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1. INTRODUCTION 

In high energy physics and its applications a 
problem arises otten to build a simple model describing 
reliably enough general features of a given physical 
process when an analytical approach to this problem fails 
completely on the practical level. Bucha model is re
quired, tor example, to predict a behavior ot some cha
racteristics of this process within some intervals ot 
values of parameters depending on external conditions 
which can be changed. It a complex process under consi
deration may be expressed as a superposition or a se
quence of some numbers of more elementary processes ha
ving exact analytical description or being determined 
by another way. then the former process can be recon
structed using computer techniques. But in this case 
one can get concrete numerical results only (numbers, 

distributions) at some fixed conditions and to obtain 
another results of this kind at another conditions it is 
necessary to perform such calculations allover again, 
etc. This procedure being trivial in principle often 
needs much time of big computers. as well as the con
frontation of final results with experimental data is 
sometimes expedient, especially when the process is com
plicated (i.e., intranuclear cascade process). On the 
other hand, experimental investigations of the processes 
under consideration are not possible within sufficient
ly wide intervals of external parameter values. 

As an example let us discuss an electromagnetic 
cascade process (ECP or shower) produced by high-ener
gy gamms quanta in heavy media. This process is one of 
the oldest being studied in high energy and cosmic ray 
physics. It consists of three leading elementary pheno
mena: radiation and pair production, which make the sho
wer possible, and ionization as a stopping factor. The 
simplest one-dimensional approach to this statistical 
problem first put forward 50 years ago by Bhabha,and 
Heitler nowadays has no practical applications because 

'ttVltldt"tlCiiioitl KHcnnyr 1 
11(j'..tllWX Ill'. C.~~.lU)BJimii I 

" 6WSJlf.!OTEi{ Il\ 
'-,.-~.., 



of its limitations. On the other hand. the three-dimen
tional cascade theory as based on the equations (Rama
krishnan( 1962»: 
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even in the small angle 9 limitation when the process 
can be treated as markovien does not exhaust the problem 
providing information ab~ut average ECP characteristics 
only without fluctuations and correlations which are ve
ry important in practice. Moreover. the resolution of 
these equations is a matter of great difficulties. Here 
P and rare the numbers of electrons and photons with 
the (E, E+dE) energy at the distance (f .f +df) from a 

shower axis (SA), correspondingly (x and y are the co
ordinates of 9 ); A. B. C. D are some quantities taking 
into account probabilities of partial elementary proces
ses; the shower depth t is measured along the SA. 9% and 
9 are the components of the shower particle angle 9 iny
the (x, y) plane. 

50. although all elementary processes making up 
the ECP are stTictly known long ago the user can't be 
satisfied at present to have a suffiCiently convenient 
tool in his practice (for example, to design high-ener
gy particle detectors). Therefore attempts to obtain 
analytical approximations of the behavior of some gene
ral characteristics of the ECP using both experimantal 
and computer simulated data are undertaken. Longo(1975~ 
Slowinski(1981). But up to last years these attempts 
give mainly a fragmentary picture of the ECP only for 
lack of complete information about ECP (experiment) and 
because the problem is complicated enough. 

2. SPATIAL DISTRIBUTION OP AVERAGE IONIZATION LOSSES 

In ECP modeling it is more interesting than P and 
r in (1') and (1") the dependence on primary gamma quan
ta energy Br of average electron and positron (later: 
electron) ionization losses (AIL). .l1 E(Er.Eo' t .~)!A V. 
released inside a ring having f' as the radius and ~f> 
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as its thickness in the (x, y) plane at the shower depth 
t, and with the thickness ..1t along the SA, so that the 
volume is equal to ~ V .. 21rft:lfll t. Here media isotropy 
is supposed to take place. and the predetermined cut-off 
energy Eo of electrons being observed may be put to be 
equal to zero. To build a simple ECP model one must find 
out such function P(t.fIE,) which sati,fies the equation 

AE(EtJt.f) ~ F(t.oIE ). (2) 
27rftlg II t l r 

where notation F(t,~IEr) means that s~tial AIL distri
bution is regarded as a function of prtmary gamma quan
ta energy Ef (the parameter Eo is omitted taking into 
account that Boc 0). This may be done in principle by 
three ways: 1/ as the solution of an equation similar 
to (1') and (1 U ); 2/ by means of the computer ECP simu
lation and. as a next step, a statistical approximation 
of obtained numerical data; J/ the same way as in 2/ but 
with experimental data as former information. The first 
approach involves the difficulties mentioned above. The 
second one is universal in principle and has no short
comings pointed out. but as has been already remarked 
verification of computer simulation results with expe
rimental data is needed. Therefore in our works. S20
winski (198.1). empirical information as a basis of sta
tistical modeling of (2) has been used. Unfortunately 
in such general form the function P(t.fIEf> is difficult 
to be determined from a sample of experimental data 
which. for example, can consist of a set of random num
bers Z(i.j}(E >- (AE(Er.ti·fj)/AV) obtained each1 r ~ ij 1 
taken separately at fixed values of coordinates ti and 
Pj' and at the fixed value of energy Er for each l-th 
ECP event registered by the detector. Here 1=1 •••••N. 
N being the sample size. i and j are the numbers of the 
lattice cell within which the measurement· of zii·j~Er) 
has been made. Therefore let us write the function 
F(t.~rEr) as a product of the function 't(tlEr' descri
bing the longi~udinal AIL distribution and the conditio
nal distribution Pe(~lt;Br) for lateral AIL spreading: 

F(t.rIET) .. Pt(tIEt)'Pj' (f1t;Er)' (J) 
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Now the one-dimensional functions Ft and Fr can be easi
ly fitted to the data using standard methods. 

2.1. Longitudinal disribution 

We have approximated the longitudinal AIL distribu
tion Ft (t lEt) by the Weibull function: 

a t a2-1 t a 
Ft(tIEt) • 6 0 -a1(a-) erp/-(a-) 11• (4)

2 2 2 
where a is the norma11zation coefficient. i.e.o 

00 

(5)SFt(trEr)'dt • Er • 
o 

and are the par~neters depending on Ef which ina 1 a2 
one's turn are to be estimated from sample. 

There are certain reasons of the general matter to 
choose the Weibull function as the F distribution. Firt 
stly, according to some model considerations based on 
the Central Limit Theorem one can expect that at high 
enough values of Er when a number of shower electrons 
is sufficiently large the function Ft must tend to the 
normal distribution at high t values. Secondly, from the 
practical point of view it is desirable to have such ap
proximations for Ft which depends on minimal number of 
parameters only and their dependence on energy Er may 
be traced reliably enough within sufficiently large ran
ge of Er values to make possible to predict the AIL be
havior at such energy Erwhen both measurements and cal
cUlations are too difficult to be realised or even pro
blematic. Thirdly, for some practical purposes it is 
convenient to have not only a simple form of the func
tion F but also of its moments and even of the intet 
gral t 

E(t) = SFt (tilEr)' dt/. (6) 

o 
In particular, the majority of shower detectors can re
gister just the E{t) value which in the case of the Wei
bull function has very simple form: 

f t
E{t} = Erl1 - exp/-(a

2 
) 
a 111· (7) 

In Fig. 1 the function (7) 
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is compared with experimen

tal data. Then. using the 

values Em(t) measured insi

de the tm thickness of a 

shower absorbend" it is eas

ly to estimate by the ite
ration method the value Ef 
of a primary gBlJlIll8 quantum 
producing shower. Simple ap
proximations of Et dependen t (rad.lI.fti.l) 

ce of the parameters a 1 and 
a has been obtained too:2 

oC1 + ~1·1nEr. if 200!.EI'J500 MeV. 
a - { I 

1 - 2, if Er ?!. 3500 MeV, (8 ) 

+ P2.1nEt. if E,. ~ 200 MeV. (8")a2 ot 2 
where c(.1' 0(,2' ~ 1 and f3 2 are the numbers estimated 
for sample of experimental data (Table 1). Because at 
values greater than some hundreds of MeV the leading 
partial elementary processes of ECP reach their asymp
totical regime and not any other significant process in
cludes at all one can expect that longitudinal AIL dis
tribution in ECP of the form (4) and having the parame
ters given by the fits (8') and (8") is trustworthy for 
practice with a good enough accuracy when Er~ 200 MeV 
in heavy media. 

2.2. Lateral distribution 

[ 

More complicated is a problem of estimation of la
teral ECP distribution, i.e. the function Fr(fltjEr) in 
(J), The thing is that in reality experimentally obser
ved values are rather not the numbers zli ,j)(Er ) at fix
ed i but the plane distribution of ionization losses 
(IL) fr(rJt jEf ). where r is the projection of f on the 
SA plane (being at the same time the projection plane). 

The functions F~- and fr are connected by means of 
the following integral equation-

II 
011 

a 
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Figure 1 

fr(rlt;E,) .2JF (flt;Et) df • (9) 
r 

f 11 - (r/f)2 
4, 
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when the xenon bubble chamber is used as a shower de
tector. The solution of this equation has the form: 

f dr 
P~(~lt;Et)" ~ a:1:(r'f (rlt;Et » '(10)r1/f CD

J	 /1 _ (~/r)2 
The lateral AIL distribution fr(rlt;E,) has been ap
proximated by the exponential function normalized to 1: 

fr(rlt;Er) .. 	 _1_ exp(- -!:.-). (11) 
ret) Nt) 

where the parameter ret) is found to be proportional 
to the shower depth t: 

ret) = DCJ + fl)·t 	 ( 12) 

within all range of E r values investigated. i.e •• E f .. 
200.- )SOO MeV and independent on Et. Here "'3 and p) 
are the constants presented in the Table. 

J. PLUOTUATIONS 

It is expedient to determine this important cha
racteristics of EOP as a fractional variation of some 
part A of IL released within a layer of absorbent insi 
de which in average the part I of IL is registered. So, 
for longitudinal shower development we have ~Jt)!It(t) 
~d 	 ~ 

(1)It(t) .. E(t)/Et • 

and for lateral EOP spreading - ~r(r)/Ir(r). where 
Ir(r) may be determined from (11) taking into account 
that in the SA plane AIL have the form 

f(t,rIE r) .. P't(tIEr)·fr(rltiEr)· (14) 

whence 00 exp(- r;r(t» 
I (r) .. 2{1 - Jpt(tIEr). dt}. (lS) 

r 0 ret) 

It has been ascertained that At is a normally distribu
ted random variable with mean It(t) and standard devia

2
tion ()A' i.e•• 
t 
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At(t) rvX(It(t); 6'1) (16)t 
at It(t) .'ii!:. o. ,. The dependence of the ratio ~ (t/
At(t) on It(t) is described by the relation t 

~ { 1 a 
\JA (t)/It(t) 	= -b In - 

t 	 It(t) 
.. which is valid within the interval It(t) 

confidence level 0.). Here 
a .. 1.02 - l.J.lO-SEt 

and b ... 1).6 ;t 1.). 

}1/2
• ( 17) 

= 0.1-0.9S at 

(18) 

The behavior of the fractional variation coeffi 
cient for lateral EOP spreading f)A (r)/Ir(r) is more 
complicated t~ in the case of longitudinal EOP deve
lopment. This is displayed in Figure 2. But values of 
Ar(r) are also normally distributed like At(t). 

It is of great practical interest to know how the 
spatial shape of ECP evolves in a general way when ener
gy Et of primary gamma quanta increases. Relative infor
mation is contained in a dependence on Etof the follo
wing quantities: 6"r' (\. ~~o and 6"t/t. where () deno
tes a root mean square deviation: ro and t being corres
ponding average values which can be estimated from (14). 
(4) and (11). It turned out to fit these dependences by 
the simple formulae of the same form: 

~ .. <X4 + ~4·lnEt. 
Bt -cts +{3S· lnEt. 
O'~o .. a6 + 	 e6• 1nEt. 
atlt .. c:i.7 + 	 ~7·lnEr· 

Numerical values of the para
meters at; i and ~ i (i=4, •••• 7) 

are shown in the Table with 
corresponding chi-square va
lues." 

'" 
Pigure 2 ob dJ li:l /1} 111 IZ i1'i ctJ tI!I d9 X,. 
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(19) 
(20) 
(21) 

(22) 
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~ 
Numerical values of the constants ol. and ~ of cor
responding formulae each having number (N) ~d related 
chi-square values with n degrees of freedom (r.u. -ra
diation unit) 

Formula ct.i number 1. 

(8') 1 -0.011:0.09 
(8") 
(12) 

2 

3 

(-1.0 1: 0.1) r.u. 
(4.6:!: 0.4)10-2 r.u. 

( 19) 4 (-0.11 :!: 0.24) r.u. 

(20) 5 (-6.2 1: 1.6) r.u. 

(21) 6 0.53 :!: 0,48 

}-~/nf3i 

0.24 1: 0.01 1.1/4 
1.7 1: O. 1 6/4 
4.5 :!: 0.1 11.5/22 

0.11 1: 0.04 2.3/4 
1.65 :!: 0.24 1.5/4 
0.01 :!: 0.01 0.1/4 

(22) 1 1.53 :!: 0.13 -0.05 1: O. 11 0.02/4 

4. CONCLUSION 
We have constructed a simple phenomenological 

model of electromagnetic cascade process initiated by 
high-energy gamma quanta in heavy media. This model is 
based on experimental data obtained using pictures 
from xenon bubble chamber of ITEP (Moscow). Our model 
is sufficiently compact and convenient from the prac
tical point of view, in particular, for determination 
of the spatial (i.e., longitudinal and lateral) dimen
sions of electromagnetic showers as well as fluctua
tions of these characteristics within the large enough 
energy interval Er .. 200-3500 MeV. The parameters ot 
the model reach their asymptotic regime as early as at 
E ! 3500 MeV and no more significant elementary pro

t cess making up an ECP includes at higher energies. So, 

one can hope that our model is trustworthy at least 

qualitatively tar beyond investigated region of Er,too. 
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CJIOBHHCKHH B. 
CTaTHCTHqeCKoe MOAeJIHpOBaHHe 
B ~eHOMeHOJIOrHqeCKOM onHcaHHH 
KacKa.,D'.HbIX npOll,eCCOB, BblSblBaeMbIX 
raMMa-KBaHTaMH 

El-87-76 

3JIeKTpOMarHHTHb~ 

BbICOK03HepreTH'leCKHMH 

PaooTa COAep)KHT OnHCaHHe npOCTOH 4leHoMeHOJIOrHqeCKOH MO-,,
AeJIH 3JIeKTpOMarHHTHb~ KaCKaA~ npOll,eCCOB, Bbl3bIBaeMblX raMMa.... 
KBaHTaMa DOJIbWHX 3HeprHH B llJIC)THblX nOrJIOTHTeJIHX. B paMKax 
3TOH MOAenH onHcaHa npOCTpaHCTBeHHaH CTpYKTypa H 4lJIYKTya
IJ,HH HOHHSall,HOHHb~ nOTep& JIllBHeBblX 3JIeKTpOHOB H n03HTpOHOB. 
KOHKpeTHble 4l0PMYJlbI nOJIyqeHbl B peSYJIbTaTe CTaTHCTHqeCKOro 
aHaJIHSa 3J(cnepHMeHTaJIbHbIX AaHfJb~ C KceHOHOBOH nYSblpbKOBOH 
KaMepbl aT341 /MOCKBa/. 

Pa50'ra BbInOJIHeHa B Jla50paTOPHH BbI~CJlHTeJIbHOH TeXHHKH 
Ii aBTOMaTHSaIJ,HH OMHH. 

npenpHHT 06'1te.D:HHeHHOro HHCTHTyra H.D:epHblx Hccne.D:oBaHHH. ,1ly6Ha 1987 
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Statistical Modeling in Phenomenological 
Description of Electromagnetic Cascade 
Processes Produced by High-Energy Gamma Quanta 

The work contains a description of a simple phenomeno
logical model of electromagnetic cascade process (ECP) 
initiated by high-energy gamma quanta in heavy absorbents. 
Whithin this model spatial structure and fluctuations of 
ionization losses are described. Concrete formulae have 
been obtained as a result of statistical analysis of ex
perimental data from the xenon bubble chamber of lTEP 
(Moscow). 
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