physics of the Hungarian Academy of Sciences, Budapest
A.S.Belousov, E.G.Devitsin, A.M.Fomenko, V.A.Kozlov, E.I.Malinovsky, S.Yu.Potashev, S.V.Rusakov, P.A.Smirnov, Yu.V.Soloviev, A.R.Terkulov, L.N.Shtarkov, Ya.A.Vazdyk, M.V.Zavertyaev

Lebedev Physical Institute of the USSR Academy of Sciences, Moscow
E.A.Chudakov

Institute of Nuclear Physics, Moscow State University, Moscow
V.D.Cholakov

Hilendarski University of Plovdiv, Plovdiv
J.Hladky, M.Novak, M.Smizanska, M.Vetsko

Institute of Physics of the Czechoslovak Academy of Sciences, Prague
V.I.Zayachky

Higher Chemical-Technological Institute, Sofia
D.T.Burilkov, V.R.Krastev, P.K.Markov, P.T.Todorov, R.K.Trayanov

Institute of Nuclear Research and Nuclear Energetics of the Bulgarian Academy of Sciences, Sofia
L.N.Abesalashvili, N.S.Amaglobeli, M.S.Chargeishvili, V.D.Kekelidze, R.A.Kvatadze, N.L.Lomidze, G.I.Nikobadze, T.G.Pitskhelauri, R.G.Shanidze, G.T.Tatishvili Institute of Hiah Energy Physics. Tbilisi State University,

The problem of the existence of multiquark states is of great significance for the development of a strong interaction theory. Howevery an experimental search for such states has not yet led to convincing results.

A narrow exatic stater a baryonium with negative strangeness decaying into A, \bar{p} and pions, has been observed in the WA-62 experiment carried out in a hyperon beam at the CERN SFS [1-4]. Uniike the experiment in the hyperon beam, the BIS-2 axperiment performed in a neutron beam allowed one to search for baryonia with negative and positive strangeness alike. The existence of the narrow baryonium with negative strangeness was confirmed, a new baryonium with positive strangeness and doubly charged statas of these baryonia were indicated [4-10]. In the BIS-2 experiment it was searched for a baryonium with hidden strangeness as well [日-13].

New results on a search for the narrow baryonia produced in nevtron-nucleus and neutron-proton interactions are presented in this paper. The results are based on larger statistics in comparison with [7.13]. The experiment, was carried out in a neutron beam of the Serpukhov accelerator. The mean momentum of the beam consisting mainly of neutrons was 40 GeV/c. A layout of the main elements of the BIS-2 spectrometer [14-16] is presented in fig-1. The magnetic field in the analyzing magnet M directed along the $O Y$ axis caused a $0.64 \mathrm{GeV} / \mathrm{c}$ change of the transversal momentum of charged particles crossing the field region. The system consisting of multicell threshold gas Cerenkov counters ci and C 2 was used to identify charged hadrons $[17,18]$. The counter C1 was filled with air and 22 - with freon-12 under atmospheric pressure. The identification system allowed one to identify with some probability charged hadrans in multiparticle events. The

[^0]

Fig.1. Layout of tha BIS-2 spectrometer. T1/T2.3- targets, COM1/2 - target surrounding countersp FC 1-15 - tho-coordinate proportional chambers. C1/2 - multicell threshold gas Cherenkov counters. C3/4 - glass Cherenkov counters. MO - neutron monitor, M - analyzing magnet.
trigger conditions required the passage of more than four charged particles.

The thicknesses of the liquid-hydrogen target and the nuclear ones were $2.1 \mathrm{~g} / \mathrm{cm}^{2}$ and $3.4 \cdot \mathrm{~A}^{1 / 3} \mathrm{~g} / \mathrm{cm}^{2}$ respectively, where A is the atomic weight of target nuclei. The nuclear targets were interchanged each $(40 \div 50) \cdot 10^{3}$ recorded events. The results presented here are based on the analysis of 1.9.10 ${ }^{7}$ neutron-proton and $3.1 \cdot 10^{7}$ neutron-nucleus interactions.

The narrow baryonium with negative strangeness was searched for by its decays into A, \bar{p} and $p i o n s:$
and the charge conjugated baryonium with positive strangenessr - by its decays into:

$$
\begin{aligned}
& \text { A } \overline{\mathrm{p}} \mathrm{~K}^{+} \text {, } \\
& \text { A }{ }^{-} \mathrm{K}^{-} \text {. } \\
& \text { A } \overline{\mathrm{p}}^{+}{ }^{+}{ }^{+} \text {, } \\
& \text { Aрк}{ }^{-}+ \\
& \kappa_{5}^{0} \text { р } \overline{\mathrm{P}} \mathrm{~K}^{+} \text {; } \\
& \text { А } \overline{\mathrm{p}} \mathrm{~K}^{+}{ }^{-} \text {。 } \\
& \text { Ар } \boldsymbol{K}^{-}{ }^{-} \\
& K_{5}^{o} \text { p } \overline{\mathrm{P}} \mathrm{~K}^{-} \text {. }
\end{aligned}
$$ and fore ardicle decays of the searched baryonia which could be detected in the experiment. Five particle final states, invalving doubly charged ones, were not observed practically due to a small acceptance in comparison with the states quoted above.

The neutral strange particles A, \bar{A} and K_{s}^{0} were identiried by their decays:

$$
\begin{aligned}
& A \longrightarrow \mathrm{p}^{-}, \\
& \vec{A} \longrightarrow \mathrm{p}^{+} \\
& \mathrm{K}_{\mathrm{S}}^{\mathrm{O}} \longrightarrow \pi^{+} \pi^{-}
\end{aligned}
$$

A pair of oppositely charged particles with the distance between their tracks being not more than the fourfold value of the resolution, was accepted as V°. It was also required that the vertices of the U° 's were downstream the liquid hydrogen target and 10 cm beyond the solid targets along the beam. The A, \bar{A} and K_{s}^{o} were identified according to effective masses of the systems
 candidates, $9.1 \cdot 10^{4}$ events with \bar{A} candidates and $4.7 \cdot 10^{5}$ events with K_{s}^{0} candidates were selected, for which the effective mass of the $\left.\left(p^{-}\right)^{-}\right) /\left(\overline{p r}^{+}\right) /\left(\pi^{+} \pi^{-}\right)$systems were differed from the $A / \bar{A} / K_{s}^{0}$ table mass no more than 4-fold of the experimental resolution.

To search for the baryonia in the final states (1a-4f), the events containing A, \bar{A} or K_{s}^{o} and two or more charged hadrons h^{+} and h^{-}emerging from a common interaction vertex were selected. This vertex was required to be located inside the target and the mean quadratic distances between the trajectories of $A / \bar{A} / K_{s}^{0}, h^{ \pm}$ and the common vertex did not exceed the fourfold resolution. This resolution was different (from 0.2 to 0.5 cm) in the runs with the different targets. Using the above quoted conditions 80102 / $11610 / 72812$ events containing $A / \vec{A} / K_{s}^{0}$-candidates and two or more charged particlesp respectively, were selected.

Effective mass spectra of the final states were obtained under assumption that larger momenta correspond to heavier particles. This allowed one to lower a combinatorial background.

The information obtained from C1/2 was used to reduce the background due to the misidentification of charged particles. Relative probabilities $W(i)$ of the each charged particle identification with i-type particles $\left(i=\pi^{ \pm}, K^{ \pm}\right.$or p / \bar{p}) were calculated by comparison of the signals in different $C 1$ and C2 channels with a calculated distribution of the Cherenkov light and the corresponding number of photoelectrons from the detected charged particles over these channels. The relative probabilitias
detected charged particles would be $W(p / \bar{p})+W\left(K^{ \pm}\right)+W\left(\pi^{ \pm}\right)=3$. Thus, the value $W(i)=3$ means $a \quad 100 \%$ reliability of the particle identification as a type i. A condition $W(p / \bar{p})=W\left(K^{ \pm}\right)=W\left(\pi^{ \pm}\right)=1$ means a completely unidentified particle and so one Some ambiguities of the charged particle identification were caused by the Cherenkov light from one particle to fall in several channels. The calculated identification efficiency shows that this depends not only on the momentum of the charged particlep but on the total number of these particles in an event as well.

The identification of \bar{p} leads to a more significant reduction of the background among the final states. Unfortunately about 80% of all negative particles, candidates in \bar{p}, have momenta below the threshold of the Cherenkov radiation for kans. As a rule, for these particles $W(\bar{p})=W\left(K^{-}\right) \leq 1.5 . \quad$ So, to select $\overline{\mathrm{P}}$ it was required:

$$
\begin{equation*}
w(\bar{p}) \geq 1.1 . \tag{6}
\end{equation*}
$$

For the identification of p, K^{+}and K^{-}there were used following criteria:
$W(p) \geq 0.9$,
and $\quad W\left(K^{+}\right) \geq 1.1$
$W\left(K^{-}\right) \geq 0.9$.

Two charged particles were identified to select the most of the considered final states. But three charged particles should be identified for the selection of the states (4c and 4f). So, less stringent criteria than (7) and (8) were used for the $K^{ \pm}$and p identification in these states to avoid an essential reduction of the detection efficiency.

The identification criteria for the charged particles raised 9 times the relative ratio of events containing \bar{p} whereas their losses were $\approx 20 \%$ raised $\approx 2 \div 3$ times the relative ratio of events containing $K^{+}, 2.5 \div 7$ times - containing K^{-}and more than 2 times - containing p.

The effective mass spectra obtained for the selected combinations of the neutral. charged and doubly charged final states with negative strangeness (1a-d) are presented in figs. $2(a), 2(b)$ and $2(c)$, respectively. The effective mass spectra of the final states with positive strangeness (2a-d) are presented in figs. $2(d), 2(e)$ and $2(f)$. The numbers of combinations entered

into these spectra are presented in table 1 . In all spectra the bin width of $20 \mathrm{MeV} / \mathrm{c}^{2}$ was chosen to be close to a tworold value of the experimental mass resolution. The spectra were approximated by smooth functions. Enhancements of different. statistical significances were seen in all the spectra. They were fitted by a normal distribution. The obtained parameters of the enhancements are shown in table 1. A combinatorial background
in the presented spectra is insignificant - the ratio of the number of combinations to that of events does not exceed 1.1 .

Table 1

Final states	Number of comb.	Farameters of the enhancements		
		Mean mass, $\mathrm{MeV} / \mathrm{c}^{2}$	$\begin{aligned} & \text { Width, } \\ & \mathrm{MeV} / \mathrm{C}^{2} \end{aligned}$	Number of combinations
	$\begin{aligned} & 5754 \\ & 6532 \end{aligned}$	$\begin{aligned} & 3067 \pm 7 \pm 20 \\ & 3060 \pm 7 \pm 20 \end{aligned}$	$\begin{aligned} & 45 \pm 15 \\ & 35 \pm 15 \end{aligned}$	$\begin{array}{r} 105 \\ 54 \end{array}$
$\begin{array}{lllll}A & \overline{\mathrm{p}} \mathrm{m}^{+} \mathrm{m}^{ \pm} \\ \bar{A} \mathrm{p} & \mathrm{m}^{-} & \pi^{\mp}\end{array}$	$\begin{aligned} & 1987 \\ & 4688 \end{aligned}$	$\begin{aligned} & 3065 \pm 6 \pm 20 \\ & 3050 \pm 7 \pm 20 \end{aligned}$	$\begin{aligned} & 32 \pm 10 \\ & 33 \pm 12 \end{aligned}$	$\begin{aligned} & 48 \\ & 66 \end{aligned}$
	$\begin{aligned} & 3745 \\ & 5131 \end{aligned}$	$3060 \pm 8 \pm 20$ $3045 \pm 8 \pm 20$	$\begin{aligned} & 55 \pm 17 \\ & 25 \pm 15 \end{aligned}$	71 51

A total spectrum of all the rinal states with negative strangeness (1a-d) is presented in fig.3. It was obtained by summarizing the distributions presented in figs.2(a), $2(b)$ and 2(c). A clear peak is seen in this spectrum near a mass of 3060 MeU/c ${ }^{2}$. In the window of fig. 3 the spectrum in the peak region is presented, which is fitted by a normal distribution for the peak and a line function for the background. It was obtained that the peak is caused by 180 combinations above the background of 460 ones. A sum of the final states with positive strangeness (2a-d) is shown in fig.4. This spectrum contains a peak in the same mass region. as in fig.3. In the window of fig. 4 this peak is fitted by a normal distribution. It was obtained that the peak is caused by 162 combinations over the background of 585 ones. Statistical significances of the observed peaks in figs. 3 and 4 are 8.4 and 7 standard deviations above the background. respectively. This enables one to consider them as physical signals.

Fig.3.The sum of the spectra of effective masses

Fig. 5 (a and b) shows the effective mass spectra of the neutral final states ($3 a$ and $3 b$). Fig. 6 (a, b and c) presents combined effective mass spectra of the charged final states containing $A-(4 a-4 d)$, $K_{5}^{0}(4 c-4 f)$ and $\bar{A}-(4 b-4 e)$. respectively. These spectra were fitted by smooth functions.

Fig-4.The sum of the spectra of effective masses $\bar{\Lambda}_{p \pi}{ }^{-}$(d), $\bar{\Lambda}_{p \pi} \boldsymbol{\pi}^{ \pm}$(e) and $\bar{\Lambda}_{p}{ }^{+}$(f).

Narrow peaks are seen in all the spectra at almost the same mass. These peaks were fitted by normal distribution. The obtained characteristics are presented in ! table 2.

Final state	Number of comb.	Characteristics of the peaks		
		Mean mass mev/c	$\begin{aligned} & \text { Width, } \\ & \text { Mev/c } \\ & \hline \end{aligned}$	Number of combinations
$\wedge \overline{\mathrm{p}} \mathrm{K}^{+}$	6758	$3250 \pm 8 \pm 20$	45 ± 15	80
$\overline{\mathrm{A}} \mathrm{p} \mathrm{K}^{-}$	4069	$3260 \pm 7 \pm 20$	30 ± 10	37
$\wedge \overline{\mathrm{p}} \mathrm{K}^{+} \mathrm{r}^{ \pm}$	1309	$3250 \pm 7 \pm 20$	24 ± 10	28
Ар $\mathrm{K}^{-} \mathrm{m}^{ \pm}$	1692	$3245 \pm 9 \pm 20$	46 ± 20	40
$K_{5}^{0} \mathrm{p} \overline{\mathrm{p}} \mathrm{K}^{ \pm}$	2480	$3270 \pm 6 \pm 20$	53 ± 12	58

Fig. 7 shows the sum of the effective mass spectra of all the considered states with zero strangeness (3a-4f). A statistically significant peak is seen near the mass of $3260 \mathrm{meV} / \mathrm{c}^{2}$. This peak was fitted by a normal distribution (the window of fig.7). The peak contains 240 combinations above the background of 800 . The statistical significance of the signal is B standard deviations from the background.

The narrowness of the observed enhancements and their presence in the effective mass spectra of different systems excludes a possibility of their interpretation as a kinematic reflection of any resonances. However, the hypothesis of the kinematic reflection was checked directly. The masses of $\pi^{ \pm}$and $K^{ \pm}$were ascribed to the $\overline{p / p}$ candidates in all the considered rinal states. No narrow enhancements were observed in the effective mass spectra obtained in such a way. So, the hypothesis of enhancements as the kinematic reflections of resonances in other systems is exeluded.

Thus, the data obtained indicate the existence of narrow meson resonances with positive, zero and negative strangeness decaying into the final states containing baryon and antibaryon.

The statistical significance of the peaks in each of the spectra considered (figs 2,5,6) does not allow one to establish the presence of signals in all the final states. But the number

Fig. 6 Spactra of the sums of effective masses $\hat{A p K}^{+}{ }^{ \pm}$(a) . $K_{5}^{0} p \bar{p} K^{ \pm}$(b) and $\overline{\mathrm{Ap}} \mathrm{K}^{ \pm}$(c).

The detection efficiencies of the resonance events were calculated to evaluate the cross sections of their production. The production cross sections of the events responsible for the considered resonances in the available kinematic region

Fig. 7 The sum of the spectra of effective masses ApK', Apki, $A \bar{P} K^{+} \pi^{ \pm}, K_{s}^{0} \bar{p}^{-} K^{ \pm}$and $\overline{A p K} K_{\pi}^{-}$.

$$
\begin{align*}
& X_{F} \geq 0.2 \tag{10}\\
& P_{T} \leq 1.0 \mathrm{GeV} / \mathrm{c}
\end{align*}
$$

are rrom 0.3 to $1.0 \mu \mathrm{~b}$ per nucleon (90\% C.L.). For these estimations it was assumed that the cross section depends on the atomic weight (A) of the target nuclei as $A^{2 / 3}$.

The narrow enhancements have been observed at almost the same masses in the effective mass, spectra of the different final
 strangeness. They are not the kinematic reflections of any resonances in other systems and can be considered as a strong indication of the existence of the baryonia with negative and positive strangeness. Their mean mass is 3060t5 (st.) ± 20 (syst.) $\mathrm{MeV} / \mathrm{C}^{2}$ and the width is smaller than $35 \pm 5 \mathrm{MeV} / \mathrm{C}^{2}$.

The existence of the enhancements in the spectra of the doubly charged final states $\bar{A} \bar{p} \bar{\pi}$ and $\bar{A} \bar{p}^{+}$. indicates that an isotopic spin of the baryonia is $\geq 3 / 2$.

The narrow enhancements are observed at almost the same mass in the eight effective mass spectra of the final states involving a baryon. antibaryon and particles with opposite strangeness.

Their mean mass is $3260 \pm 5\left(s t_{-}\right) \pm 20(s y s t$.$) MeV/c { }^{2}$, and the width is lower than 35 ± 5 MeV/c ${ }^{2}$. These peaks indicate to the existence of the baryonium with eero strangeness and an isotopic spin 21 .

The difference between the masses of the baryonium with zero strangeness and the baryonia with positive and negative strangeness is $\approx 200 \mathrm{MeV} / \mathrm{c}^{2}-a \operatorname{typical}$ mass splitting in an SU(3) multiplets of baryons for the states differing by one unit of hypercharge [19]. This allows one to assume that all the observed resonances are the members of the same su(3) multiplet of multiquark states. The baryonia with zero strangeness can be considered as a candidate for a multiquark baryonium with hidden strangeness. The considered baryonia could be identified as multiquark states described in a number of theoretical papers [20-30].

The authors are greatly indebted to A.M.Baldin, S.S.Gershtein, A.A.Komar, E.I.Maltsev, I.A.Savin, A.N.Sissakian,
A.N.Taukhelidzer N.E.Tyurin and F.A.Cherenkov for their support and permanent interest in the study; to Yu.klabuhng E.M.Likhacheva, H.Nowak, H.-E.Rysek, L.U.Sil Pvestrov, G.G.Takhtamyshev and K.Hiller for their participation in the experiment.

REFERENCES

1. Bourquin M.et al. Phys.Lett.fB172(1986)113.
2.Cooper S. Froceeding of the XXIII International Conference on High Energy Fhysicspu1pp.67. Eerkeley 1986;
3.Siebert H.W. ibid.ev2,p-1015.
4.Siebert H.W. Froceedings of the 2-nd International Conf. on Hadron Spectroscopy KEK, Tsukubay Japany 1987.
5.Aleev A.N. et all. JINR rapid communications, Ní19-86.c.16. Iubna. 1986:
6.Aleev A.N. et all. JINR; D1-88-368; Dubna 1988.
7.Aleev A.N. et all. JINF, D1-89-398, nubna 1989.
8.Landsberg L.G. Preprint IHEF 89-54; Serpukhov, 1989.
9.Aleev A.N. et all. Proceedings of the international seminar "Quarks"88" Tbilisi, World Scientific 1989.
10.Kekelidze $U . n_{\text {. }}$ et all. Froceedings of the international conference "Hadron 49°. Ajaccior Corsica, September 23-27, 1989. 11.Aleev A.N. et all. JINKir D1-88-194, Dubna 1988.
12.Aleev A.N. et all. JINR, D1-88-369, Dubna 1988.
13.Aleev A.N. et all. JINR, [11-89-642. Dubna 1989.
14.Eichner G. et all. JINR. 1-80-644, Dubna 1980;
2. Aleev $A_{\text {. N. }}$ et all. JINR. F1-89-854, Dubna 1989.
3. Макsimov A.N.. JINR, 1-81-574, Dubna 1981.
4. Voichishin M.A. et all. JINR,13-84-161, Dubna 1984; PTE, $\mathrm{N}^{\mathrm{O}} 3(1985) 49$;
18.Gus'kov B.N. et all. JINR.13-84-373, Iubna 1984; FTE, N^{O} (1985)71; JINRPF1-86-248, IUbna 1986.
19.Review of part. propert., Phys. Lett. 204B (1988).
20.Seiji O. et all. UT-496, 1986.
5. Chan H-M, Tsou S.T. RAL-87-005, 1987.
6. Barnes K.J. et all. SHEP 85/86-27.
23.Heintze J. "Results and perspective in particle physics",

La Thuile, Aosta Valley, 1-7 March 1997.
24.Ono S.,Furui S. UT-501, 1987.
25.Liu K.F. Tuan S.F., UH-511-630-87, 1987.
26.Grames D. HD-THEP-88-6, 1988.
27.Feaslee I.C. PF $290-065$. October 1989.
28.Chung S.U. BNL 40599, December, 1987.
29. Dorokhov A.E. et all. Yad. fiz., v.50, 6(12), 1989.
30. Braun U.M. Shabelski Yu.M. Freprint 1413, Leningrad, 1988.

Received by Publishing Department on April 28, 1990.

Алеев А.Н. и ар
Поиск узких бариониев
На серпуховском ускорителе' в пучке нейтронов со средним импульсом 40 ГэВ/с осуществлен поиск Бариониев, распадаюцихся соответственно
 в четырех зарядовых состояниях: отрицательных, нейтральных, положительных и дважды заряженных. Среднее значение их массы 3060 ± 5 (стат.))
± 20 (сист.) МэВ/с ${ }^{2}$, а ширина не превьшает 35 ± 5 МзВ/с². Изотопический спин. этих бариониев $23 / 2$. При анализе спектров зффективных масс конечных состояний $\Lambda+\bar{p}+K^{+}\left(+\pi^{ \pm}\right), \bar{n}+p+K^{-}\left(+\pi^{ \pm}\right)$и $\kappa_{s}^{0} \bar{p}^{p} K^{ \pm}$попучены также данные, указывающии на существование узкого бариония со скрытой странностыю. Среднее значение массы бариония 3260 ± 5 (стат.) ± 20 (сист.) M В $/ \mathrm{c}^{2}$, а ширина не превьшает
$35 \pm 5 \mathrm{M} \beta \mathrm{B} / \mathrm{c}^{2}$. Произведения сечений бариониев в регистрируемой кинематической области, $X_{F} \geq 0,2$ и $P_{T} \leq 1[3 B / c$, на вероятности наблюдаемых канапов распада находятся в пределах ($0,3+1,0$) мкб на нуклон с 90% уровнем достовөрности.

Работа выполнена в Пабораториях высоких и сверхвысоких энергий оияи.

Препринт Объединенного института ядерных исследовании. Дубна 1990

Aleev A.N. et al

E1-90-305

Search for Narrow Baryonia

A search for baryonia with negative and positive strangeness decaying respectively into $\Lambda+p+p i o n s$ and $\bar{\Lambda}+p+p i o n s$ has been carried out in a neutron beam with a mean momentum of $\approx 40 \mathrm{GeV} / \mathrm{c}$ in an experiment performed at the Serpukhov accelerator. There is a strong indication of the existence of these baryonia.The following four charge states are indicated for negative and positive strangeness: neutral, negative, positive and doubly charged. Their mean mass is 3060 ± 5 (st.) ± 20 (syst.) $\mathrm{MeV} / \mathrm{c}^{2}$ and the width $\Gamma \leq(35 \pm 5) \mathrm{MeV} / \mathrm{c}^{2}$. The data show that the isotopic spin of the baryonia is $z 3 / 2$. In the effective mass spectra of the final states $\Lambda+\bar{p}+K^{\cdot}+\left(\pi^{ \pm}\right), \bar{\pi}+p+K^{\cdot}+\left(\pi^{ \pm}\right)$and $k^{0}+p+\frac{1}{p}+K^{ \pm}$nairrow peaks are observed at near the same masses. Thes $K_{s}^{0}+p+p+K^{ \pm}$narrow peaks are observed at near the same masses. These
peaks indicate the existence of a narrow baryontum with hidden strangeness. The mean value of its mass is 3260 ± 5 (st.) ± 20 (syst.) $\mathrm{MeV} / \mathrm{c}^{2}$, and the width $\Gamma \leq(35 \pm 5) \mathrm{MeV} / \mathrm{c}^{2}$. The production cross-sections of the events causing the observed peaks, in the kinematic region $X_{F} \geq 0.2, \mathrm{P}_{\mathrm{T}} \leq 1 \mathrm{GeV} / \mathrm{c}$, is $(0.3$ + +1.0) $\mu \mathrm{b} / \mathrm{per}$ nucleon ($90 \% \mathrm{C} . L$.).

The investigation has been performed at the Laboratories of High and Superhigh Energies, JINR

[^0]: Doseractuball mathigt

 cots If:10TEth

