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I. INTRODUCTION

In the last few years increasing interest has been expressed
again in different characteristics of electromagnetic cascade pro-
cess (ECP) produced by high energy gamma-quanta (GQ) and electrons
in heavy media. Although there are well-known all partial phenomena
forming the ECP and the computer programs reconstructing this pro-
cess are commonly regarded, at least on the whole, to be satisfac-
tory enough, a number of experimental and theoretical works have ap-
peared in this field /1-8/. Most of the experimental works pursue
atrictly practical objects of obtaining a concrete information
on the longitudinal or tranaversal (lateral) development of cascades
inaide the concrete material of interest for a given shower detec-
t or. Correasponding results are used to determine the energy of
photons and electrons in different experimental setups, and at the
same time, but rather occasionally they are also compared with
appropriate numerical data obtained by means of computer modeling
code system /7/. Unfortunately, these results contain merely
fragmentary, information about showers for lack of detectors
registering such a complex process exhaustively to the necessary
degree.

In this situation sufficiently big heavy liguid bubble
chambers (BC) seem to be still very useful. Xenon BC are of excep-
tional importance in this regard having a relatively low value
of radiation length (RL), L(Xe) = 4.05 +/- 0.17 cm /8/. Therefore
a series of experimental works concerning different “aspecté of
electromagnetic cascades (or showers) were performed using the 24 1
XeBC of JINR (Dubna)/9/. With the aid of this chamber
(12.5%7.5%4RL**3), in particular, a three-dimensional phenomeno-
logical description of the average ionization loss in the ECP
within the energy interval of primary GQ EF = 60-2000 MeV -was
first obtained. Nevertheless, to miss some shortcomings caused
by its limited spatial dimensions (<12.5 RL), for this pur-—
pose it was expedient to use pictures of 180 1 XeBC of ITEP
(Moscow)/10/. This chamber with its large dimensions (25.7%11%10
RL*¥%*3) and a clear image of tracks makes it possible to analyse
in detail many features of the ECP structure up to the energy

values of showers initiating GQ of some GeV. As an illustr a tion, a
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) . half the relative width AEX /Ef of these intervals might be
typical picture of an event of the ECP created by a high energy GQ . roughly equal to the average accuracy of determining GQ energy
in the 180 1 XeBC is shown in fig. 1. in the XeBC, e.g.~0,1 /14/. To reduce the effect caused by the

limited dimensions of the registering volume of the XeBC used in the
work (<25.7 RL), the scatter plots (Lpot ve t) for all intervals
‘ were examined. Fig.2 ehows such plots for three of these inter-

vals. Supposing our samples of events are representative enough,
one can expect that the showers satisfying the evident condition
Fig.1. i
Typical picture of a shower ‘ Lpot(Ey) < Lmin(Ep)s tmax(Ep) (53}

event produced by a high T
energy photon in the 180 1
XeBC of ITEP (Moscow).

. rad.length

are unbiamed as far aa possible. Here tmax(E'.) ia the maximum value

.

| of t in the sample of events belonging to a given bin of primary

The aim of our investigation is to get comprehensive as far as 1‘ photon energy centred at Ep.
poasible experimental information on the ECP produced in liquid ! The numbers Nr of selected events of sho:vers falling to each in-
xenon by GQ with the energy Er =100-3500 MeV. From the practical | terval of energy Ey and the average values Ef of Ey in these
point of view of special interest are, first of all, such problems intervala are quoted in table 1. The values of Lmin(Er) and the num-
as the longitudinal and transversal development of showers, as well bers N, of events fulfilling the condition (1) are given there too.

as their appropriate fluctuations and correlations. This program has
been carried out using the pictures of the 180 1 XeBC of ITEP
(Moscow) irradiated in the beam of J[ ~ mesons at the momentum 3.5
GeV/c. Some preliminary results on these topica based on a part of
the studied experimental material were published earlier /11 - 13/.
This paper is the first in a series devoted to the description of

Table 1.

Numbers N?’ of *selected events of showers produced by GQ with the
energy Er . N v ia the numbe: of such events which potential lengths
are not lower than Lmin(Er). ET is the average value of Ef within
the appropriate interval of energy Er +/_AET .

{ e e et e e e i it i o e P

the experimental method employed for the purpose and contains E._ +/- AE Er Nr Lmin(Er ) N¢
experimental data concerning 6 valuea of E'. among 22 investigated in - (MeV) o (MeV)_ ... (rad.length)_ ___
the work. .
| IEF7S +/—- 125 +/- 9 44 15
i F125 +/- 125 +/- 18 472 .12
. MATERIAL | 2875 +/- 129 +/- 17 41 11
! 2625 +/~ 125 +/— 25 53 2
' 2379 +/— 125 +/- 16 &0 20
About 220 thousand picturea of the 180 1 XeBC exposed to the 2125 +/~ 125 +/- 15 63 39
- 1875 +/- 125 +/- 12 B8O 33
beam of N mesons at 3.5 GeV/c were scanned twice at least, and 1657 1625 +/- 125 +/- g 108 . 56
eventa of showers satisfying the appropriate criteria were 1375 +/- 125 L +/= 10 129 - 20.(}' o8
1125 +/~- 125 +/- B8 158 20.0 80
selected. In particular, these criteria assume that the shower axis 975 +/- 125 +/~ 8 204 20,0 86
£ h t ‘ N . < 680 +/— 70 +/- S 138 20.0 60
(SA) of each event is in the projection plane of a picture and there ass 47— 58 +/— 4 108 0.0 =8
are no other disturbing showera or tracks on thia picture. For each ; 455 +/— 45 +/- 103 18.6 59
. s i 5 . 37% +/- 35 +/- 3 65 17.3 61
event chosen during the scanning the energy Er of GQ generating | . 310 47— 30 /- 2 58 16.0 5=
the shower was evaluated and the so-called potential length ; 299 +/- 295 +/- 2 S5 14,9 S5
I 210 +/- 20 /- 2 a9 14.8 47
Lpot as well as the maximum shower length t were measured. These 1758 +/— 1% - = 29 17.6 29
lengtha were counted out from the conversion point of the photon : 145 +/- 1% +/- 2 24 12.6 24
. . 120 +/-— 10 - /- 2 21 11.6 20
producing ECP along the SA respectively up to the edge of the regis- 100 +/— 10 - 1 o 11.0 1a
tering volume of the XeBC (Lpot) and the remotest visible tracks of — e e -
1657 ?08
shower electrons or positrons (t). Then all selected eventa were ) e = C T T T T T T
|
grouped into 22 intervalas (bina) of primary photon energy Er 8o that |
' 3



Fig.2. _ -0 p=0) i 3
25 .E=3375+725M v Scatter plots of potential There p = O corresponds to the SA and (t=0; p=0) is the conversion
1 - € A lengths Lpot vs maximum point of a primary GQ producing cascade. The smallest plane projec—
+ - E
° 2125—725MEV' .‘I.. ;’éilblfhe Shs:; Zte?ng;}}::w:r tion range of shower electrons which can be distinguished
+ 445 (5 MeV e % events belonging to the explicitly enough on the picture, except the region very close to
220 .'OU o.: ::::-Zy Elnteorfvilr{?imar?/f p;};e_ the SA around the ECP maximum at the energy Ef greater than about
*6, :‘. :5 ol 8o tons prot!uc'mg cascades. 1000 MeV, is equivalent to the cut-off energy of E, =0.5-1.5 MeV.
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LpOf (rad' [eng(h) D } (l) 6 Schematic drawing of a shower
So, among 1657 events of showers selected in the scanning i . event and the grid used in
] the work to measure sumnary
and satiafying the basic criteria only 908 paassed the condition 75 0 lS plane projection ranges of
. . shower electrons.
(1) and were used for further analysis. It should be also noted p(l‘ad. Iengfh)
N X - . - . .
that herein we make use of L(Xe) 4 cm for RL in liquid xenon in By means of the computer modeling of electron ranges in the

accordance with the earlier experiment /8/. But if, for instance
L(Xe) is assumed to be 3.8 cm /15/, then all lengths (Lmin and
others) ought to be multipied by a factor of 1.05. In particular,
th: maximum length of the 180 1 XeBC would be equal to 27 RL in-
atead of 25.7 RL taken in the work.

ECP generated in liquid xenon by GQ with the energy Er= 100-3000
MeV it has been shown that the ratio Z(t’plEﬁ of cascade electron
ionization loss (SEI) AEEe(t,plEr) to relevant SER is constant
within a few percent in the central shower region in which, on the

average, more than 90% of the total cascade energy is released /18/.

III. METHOD S0, a more general relation than (2) can be written
The energy E?‘ of GQ generating showera was determined
according to the linear relation between E,. and the total range ) AZEe(t,P[ Ep) AY re(t,pl Ep)
ZRi of shower electrons and positrons (later: electrons)/16,17/: e e = Z(t,Pi E‘) ST . 3) -
E, = o« ZR,, (2) At Ap At 4
4 i
where a = 0.59 +/- 0.02 MeV/mm for, liquid xenon /18/. At all studied energies Erthe coefficient turned out to be
All 90B events were analysed on the picture plane at an by about 20% greater than the average one inside a small volume
average enlargement of about 0.94 using grid with the dimen- ‘. near the conversion point of primary GQ, e.g at t < 0.5 RL
sions of the elementary square At = 0.6 RL along the shower and p <0.1 RL where one observes mostly two straight tracks of a high
axis and Ap = 0.3 RL in its transversal direction summary plane energy (~E,/2) electron/positron only and there is practically no
projection ranges of shower electrons (SER)AZXre(t,p1 Ep) in each cascading (see, for instance, fig.l). Outside the aforesaid,
square for every event have been measured. Schematic drawing of an ‘ central shower region ¥ salowly decreases mainly along the SA and
event of cascade and the grid used to measure SER is shown in fig.3. essentially at higher energies (E~>1000 MeV) by about 10-15%.
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Besides, the values averaged over all t and p within each bin of
energy EY do not depend on Er/18/. So, one can admit that 2 in (3)
is a constant value within, the average, ~ 3%. The SER were
average accuracy of about 20% but at the end of a
50%.

on

measured with an

cascade it can reach even In more detail methodical problems

are analysed in /19,20/.

IV. EXPERIMENTAL DATA

In table 2 we quote the original experimental data obtained in
the work, viz. cascade electron ionization loss (SIL) determined by
(3) when ¥ is taken to be constant and equal to 3.83 so that SIL
expressed in MeV/AtApRL*x2, where AtAp = 0.6%0.3 RL*2 is the surface

of the elementary grid square.

is

Table 2.

Average cascade electron ionization loss
relation (3) for shower events belonging to energy bins centred
at Er.t and p are plane coordinates of elementary square in which
ASIL is measured (fig.2). t is expressed in units of 0.6 RL, p - in
0.3 RL, ASIL —-in MeV/0.18 RL**2. Statistical errors are given only.
The values of ASIL at p and -p at the same value of t (fig.2) are
added together.

(ASIL) determined by the

E_= 3375+/-125 MeV

14
t ° 1 2 3 4 5 6___ 7B 9 10_ 1 12 13 14
1 993 1.3

____68__12

2 198.6 10.6 0.3

21741 0.2

3 304.2 310 3.5

___ 3850__86.5_20

4 395.0 65.7 13.3 36 14 20 23

__ 357_154_42_ 23 14 22 22

5 457.3 67.6 211 2.5

__38.0_14.1 B8.6_15

6 595.6 88.1 25,9 64 3.0 25 0.5

47.5_ 154 6.0_3.1_18_ 17 0.5

7 6119 120.4 37.4 10.56 6.8 0.4 0.3
___350_212_ 81 40 24 0.3_0.2

B8 55B8.7 134.6 49.8 23.6 7.4 26 4.4 Lo
___.39.6_ 158119 6.5_51 18 43 0.7
9 489.5 134.4 58.7 258 13.5 3.4 19

__ 312 193131 7.6_50_15_18

10 488.2 1456 519 269 9.5 61 25 0.4 0.4

390 _23.3.132_7.4_3.7_2.0_1403
1L 375.6 136.9 48.0 8.4 119
398229103 24_3 8

Table 2 (continued)

P

t 1 2 3 4 5 6__ 7B 9 10_ 11 12 13_ 14_15
12 283.9 119.7 49.9 28.5 11.4 7.3 1.3 1.8 1.8 1.3 1.9
34.2_20.2.12.0_9.3_3.9_3.0_.1.2.1.5_1.3 1.2_1.8
13 295.0 138.3 42.0 14.4 6.4 10.5 8.0 1.1 3.8 0.6 3.1
. 31.3_24.3_7.7__4.1_3.9_4.5_3.9_1.1 3.7.0.6_3.1
14 243.2 100.6 53.7 8.8 6.4 3.8 7.3 1.8
- 30.5_23.9.12.6_2.8_3.1_2.2_4.0_1.1
15 217.1 104.1 32.3 15.5 15.0 4.5 3.8 1.6 1.0 0.3 1.0
. 25.2 20.3_6.6_4.9_..5.0_2.6.2.2.1.3_1.0 0.2.1.0
16 216.3 71.8 45.56 20.3 16.6 6.4 4.8 3.1
_....34.2_14.5_11.1_.7.4_6.4_3.4.2.7.2.2
17 174.7 60.6 37.0 18.6 22.0 6.9 5.3 2.5 1.8
33.3_..11.0_.8.5_7.3_7.5_2.9.2.1.1.2 0.9
18 124.4 50.4 32.2 22.1 14.8 6.3 0.1 1.5 0.6
__..28.9._12.0_.9.5_.9.8._4.5__3.2.0.1_1.2___ 0.6
19 106.6 33.9 32.5 14.5 10.1 B8.1 6.3 5.0 2.8 0.9 0.3
,,,,, 25.0___7.3.11.6_.5.4__4.7_4.2.3.5.3.4.1.9.0.9.0.2
20 93.6 36.521.1 7.8 4.3 5.6 10.1 6.0 1.9
e 22.B_12.3..6.9__2.8_.2.3.3.0_5.0_3.8_1.8
21 62.4 27.5 21.0 20.8 10.6 13.9 7.5 3.3 4.0 0.3 0.6
. 16.9_ 7.2___6.0_8.4_4.9_5.4.4.5_2.5 3.7.0.2.0.6
22 38.4 29.821.5 B.6 3.5 6.863.31.9 1.3
10.3__8.3_7.4_3.7_2.5_3.4.1.6_1.8 1.2
23 23.4 B.0 12.6 11.9 7.5 3.6 1.8 3.3 1.9 1.8 0.5
___ _7.3__3.1_4.3.5.3_.3.9 2.1.1.0.1.8_1.8_1.3 0.5
24 31.2 6.1 13.0 6.4 3.3 0.4 3.1 3.3 0.6 1.4 0.6
. 13.8.__2.7_5.4_3.1__1.7_0.4.2.2.2.3 0.6.1.4_0.6_ -
256 156.5 5.9 11.8 11.3 4.1 2.5 0.3 5.8 1.0
_ 6.8 2.2 _6.5_3.9 2.0_1.7.0.2.4.9.1.0
26 19.6 3.1 7.6 2.8 3.3 2.41.80.41.9 1.5
o ...9.6._..1.9_4.4_1.4_2.1_ 2.0.1.2.0.3.1.8.1.5._
27 8.8 10.4 3.0 0.6 1.0 0.8 0.80.1 0.3
___4.0__4.0_2.5..0.4_0.7_0.7.0.4.0.1____0.2
28 8.8 3.4 2.8 0.9 - 0.31.10.5
___ 4.1 19 _ 25 _07____ 0.20.90.5__ _
29 1.9 3.1 2.8 1.3 1.3 1.3 0.6
__.1.8___ 1.8._1.5_0.9 1.2.1.2.0.6
30 2.0 0.6 3.4 5.4 1.3 1.5 1.3
——1.1__ 0.4 __ 2.4 2.8 1.2_1.5 0.9
Ey: 3125+/-125 MeV
P
t 12 3 4 _ 5 ___6__7._.8_ 9 10_ 11 12__13_ 14_15
1 107.3 0.8
6.9 _0.8_ S
2 211.1 2.5
—16.3__1.6.____ [
3 360.4 21.3 3.6
. 827 _69_2.1____
4 511.5 45.8 7.4 2.7 1.8
. ..27.9_12.0_3.3_2.6._1.5_ _
5 570.9 91.3 22.4 4.2 9.7
___37.7 _16.5_5.6_2.4_86.5
6 620.9 125.1 36.8 6.9 5.0 1.6
.—-45.0_115.0_8.5_2.6_2.9_ 1.5_
7 620.9 160.9 44.9 18.7 10.0 5.2 0.8
—.38.4_.18.2 _9.6_5.5_4.5_3.4._0.8
7




Table 2 (continued)

Table 2 (continued)-
EY: 1125+/-125 MeV
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Table 2 (continued)

t

’ 1 2 3___ 4 5. 67 8 9 10__11_ 12 _13_ 14_15
24 0.3
0.3
25
26 0.3
0.3
27
28
29 0.1
0.1
30 0.3
0.3
E)’: 175+/-15 MeV
P
t 1 2 4 5 6 7__8_ 9 10_ 11 12 13 14 15
1 102.4 1.1
6.3___0.6__
2 100.1 1.8 3.0 0.1
9.9 _3.4_1.5_0.1 .
3 54.1 16.1 6.3 0.7
6.8___3.7._2.8_0.7
4 52.8 12.9 2.7 1.6 1.0 0.5 0.6
7.7_.3.0._1.1_1.0_1.0_____0.40.8
5 18.7 10.6 4.7 0.8 0.7 0.8 1.2
. 4.8_ 3.5_2.9 0.5_0.7_0.5_1.2
6 17.9 7.8 1.1 1.7
5.3__2.5_0.6_1.0
7 8.3 6.3 1.9 1.4 1.0
— 3.0 2.7_1.0_1.4_1.0
8 5.2 2.3 3.0 0.8
2.0__1.7_1.8 0.8
9 1.9 3.5 0.2
.. 0.9_.1.9_0.2 o
10 2.8 2.5 1.8
. 2.6_ 1.2 __0.9__
11 1.5 0.5 0.5
B 1.0__0.4_0.4___
12 1.0 1.0 1.0 1.0 1.0
_ _ 0.7_.1.0_1.0_1.0_.1.0
13 1.0 0.7 0.8 0.6 0.3
__ 0.7._._.0.5_0.6__0.6_ 0.3
14 0.5 3.4 0.1 0.6 0.4 1.0
__0.4__.2.8._0.1_0.6_.0.4_1.0
15 1.3 0.2 1.0
0.9 _0.2_1.0
16 0.3 0.8
. 0.3 ... ___0.8
17 0.5 0.5 0.3
0.4 0.5.0.3
18 2.3
22 R
These data contain rich enough original experimental

information about electromagnetic showers, and therefore they are

very suitable for checking up different theoretical approaches to

the ECP problem

as well as for several methodical needs.
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