00bEAMHEHHDIN

HHCTHTYT
AASPHbIX
HCCAGAOBANKA
AYGH
E1-87-76
B.SLOWINSKI
STATISTICAL MODELING <

IN PHENOMENOLOGICAL DESCRIPTION
OF ELECTROMAGNETIC CASCADE
PROCESSES PRODUCED BY HIGH-ENERGY
GAMMA QUANTA

Submitted to the Second International Tampere
Conference in Statistics, June 1-4, 1937

1987




1. INTRODUCTION

In high energy physice and its applications a
problem arises often to build a simple model describing
reliably enough general features of a given physical
Process when an analytical approach to this problem fails
completely on the practicel level, Such a model is re-
quired, for example, to predict a behavior of some cha-
racteristics of this procegs within some intervals of
values of parsmeters depending on external conditions
which can be changed. If a complex process under consi-
deration may be expressed as a superpogition or a se-
quence of some numbers of more elementary processes ha-
ving exact analytical description or being determined
by another way, then the former process can be recon-
gtructed using computer techniques. But in this case
one can get concrete numerical results only (numbers,

distributions) at some fixed conditions and to obtain
another results of this kind at enother conditions it is
necessary to pgrform such calculations &ll over again,
etc. This procedure being trivial iln principle often
needs much time of big computers, as well as the con-
frontation of final results with experimental data is
sometimes expedient, especlally when the process is com~
plicated (i.e., intranuclear casgcade process). On the
other hand, experimental investigations of the processes
under congideration are not possible within sufficient-
1y wide intervals of external parameter values.

As an example let us discuss an electromagnetic
cascade process (ECP or shower) produced by high-ener-
gy gamma quanta in heavy media. This process is one of
the oldest being studied in high energy asnd cosmic ray
physics. It consists of three leading elementary pheno-
mena: radiation and pair production, which make the sho-
wer posgible, and jonization as & stopping factor. The
simplest one-dimensional approach to this statistical
problem first put forward 50 years ago by Bhabhs and
Heitler nowadays has no practical applications because
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of its limitations. On the other hand, the three-dimen-
tional cascade theory as based on the equations (Rama~
krighnan{1962)):
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even in the small angle € limitation when the process
can be treated as markovien does not exhsust the problem
providing information about average ECP characteristics
only without fluctuations and correlations which are ve-
ry important in practice. Moreover, the resolution of
these equations is a matter of great difficulties. Here
P and T are the numbers of electrons and photons with
the (E, E+dE) energy at the distance (§ h? +df) from a
shower axis (SA), correspondingly (x and y are the co-
ordinates of % }J; A, B, C, D are some quantities taking
into account probabllities of partisl elementary proces—-
geg; the ghower depth t is measured along the 34, 6, and
8, are the components of the shower particle angle © in
the (x, y) plane.

S0, although all elementary processes making up
the ECP are strictly known long ago the user can't be
satisfied at present to have a sufficiently convenient
tool in his practice (for example, to degign high-ener-
gy particle detectors). Therefore attempts to obtain
analytical approximations of the behavior of some gene-
ral characterigtics of the ECP using both experimantal
and computer simulated data are undertaken, Longo{1975)
S2owinski(1981). But up to last years these attempts
give mainly a fragmentary picture of the ECP only for
lack of complete information about ECP {experiment) and
because the problem is complicated enough.

2. SPATIAL DISTRIBUTION OPF AVERAGE IONIZATION LOSSES

In ECP modeling it is more Interesting then P and
£din (1) and (1”) the dependence on primary gamms quan-
ta energy Er of average electron and positron (later:
electron) ionization losses (AIL), AE(Er,Bo,t,g)/Av,
released inside & ring having 0 as the radius and Ap

as its thickness in the (x, y) plane at the shower depth
t, and with the thickness At along the SA, so that the
volume is equal to AV = 2]{"9[_\961:. Here media isotropy
is supposed to take place, and the predetermined cut-off
energy E _of electrons being observed may be put to be
equal to zero. To build a simple ECP model one must find
out such function F(t,glEr) which satisfies the equation
AE(Eyt,9) (2)
omodghy T U8R |
where notation F(t,glEr) means that spatial AIL distri-
bution is regarded as & function of primary gamma quan-
ta energy E;-(the parameter Ej is omitted taking into
account that Eoz 0). This may be done in principle by
three ways: 1/ as the solution of en equstion similar
to (17) and (17); 2/ by means of the computer ECP simu-~
lation and, as a next step, a statistical approximation
of obtained numerical data; 3/ the game way as in 2/ but
with experimental data as former information. The first
approach involves the difficulties mentioned above. The
gecond one is universal in principle and has no ghort-
comings pointed out, but es has been already remarked
verification of computer gimulation results with expe-
rimental data is needed. Therefore in our works, Slo-
wireki(1984), empirical information as & basis of sia-
tistical modeling of (2) hes been used. Unfortunately
in such general form the function F(t,flE;) is difficult
to be determined from a sample of experimental data
which, for example, can conaist of a set of random num-
bers z(i D (Ep= (AE(Ep,t4, Q) /AV;), obtained each
taken aeparately at fixed values of coordinates ti and
9 and at the fixed value of energy Er for each 1l-th
ECP event registered by the detector. Here I=ml,e00 ,H,

N being the sample size, 1 and j are the numbersg of the
lattice cell within which the meagurement . of 2( lE )
has been made. Therefore let us write the runction )
F(t,grEF) as & product of the function ?t(trEr) degexri~
bing the longitudinel AIL distribution and the conditio-
nal distribution F (glt;Er) for lateral AIL spreading:

P(t,91Bp) = Py (¢1Eg)-F (PI4:Ep).  (3)



Now the one-dimengional functions Ft and Ff can be egsi~
1y fitted to the data using standard methods.

2.1, bongitudinal disribution

We have approximated the longitudinal AIL distribu-~
tion F (tlEt) by the Weibull fumction:
a, t %277 t &,
PEIEY) = mog () exp/-() 1/, (@)

where a, is the normalization coefficient, i.e.

oo
JFt(tl‘Br)-dt = Ep, (5)

&, and a, are the parameters depending on Ey which in
one’s turn are to be estimated from sample.

There are certain reasons of the general matter to
choose the Weibull function as the Ft distribution. Fir-
gtly, according to some model considerations based on
the Central Limit Theorem one can expect that at high
enough values of Ey when a number of shower electrons
is sufficiently large the function ?t must tend to the
normal distribution at high t values. Secondly, from the
practical point of view it is desirable to have such ap-
proximations for Ft which depends on minimael number of
parameters only and their dependence on energy Ef may
be traced reliably enough within sufficiently large ran-
ge of E? values to make possible to predict the AIL be~
havior at such energy E; when both measurements and cal-
culations are too difficult to be reslised or even pro-
blematic. Thirdly, for some practical purposes it is
convenient to have not only e simple form of the func-
tion Ft but also of its moments and even of the inte-
gral t

E(t) = jp (+' tEp)-at’ (6)

In partlcular, the majority of shower detectors can re-
gister just the E{t) vemlue which in the case of the Wei-
bull function has very simple form:

a
E(t) = Ef{1 - exp/—(é%) 1/}- (1)

In Fig. 1 the function (7)
is compared with experimen- ’?9 :&;?
tel date. Then, using the al jf 47
values Em(t) measured insi- |
de the t thickness of & " §Qz
shower absorbend, it is eas- g4
1y to estimate hy the ite- %
ration method the value Er a3
of & primary gamma quantum az
producing shower. Simple ap- o
proximations of Ey dependen- ¢,
ce of the parameters 8y and
8, has been obtained too:
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Figure 1
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where & 1 062, ﬂ1 and ﬁz are the numbers estimated
for sample of experimental data (Table 1), Because at
values greater than some hundreds of MeV the leading
partial elementary processes of ECP reach their asymp-
totical regime and not any other gignificant process in-
cludes at all one can expect that longitudinal AIL dis-
tribution in ECP of the form (4) and having thé¢ parame-
ters given by the fits (87) and (8”) is trustworthy for
practice with a good enough accuracy when EPZ 200 MeV
in heavy media.

2,2, Lateral distribution

More complicated is a problem of estimation of la-
teral ECP distribution, i.e. the function Fp (p1t;Ep) in
(3). The thing is that in reality experlmentally obser-
ved values are rather not the numbers 2; 1,3) (Eg) at fix-
ed i but the plene distribution of ionizatlon losses
(1L fr(rjt;Er), where r is the projection of @ on the
SA plane (being at the pame time the projection plane).
The fumctions Fg' and fr are connected by means of
the following integral equation

o3
1.(r1t;By) = zf (ptt; Er)—~—3-— (9
T 1 - (x/9)?



when the xenon bubble chamber 1s used as a shower de-
tector. The solution of this equation has the form:

[
; L (e B)) e+ (10)
¥ o 1- (/)
The lateral AIL distribution fr(rlt;Ea.) has been ap~
proximated by the exponential function normelized to 1:

£ (rit;Ep) = :—1— exp(- —£—), (11)

r(t) T(¢)
where the parameter T{t) is found 1o be proportional
to the ghower depth t:

F(1) = 00y + Pt (12)

within all range of By values investigated, i.e., Ep=
200 - 3500 MeV and independent on Ey . Here o, and {5 3
are the constants pregented in the Table.

3. PLUCTUATIONS

It 18 expedient to determine this importent cha-
racteriatics of ECP mas a fractional variation of some
part A of IL released within a layer of absorbent insi-
de which in aversge the part X of IL is registered. So,
for longitudinal shower development we have GJAt(t)/It(t)
ahd
and for lateral ECP spreading - §, (.y/K (r), where
Ir(r) may be determined from (11) taking into account
that in the SA plene AIL have the form

£(t,71Ep) = P (tIEQ 1 (x11:Ep), (14)

whence Lad r
exp(~ “/7(t))
I(r) = 2{1 - '(0 Py (41Bp)- e,

It has been escertained that A‘t is & normally distribu-
ted random variable with mean It {t) and standsrd devia~
tion G‘it, i.e.,

at}. (15)

: , 2

at K, (t) 2 0.5. The dependence of the ratio G‘A (t)/
K, (t) on K, (t) is described by the relation t

1/2
[

G;t(t)/lt(t) {lm_2 (1

b X (t)
which is valid within the interval X;(t) = 0.1-0.95 at
confidence level 0.3. Here

a = 1.02 - 1.3-10Ep (18)
and b = 13.6 ¥ 1.3,

The behavior of the fractional variation coeffi-
cient for lateral ECP gpreading 61 (r)/Ir(r) is more
complicated than in the case of longitudinal ECP deve-
lopment. This is displayed in Figure 2. But values of
Ar(r) are also normally distributed like A, (t).

It ig of great practical interest to know how the
spatial shape of ECP evolves in & general way when enerw
ey Er of primary gamma quanta increases. Relative infor-
mation is contained in a dependence on Eg-of the follo-
wing quantities: Glr’ G’;, S;j}o and G} /%, where § deno-
tes a root mean square deviation: 'i-o and ¥ being corres-
ponding average values which can be estimated from (14),
(4) and (11). It turned out to fit these dependences by
the simple formulae of the same form:

0 = o, + Py 1y, (19)
6¢ =05 +]35-lnE‘—, (20)
O/, =0lg + Pgr1nBp, (21)
Q/F =olq + PoelnEp (22)

Rumerical values of the para-~
meters o, and f5; (i=4,...,7)
are shown in the Teble with
corregsponding chi-square va-
lues. '
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Table

Numerical values of the constants o, and ﬁ of cor=
responding formulse each having numbdr (N) afid related

chi-square values with n degrees of freedom (r.u. ~ra-

diation unit)

iﬁﬁ‘éﬁa i o i ["’ i 1’121/ n '
(8’) 1 -0.07 ¥ 0.09 0.24 £ 0.01 1.7/4 .
(87 2 (~7.0 % 0.7) reu. 1.7 % 0.1 6/4 .
(12) 3 (4.6 * 0.4)10%r.u. 4.5 ¥ 0.1 17.5/22
(19) 4 (-0.17 ¥ 0.24) rou. 0.11 1 0.04 2.3/4
(20) 5 (6.2 % 1.6) Teu. 1.65 £ 0,24 1.5/4
(1) 6 0.53 % 0.48 0.07 ¥ 0.07 0.1/4
(22) 7 1.53 % 0.73 -0.05 % 0.11 0.02/4

4, CONCLUSION

We have constructed a simple phenomenological
model of electromagnetic cascade process initiated by
high~energy gemmas quanta in heavy media. This model is
based on experimental date obtained using pictures
#from xenon bubble chamber of ITEP (Moscow). Our model
igs sufficlently compact and convenient from the prac-—
tical point of view, in particular, for determination
of the spatial (i.e., longitudinsl and lateral) dimen-
sione of electromagnetic showers as well as fiuctus~
tions of these characteristics within the large encugh
energy interval Er.s 200-3500 MeV. The parameters of
the model reach their ssymptotic regime as early as at
Erﬁ 3500 MeV and no more significant elementary pro-
cess making up an ECP includes at higher energies. So,
one can hope that our model is trustworthy at least
qualitatively far beyond investigated region of Er,too.
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PaboTa cOOepXuT ONHCaHHe INpocToit deHOMeHOJIOTHUeCcKOol Mo-
penu 3JIeKTPOMArHHTHBX KACKA[HHX IpOLEeCCOB,BH3BAEMBIX IaMMa=
KBaHTaMy GONBHUX 3Hepru#lt B IUIOTHRX NOIVIOTHTENIsX. B pamkax
3TOH MOJENH ONHCAaHA MNpOoCTPAHCTBEHHaA CTPYKTYDA M baykKTya—
IMH HOHM3AIMOHHBIX IOTEepPh JIMBHEBHIX 3JIEKTPOHOB U IIOSHUTDOHOB,.
KoukperHme dopMylsl nony4deHsl B DPE3YNbTATE CTATHCTHYECKOTO
aHanu3a SKCIepHMEHTANIBHLIX JaHHBIX C KCEHOHOBOH IYy3BPBKOBOH
kameph UT3¢ /Mocksa/.

Pafiora BpmonHeHa B JIa60opaTOPHM BhiUMCIHMTEJIBHON TeXHUKH
v aBrToMmaTusauuu OHUAH.
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SY¥owidski B.

Statistical Modeling in Phenomenological
Description of Electromagnetic Cascade
Processes Produced by High-Energy Gamma Quanta

The work contains a description of a simple phenomeno-
logical model of electromagnetic cascade process (ECP)
initiated by high-energy gamma quanta in heavy absorbents.
Whithin this model spatial structure and fluctuations of
ionization losses are described. Concrete formulae have
been obtained as a result of statistical analysis of ex-
perimental data from the xenon bubble chamber of ITEP
(Moscow) .
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