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1. INTRODUCTION 

In most cases the determination of the. vertex position requires previous 
reconstruction of all trajectories I 11. Besides, the check of an association 
of trajectories into the vertex once found is -rater complicated. 

The basis of such an approach is the analysis of chi-square ()(2) crite­
rion 12,31 as the element of mathematical model of multitrack event recon­
struction procedureV . Many authors 1 4.51 note the limitation of mathe­
matical resourses of )(~model, especially for great multiplicity events, which 
make the vertex reconstruction difficult. 

In / 7 I a function of parameters P ==: {p 1 : f = 1, ••• , L I of trajectories 
¢ ( z ;p)is suggested which is determined as trajectory integral with weighed 
function associating alternatively trajectory value and all measured coordi­
nates: 
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Particularly, for linear tracks x ¢ ( z ; A , B ) = A * z + B in XZplane 
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i R (A, B) I ~ a . G(A. z + B - a ; a ) (2) 
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where N is total number of detectors, a are coordinates from z n detector;mn 
M , count number of each detector; a (x ; a ) , coordinates precision (a) func­n.I tion, for instance:I 

I 
O(x; a) = exp (_x 2 /2a 2 )/a·i2rr, (3a)j 

or 
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1/ 2 a , Ix I < a 
(3b)G(x; a') = 0,

{ [x I > a. 

Functions (2) have many extrema in parameters of trajectories (A, B) spa­
ce: main maxima correspond to real tracks, lower level maxima occur due 
to the noise or random "tracks". The analysis of such functions is extremely 
complicated task/~1 , so the exotic possibility of finding the tracks without 
their coordinate identification is hardly practical. 

2. VERTEX FUNCTIONS 

However this, mathematical model commits a different approach to the 
task of vertex coordinates determination without previous track reconstruc­
tion. 

If a particle decays to several other ones at a point (x = u , Z ::0: v) and 
their trajectories are registered by detectors as counts a mn =¢ m( zn ; P) , 
then it is possible to construct a "decay" function 0 ( u , v ).. Main maxima 
locations of these functions correspond to vertices of interactions or decays 
(if there are more than one of them in an event). The rule of constructing 
D( u , ~ 'for any open curve is evaluted from the recipe given in l 71 for li­

near trajectories: 
Step 1. It is necessary to determine the analytical form of correspon­

dence between parameters of trajectory Ii and L - set of points: (u, v) is 
a possible vertex, {(cf' ze );e= 1, "" L - 11 are any formal 
detector counts. If this step is possible then the function 

~ , 

¢(z;p) == ¢[z; (u ;v ) ,t(ce,ze); e=1, ••. , L-11)' 

corresponds to the trajectory. 
Step 2. Take detector counts a ke (for instance those with maximum 

multiplicity - Me) as formal coordinates. Then: 

Me Mn 

D (u , v ) ~ L ... L R (( u v) (a z) (a z) ] (4)
k = 1 m= 1 ., ke' e , ••• , mn' n ' 
L--~ • "t t 

L -1 L - 1 

As opposite to euristic rule of constructing of D (u.v ) from 171 , mul­
tiple (L-1) summation in (4) converts local maxima R((u,v) tCc,z) II to 
global maximum of decay vertex (u.v) . Similarly we may construct "decay" 
function for 3-dimensional vertex D (x,y,z) . 

The value of global maximum decay function is taken as associativity 
criterion of trajectories and the vertex. If Q trajectories begin at the vertex, 
then for ideal detectors (absolute accuracy, 100% efficiency) D(u.v) value 
at global maximum must be N. Q L-~ 

The certain form of "decay" functions depends on the detector layout 
and ¢(z; 

~ 

p ) trajectory type. For instance,
\ 

for linear tracks in plane 

M N M
N n x-~ 

D(x,z)= k ~ ! (J .G(__rL.(z -z )+a -a .(J' ] 
mn Z - Z N n k N mn' mn (5)

k=1 0=1 m=1 N 

(here last detector counts akNare taken as formal coordinates Ce). 
In the particular case when, one trajectory is already known the decay 

functions may be of great practical significance. This situation is typical for 
one-beam accelerators, where the single trajectory of the accelerated particle 
¢ (z: p ) can be reconstructed simply and quickly. Global maximum of 

o 0 
the function C(z) for primary interaction vertex u = ¢ 0 (v; po) 

C(z) = D[¢o(Z;po)'z] (6) 

corresponds to z coordinate of the interaction. The function (6) has one 
argument only for both one-dimensional and two-dimensional coordinates. 
In 'particular, if parameters (A, B, P,Q ) of the "input" linear trajectory 
x = A,. z + B , y =P . z + Q are defined and each detector registers spa­
ce coordinates (a , b ), then C(z) is 

mn mn ' 

M N MN n 
C (z ) = I ~ I. 0 t I[ x , Y (A, B , a ), It (A ,a k ,a ) l : (J I x

kN N mn mn 
k=1n=1 m=1 

x O{l[z,y(P,Q,b ) ,h(P,bkN,b )];(J 1.(J2, (7)kN mn mn mn 

where 

I(z,Y,h) y/(zN-z)-h, (7a) 

and 

Y(A,B,a) = (zN- zn ). (A.zN+ B - a), (7b) 

It(A, c , a ) = a - c - A. (z N - z ) • (7c) 
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- - - ..... Fig. 1. The experimental set-up for the re­x 
search of the proportional chambers effici­
ency. An event of the interaction ofMg-nuc­

PC1 leon on the Carbon target is shown. The7. rn~PC 
coordinates of Magnum fragments are shown 
by the points. 
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Fig. 2. The graphic of C(z) function (7) for the event at jig. 1 is shown. The function of 
an accuracy is smooth (3a) at fig. 2a, and the function of an accuracy is discrete (3b) at 
jig.2b. 

Therefore, the founded location of the main maximum oE C (z ) provi­
des us with nontraditional schedule of the track pattern reconstruction: as 
we know z-coordinate of the interaction vertex, we get additional ("virtual") 
detector with single (! ) count, so the further determination of "exit" trajec­
tories is simplified substantially. 

The experimental set-up of proportional chambers for studying the ef­
ficiency of registration of nucleus induced by synchrophasotron JINR and 
nuclear fragments is shown on fig.L. There are shown XZ components of space 
points measured in any event of the nucleus of Magnium on Carbon target 
Interaction. Each block of chambers measures X and Y components of space 
point and cluster size (smn) - some neighbour wires detecting the fragment. 
The function C(z) for this event is shown on fig. 2a, G (x ;a) is used here 
in the form (3a), a rnn ::: S ron' The same function (5) is shown on fig. 2b, 

4. 

but G( x; s ) - (3b). The problem consists in the determination of the z-po­
sition of the global maxima C( z) (fig. 2a). 

3. GLOBAL MAXIMA SEARCH 

This complicated problem has consummated solution for smooth func­
tions only 161. However this solution needs in a big number of calculations 
of the local values of a function, that for a big number of events (like shown 
on fig. 1) may lead to unacceptable cost of computer's time. 

The integral approach in the determination of the global maxima posi­
tion is suggested in paper 18/. For one-dimensional positive function I(x) 
(A < x ,< B, A and B may have an infinitive values) that has a global rna­
xima (GM) near a point "u" the function, symmetrized around "u", is const­
ructed 

F ( x , u) ::: 1/2 [ £( x } + £( 2 u - x ) 1. (8) 

If "u" is chosen near the GM position, function (8) has narrow peak at "x" 
in GM region, otherwise - F ( X # U ) is spread. If it is possible to calculate ana­
lytically the momenta of £(x): 

B 

Il ( £ ) = ll • f (x-e)n./(x)dx,
n o(£)-1 (9) 

A 

where 

B B 

if. 0,( £ ) f 
A 

I(x)dx, e: 1l1(£) = if.i£)-l. f x.f(x)dx, 
A 

(9a,b) 

then the demand for choosing "u" near GM position is reduced to the -ana­
lysis of momenta of F(x,u ), that are determined by initial momenta flif) 
easily: 

, 2 2 
1l1(F) =u, 1l +t (to: u c } , fl3(F) 0, (10a,b,c)-c2(F) =a 

if.iF) = if. 4 ( £ ) + t 4 + 4 y t + 6a 
2 

t 2 • (10d) 

where: a 2 ,y - dispersion and asymmetry of £(x] • 

The .minimization of the if.2(F) leads to simple condition: u = e. 
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It is more constructive to analyse the excess, defined by the following 

2 R2E(t) = (a2 + t 2 ) - 2 . (t 4 - 2yt + a ) , (11)o 

where 

2R~ '" 3 a 2 - a -2 1l4 «( ) (l1a) ~~' '\ 
, I 

is the parameter that characterised a distance between. two peaks of f (x ) . \ I 

The minimization of the excess (11) on variable "t" leads to the cubic 'Ii. 

equation 

2 S 2 2 2 22a t + 3yt - 2a R t - ya = O. (12)o 

One of three possible roots (12) places u the most near to GM position of 
f( x) and one may use its value as the initial point for the local method of 
exact determination of GM position. The more cautious attitude to cubic­
roots 0-2) leads to the necessity of creating the iterational procedure - - the 
successive diminution of the integrational region of f( x ] that is done by · 
the analysis of (lab, 11). As the criterion of the iterations termination the 
value of a parameter (l1a) is used : if R~ .:s; 0, then one can be in a sure that 
(x) has unimodal character in last integration region, otherwise - R~ > O. 

For multidimensional functions, for instance - (4), analogical analysis 
of the excess as the function of vector u is suggested in / 8 / . This amalogy 
has been successfully tested for complicated functions, but the realization 
of GM-position determination for "decay" functions (4) is not yet perfor­
med now. The analysis of D(x , y ,z) must follow after the C( z) analysis, 
when all detector counters for tracks emitted from the primary vertex are 
deleted . 

The main difficulty in the realization of such kind of GM determination 
consists in the analytical inte gration (9, 9a,b). However if the discrete func­

I~):' 
tion (3b) will be used in C(z ) then this problem of analytical integration 
will be reduced to the accurate determination of lower (z r) and upper (zu) I' 

limits of z, where function (3b) has nonzero value. • 
The limits zr' Zu depend on parameters v , II in the function C(z, v , h) 

(7a) in the following way: 
1) At v =0 ze u =2: 00 if 11 :::; s , otherwise - GU, s) = O. 
2) For v" a let it be R = hlv and S = 5/1 v I ; 

a) when S 2: R > 0 

zr = - z u =, z N - 1/ (R + S ) ; (13a)00 , 

b) if R > S 

ze = z N - 11 (R - S ). z u = Z N - 11 ( R + S); (13b) 

c) if R<a and IR I < S then limits are the same as (13a); 
d) if R <a and IR I ~ S GU ; s ) = O. 

Then one can compare given above joint limits (for XZ and YZ compo­
nents of a space point) with initial boundaries, in particular ZL = za and 
Zu = z4 (position of PCS and PC4 on fig. 1) . Thus the problem of calcula­
tion (9-9b) consists in a simple integration of a power-like functions . 

One of three roots equation (12) (that gets the munimum to excess) 
has value Z = 2780 mm for event on fig. 1. This point was used as initial 
for the precise determination of GM position of the smooth function C(z) 
(shown on fig. 2a) . One has got Z = 2809 mm by the parabolic approxima­
tion . 

4. RESULTS 

This described above method has been used for the determination of 
z-position of a primary vertex for 10000 events. The z-region of maximal 
values of the histogram of this z-vertices (the bright part on fig. 3) is accord­
ing to the' cardon target position. The histogtam of the z-crossing "input" 
trajectory with trajectories of nuclear fragments is also shown on fig. 3 (the 
dark part) for the same ' 10000 ~vents. The trajectories of fragments were 
found by the traditional exhaustive search . 

It must be noted that only for fragments passed the narrow window 
of the magnet (fig . 1) trajectories were reconstructed, i.e . z-crossings were 
determined for trajectories with insignifficant angle difference. 

Nevertheless, the physical criterion of the quality of the information ­
the image of the target, evidenced for the benefit of the bright part of fig.3 . 
This z-vertex determination me­
thod may improve the reconstruc­
tion of parameters of excited tra-

Fig. 3. The z-vertices distribution as 
the global maxima position of the func­
tion C(z} (7) is the bright part of the 
.figu re, The dark part Of the figure is the 

z-crossing histigram of Mg nucleon tra­
jectory with fragment trajectories passed 

through the narrow window of the mag­

net. 
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Fig. 5. The graphic of C(z) function (7) 
•	 {or the .Monte-Carlo event of Mg interac­

tion at z = 2800 mm and the seconda­
ry interaction at z = 3000 mm. 
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Fig. 4. The z-vertices distribution as the glo­
bal maxima position of the function C(z) 
(7) is shown for 1000 Monte-Carlo events 
of ideal straight tracks generated ran­
domly from the fixed point-like target (z= 
= 2800 mm). 
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Fig. 6. The z-vertices destribution as the 
global maxima position of the function 
C(z) (7) is shown for 1000 Monte-Carlo 
events which are similar to those shown on 
jig. 5. ~ . 
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jectories essentially and histograms on fig. 3 would not have so significant 
difference. 

It was expended 11 minutes CPU-time of the EC-1061 computer for 
the z-vertex histogram. The procedure of the trajectories reconstruction 
for the z-crossing expends about 20 minutes of Cl'U-time. It must be noted 
that for the approximate determination of GM-position by scheme (11-12) 
6 minutes of CPU-time was expended. 

The Monte-Carlo data were analysed for the test of this method GM­
position determination. Ideal straight tracks were generated randomly from 
the fixed point-like target (z = 2800 nn) according to geometry of fig. 1. 
The number of this tracks was generated in limits from 2 to 8. The statistical 
distribution of determining z -vertices for 1000 events is shown on fig. 4. 

If in any event the physical pattern is possible: a primary interaction 
produces some secondary particles, one of them has the parameters of the 
trajectories the same as primary particle and interacts (or decays) with the 
particles creation, too, then the C (z) function may have two prominent 
peaks. For such type of a function two cubic-roots of (12) may show the 
maxima positions with sufficient precision. The C(z) for such type of Monte­
Carlo event is shown on fig. 5. The cubic-roots (12) (the approximation of 
the discrete function of an accuracy was used) have not so bad discrepance 
to real vertices (2800 mm, 3000 mm) after the first iteration: z = 2838 mm, 
z == 3017 mm. The following precise determination has almost absolute 

coincidence - z = 2802 mm, Z = 3000 mm. The combinatorial part of the 
C(z ) distorts somewhat the GM-position. Because of this, the z-vertices 
distribution (fig. 6) has bigger full width of peaks at background than the 
peak shown on fig. 4. In 1000 of such kind of Monte-Carlo events the pri­
mary interaction had a multipticity from 2 to 6, a second vertex - 3 tracks 
(fixed number). This analysis was rough enough, i.e. the initial z-point (for 
the local specify) was determined after first iteration only, without the final 
localization of GM-region, i.e. without condition R~ (Ll.a ) .~ O. Besides, for 
such kind of tasks it is necessary to delete all coordinates of trajectories emit­
ted from one (primary) vertex. 

5. CONCLUSION 

Undoubtedly, suggested vertex functions have a complicated structure. 
But it is also undoubted, that a problem of vertex reconstruction is compli­
cated, especially for a curve in magnetic field and for an event with a big 
multiplicity. 

However one may have a hope that the described scheme of C(z ) ­
analysis for straight trajectories has shown any possibilities of vertex functions. 
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It is possible, that the GM-position will be determined most exactly for a mul­
tiplicity of the primary interaction -100, the GM-amplitude for this is about 
.... 100· N (N - total number of detectors), since the m?re probable back­
ground would have an amplitude ­ 2 . N. 

The relatively small CPU-time for the approximate GM - determina­
tion of C(z) allows one to have any realistic hope in the creation of a pro­
grammable trigger for the primary z-vertex detection in a fixed z-limits. 

The simplest variant of the trigger needs the integration of the C(z) 
only - if this integral is greater than assumed, then this event is accepted. 

Another way consists in the analysis of z -centre of the C(z) (the first 
momentum ­ (9b)). 

The more complicated variant of' the trigger will need to a fast solution 
of the cubic equation (12) for the realization of the suggested primary z-ver­
tex reconstruction scheme. 

The author is gratefull to M.Sadzinska, I.M.Beljaev, L.S.Barabash, I.M.Go­
lutvin, V.A.Sviridov, A,.E.Senner and D.A.Smolin for helpfull discussions. 
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HQYHeHKo 1O.A. El-88-90'7 
BOCCTaHOBJIeHHe aepuiaa 
6e3 BOCCTaHOBJIeHHH rpaercropaa 

TIpe,n:JIO)l(eHbI npaaarra nOCTpoeHHH cPYHKQI1H, n03BOJIHIOI.I.J;HX 
onpeztenars rcoopzraaarsr BepUlHH 6e3 BOCCTaHOBJIeHMH rpaercropaa. 
113JIO)l(eHa peaJIH3aQHH aapaarrra 3THX dJYHKQHH ,lJ;JIH npHMbIX rpaerc­
ropaa, xorna napar-rerpsr O,lJ;HOH rpaexropaa H3BeCTHbI. 

Pa60Ta BbInOJIHeHa B 06I..QemlcTHTyTcKoM HaYllHO-MeTO,lJ;I1Qe­
CKOM oT,lJ;eJIeHHH OI1HI1. 

Ilpenpaar 06'Le,nHHeHHoro HHC11iTyn MepHblX accnenoaaaaa. .uy6HB 1988 

Yatsunenko Yu.A. El-88-907 
Vertex Reconstruction without Track Reconstruction 

Rules for the creation of the functions for vertex position de­
termination without previous track reconstruction are suggested. 
The variant for straight tracks, when one trajectory is known, is 
described. 

. The investigation has been performed at the Scientifical-Metho­
dical Division, JINR. 
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