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1. Introduction 

The structure of commutators in algebras of bounded operators (espe
cially in ~('ae.) and von Neumann algebras) was investigated by many 

authors. Let us.only remember the paper of Drown aAd Pea~cy /?/ which 
can be regarded as some final step in clarifying the situation for 

~ ('Clt): an operator A E "C('Cle) is a commutator i f and only if it is 

not of the form A = ~ I + C, Â 1 O and C a compact op~rator (~ 

separable, infinite dimensional Hilbert space). In finite dimensio

nal spaces one has the classical result: a Quadratic matrix is a 
commutator if and only if it has trace zero. 

Unbounded operators enter if one considers the' CCR (cf ./13/). TO'the 
author's knowledge up to now commutators in algebras of unbounded 

operators were not inve~tigated. 

The pres~nt paper should be regarded as a first step toward a syste

matic study of commutators in the context of topotogical algebras of 

unbounded operators. ~he aim 15 first of alI to stimulate suçh inve
stigations by presenting some conjectures and problems on the basie 

of the results obtained 50 faro We restrict ourselves to maximal 
Op"-a 1gebras t,}. (!i ) de fined on lllomains o f t he fo rm is = f\ '1S (m) 

""'~o 
(cf. sect. 2). The· paper is organized as follows. The ~econd section 

contains the necessary·notions 4 nQtations and preliminar~es. Section 

3 concerns diagonal and quasidiagonal operators. Here, the pO~6ibili

ty of representing an operator as commulator is related with the 

structure of the dom~in n of the algeb~a. Several criteria are given 

which i~ply that such oper~tors' are çommutators. In section 4 we con

sider finite dimensional operators. If ~ is not of type (I), any fi

nite dimensional operâtor is a commutator. If ~ is of type (I), then 

it is proved that "enough" finite dimensional operators are co~muta

t o r s , Combining considerations of 's e c t í.o ns 3 and 4 one gets as a main 

result that for the domains under consideration the co~mu~ators are 

~Il' -dense in i: (3S' ). This is the analogous r esu Lt to t he bounded ca

se. Section 5 contains some facts about selfcommutators. Irl s~ction fi 

we indicate connections with Quasi-"-algebras and formulate some con
jectures. 
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2. Preliminaries 

For a dense linear manifold ~ in a separable Hilbert space ~ the 

set i~(:n) =tA: Ate 1) • A~:iJc:1S~ forms a M-algebra with re

spect to the usual operations and the involution A ~ A+ = AM\~ 

An opM-algebra A (!) is a M-subalgebra of ~.., ('31) containing the 

identity operator I. The graph topology t on'1S induced by LI; ( Ir) 

is g1ven by the family of seminorms 

b :;, 'f _ \\ A Cf \\ f o r a 11 A ~ r..'" (1) .) • 

Among the many possible topolonies on I.,.... ( 11 ) we mention only the so

called uniform topology 'l:b /6/ given by theseminorms 

A _ \\ A \\.u. = s u p l <. 'f •A ~ >\ , 
't,,," U'" 

where JL runs over alI t-bounded subsets of t . The set 

t ('ri) = {C f: Lt ( 1) ): c ,», is relatively t-compact for a11 t-bounded 

.u.c.b~ 

is a t wo-cs de d M-ideal in L'" (n ). It appears that t n í s set is a veí 

ry appropriate qeneralization of the ideal of compact operators in 

~(~ )/5/,/10/. If 'b l ':1 is an (F)-space then the "C.J1-closure of 

the set of finite dimensional operators of .(.+ (b) coincides with 

e (D). In this paper we consider only (F)-domains of the form 

1l 2)-(T) a 1\ 1') (Tn ) , ::I 

nl.O 

where T = TM ~ I is a selfadjoint operator which can be supposed to 

have the f~llowing structure: 

-T'f",= tn'f", ' n = 1.2, •.• , ('n.) - ort:honormal basis in~. 

lf necessary one can suppose tnEo N . Write T"'" (t )- o r more exactlyn 
T:.(tn),('fn.)' Further we use the following notations. Let T .. 

~ ~ dE~ be the spectral resolution of T. Then the operators P = 
4 ~ ,.. 

.. ~ dE). belong to J:.+( t) for a11 1 !:J'- <- and -aq~)= P,..'at cb. It 

will " be frequently used that r o r aU A (J:."'( J) ): A = 't:1l -11m PIA AP}L' ,.... 
We .will make use of the classification of domains of closed operators 

and operator algebras given in /8/,"9/ and recall only some facts. 

1S is o f type (1) ('l\ E" (I» t f there is no infinite dimensional 

Hilbert space .o.cb . This is equivalent to 11m t .. OJ •n 
b is of type (lI) (Ir t (lI» if there is a splitting 

b .. 'alolil ~o , ~o -infinita dimensional Hilbert space, 11o t ( I ) . 

This ls equivalent to a decomposition (t n) .. (t~) U (t~) , (t~) 

bounded infinite sequence, 11m t~ .. 00 , Le.,b .. 'CI.lil 1,s-(T1), 

2 

Ti"'" (t~},("tn.) for some orthonormal basis in ~; • 

~ is o f type (lII) (<<t E.(IlI» if T has infinite many eigenvalues 

with infinite multiplicity (t~). lim t~ = 00 • Therefore 

11'::1) lil 'Kwa. lil1So with 15 0 E:(I) o r l\.::I (O), T '"OI. = t' I,Le.

~) ~ n
 

~~is the eigenspace af T corresponding to the eigenvalue t~. The 

sum above means: 

L lil ~'" "" t"t::l L lil "\,,,, : ~'" t ~fl' L (t ~ ) 2k l~ "'\- n.nJ. <: eO f O r a 11 k t til 
(t~ ) n 

Especia11y. J E (IlIA ) if T can be cho s en in s uch a way that ISo = (O). 

In section 3 we will use the fact that alI of the 1("" n=1,2, ••• can 

be identified {e.g.via some fixed isometric isomorphism) with some 

Hilbert space )to Thus it makes sense to consider any ~L as an ele

ment of ~à ' too • 

In what fo11ows we will fix the orthonormal basis ('f",) and a f it Ls 

not indicated otherwise a Ll constructions will be dori e with respect 

to this (4ft\.)' In general it is even necessary to fix also the or

dering 'f". 'fa. ,... (i.e • ('f",,) and (Cf.no,,,,» = (,,\-,,) for some permu

tation 3f of IN are in general not equ:Lvalent wit·h respect to the 

const ruct ions.). The following o pe r a t o r s are most ly used: 

diagonal operator Da : Da 'f" = a Cf",n 

right sh~ft R R Cf"" ::I Cf",." 
weighted right shift R : a RaCf", ". a n Cfn.~" 

left s h f t L: L 'f",'" 'f".• ) 'fo = Oí 

weighted left shi ft La: La'f",::r a n "'''-,\, ~. = O 

As above, we often write Daa D~(an)' Here a = (a ) is a sequence of n 
complex numbers. 

A first point is to decide whether or not such an operator belongs 

to .(.+(15). It 1s easy to wr1te down some formal con d t t on s , r-tamely:í 

Da E. c. n ) if and only if I a n, " C t~ for alI n and some C,r > O (1) 

R r e s p , La t I.,·(b) if and only if there are C,r >0 so that a 

I a t 'C t r r es o • , a n\ t " C t~ for a I I n , ( 2)n, n+1 n n_ 1 

For reasons which will become clear a little bit later it is useful 

to introduce some more general. notions. 

Detinition 2.1 

i) A sequence of positive numbers (sn) is said to be admissible for 

R La resp. if there are C,r>O so that for alI n 
a, 
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r	 rI a n\. 5 n +1 "= C s n r e 5 p , 1a n\ s n -1 lo C S n . ( ? • ) 

lf	 a = 1 for alI n we call (sn) simply shlft-admlssible. n 
li) Let (a (t be sequences wí t h an~ (., t '1 O. is said ton), n) n (a n) 
be .i.!.n)-addable (ar T-addable I f T"'(t n) i f there are C,r>O with 

r ~ 
Ib I f: C t for alI n~M w.í t h b =~ aJo, (3)n n	 n ." 

Since most of the r e p r os e n t a t ons of operators as commutators useí 

(explicitly ar implicitly) t he shift operator, it seems worthwhile to 

add some remarks. In general the estimations (?) are not very help

fuI to decide whether or not R,Lt.t.+(~). The reason is, roughly 
speaking, that in the seouence (t the eigenvalues with infiniten) 
multiplicity can be Brranged in a complicated manner (cf.the classi 
ficatian sketched abave). So, it ·may happen that (t n) is not shift 

admissible, Le. R,L~.Ct(J:» but (tjt,t\,) is shift admiSsiblé for so

me permutation ~ • Without proof we state some observations: 

1.	 'lSf.(I): Then R,L~L""(fS) means that (t n) does not increase toa 

f as t , Note that ar even is not yet toa f as t ,t n'" nn t n"'" (n 1)n 

2.	 ~E:(II): R,L are never in ~:(%5). More exactly, there s no perí 

mutation 3'r of IN 50 t ha t (t3t'c.n.) ) is shift-admissible. 

3.	 b" E. (111): Here on e can state two r'e s u Lt s , 

i) If (t~) is shift-admissible, then automatically !r. E (IIIA ) . 

ii) If Ctn) is shift-admissible, then there is a 3r 50 t hat (t. 3f Ul.I ) 

is also shift-admissible. 

The next lemma states that the notions defined in Definition ?1 are 

independent of the representing operator T t f ~~ (I). 

Lemma 2.::> 

13 00Let D = ~eo (T) (S) ~ (I), T 'fn = tnCf't. ' S "\'n. c: sn"tn. and let 

Ra,L (R~, L~) be the weighted shift operators corresponding to ('n.)a 

( ( " ..... ) ). Then 

i) Ra,L ~ .t+(~ ) Lf and only if R~, L~ E:. i.~ OS )a 

ii) (a i8 T-addable if and only if (a n) is S-addabl~.n) 

Proo f: 

In /11i there was proved that for some C,D, r> O and for a Ll, n: 

C sl/r !: t "O s r 
n n n 

Ther~fore, if an estimation of type (2) ar (3) is valid for (t n) it 
is also valid for (sn) and vice versa (of course with other constants). 

q.e.d 
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Most of our further considerations are based on matrix representations 

of operators. lf not stated otherwise we always use the representa

tion with respect to the canonical basis (iVl.) and write AIV(A )mn 
with Am = <~m.,A ql ... > • n 

3.	 Diagonal and quasidiaqOnal operators 

In this section we demonstrate some typical features for commutators 

in L+(~). Therefore we don't start with the most general result (in 
this context) but prefer a more inductive reoresentation of the re

s u Lt s , We start with ~ E. (I). 

Let Da~.t+(ts), a = (an). Then one has the formal r e La t í.on 

Da	 = Lb~ - RLb (4) 

with b = (b ) and b = ~ a j • 
n n M 

Since we are interested in commutator representations within L+ (~), 

only operators from L" rts) are a I l owed , If R,LE L+OS), then Lb = 

= Db.L and one has Lb ~ t"('lS ) if and only 1f Db t e('~í}. 

Lemma 3.1 

Let trE(I), R,L E: !."'C 1S') and Da a diagonal operator with T-addable 

sequence a = (an). lhen Da i5 a commutator, given by (4). 

Remark 3.2 

lf one uses representation (4), one has, 50 to say, two contrary re

strictions. lhe first one is R.LtL+(J:S), 1.e. the (t ) should not inn
crease toa wild. On the other hand, if (t ) increases "slowly", then n 
ir will happen, that some (ar even many) diagonal operators Da E: L+(1j ) 

will not have a T-addable diagonal sequence a. For example, if T ~ 

~ (10g(n+1», tren this sequence iteelf is not T-addable. Thus,it 

does not wonder, that there is an optimal case (actually.many such 

cases), i.e. an optimal growth of (t >. n 

Lemma '3.3 

Each of the follewing conditions implies that any áiagonal operator
 

Da ~.(:'·(tJ) is a commutator.
 
i) ~ is isomorphic to the sequence space ~ (the Schwartz ena ce o f
 

rapidly decreas1ng sequences). 

ii) 15 is isomo rphic to a sequence apace cont ained In h and R.L ~ 

E:C·(J5). 

Proof: 

i} The proof is simple. Without 1055 of generality we may suppose 
rt har :s. = :JC>&> (T) with t = n , Da ~ L~ (~) means \ a n\ "C n n 
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i o r some C.r>O. Then (8 ) is T-addable because of the estimation n 
r 1f C n + • 

.ã-i. J =" j J=i 

c l e e r Iv , R,L E (.;t'( li'). and so the proof is complete. 

I bnt =1 i: a 
j

, ~ "Ê. \a \ f C t= jr 

ii) Here one combines an analogous estimation as in i) with the esti-

Smation n f C t for s ome C,S >0) • where T <v ~()o,)(T) ç.-6
n 

(t n), 

(cf.j81 and 19/). This gives the T-addability o f (a So the assern). 
tion follows fro.m R.L e..c..+(D" ) and (4). 

q.e.d. 

Remark that in the proof of Lemma 3.? it is implicitly used that 

both R.L é L+(~ ) and the T-addability of (a ) does not depend on 
n 

the con c r e t e r ep r e s en t e t í on 7) .. 1i""(T). As mentioned in section ? 

this is true only for :rE(I). 

Clearly. the representation of an operatQr as commutator is not unique 

but it seems that - at l~ast fo.r di~gonal operators - the growth of 

the sequence (a ) determines the degree of unboundedness of A or/andn 
B if Da '" AB - BA. Thus. the following conjecture may be true r 

Conjecture 1 

If D~ E I:" (tr) h a s a representation Da = AB - BA. A.B E !!'(J:5), then 

Da has also the representation (4}. More specifically: Lf ~ E (I). 

then T is a commutator if and only if (t is shift-admissible andn) 
T-addable. 

The following conjecture also seems reasonable. 

Conjecture 2 

Let n E.'(I). If the identity I is a commutator, then ';J3[t] is a 

nuclear spac~. 

Now we turn to. qua s d í aqo n a I .operators, an d we will again use someí 

ideas from the bounded case. In /11 there was prove~ the fol10wing: 

Let ~ "" ~Q li! leo @ ••• ; S (Sij) an operator on ~ with 

. S ij E. 'f.l (~o >, • L \\ Sij \\ < 00 • Then : S "" LW - WL where 
i.j 

L = (L i j) , '= Ói.+\.j I 'K. (I~. - identity on 'ae o ) ; Li j
 
W ,. with
(Wi j ) 

,. O • j =1. 2 •••• ; " O. i' O oro j " OW1 j 'Ni j (5) 

W,i j = Wi _ 1 • j _ 1 + Si_l.j • i=2,3, •• q=1.2, ••• 

6 

Now let us return to t.. .. (b) with 'b~(q. For S (Sij) t-!"+(tt)r>J 

we de fine' t he mat ri ces L (L and W rv (Wij) in t he analogous wayr>J 
i j) 

as ábove. That means. now alI Sij' are E. C I~o must be4Li j, Wi j 

replaced simply by 1. Again one has formally 

S = LW - WL (6) 

In case S = Da (6) is equivaIent to (4). 

If we again suppose R.L E.t+(t)., then the only question to decide is 

whether o r not (W defines an operatorwE!..+(b). In general this
i j) 

is a difficuIt task. Most easily one can handle this for quasidiago

nal operators. An operator Q E: .(,+(1}) is said to be guasidlagonal 

(with respect to (<fn.) as usual) if its matrix representation (Qij) 

ha~ only finite many Iower and upper subdiagonals different from ze

ro. i.e. schematically: 

Q~[~]' 
Denote these subdiagonals (from left to right) by Q-~, ••• ,Qo, ••• ,Qn 

arrd write Q = t Q-m •••• ,Qn1 .Moreover denote the sequences o f mat rix

elements corresponding to Qj oy (q~j» = q(j), k=1,2, •••• ; -m.k~n. 

I:::i. e • q (j) t Qk • k + j • k = 1 • 2,' • •• ; O!<j !<n 
k ' 

Qk-j.k • k=l.?, ••• : -m~j( O 

Proposi t 'ion 3.4 

Let 1J E (I) and R.L ~ L+(~). A quasidiagonal operator Q -{Q •••Q"
-m rrI 

t L+(Z) is a commutator if alI sequences q(j), -m~j~n • are~·add

abIe. In this case one possible représentation is give~ by 

Q .. LW - WL 

where L is the left shift and W is given by (5). 
Proo f: 

That (W ) defines an operator W E.c..+{~) can be seen from the follow
i j 

Lng considerations. The definition of W implies that this is a Quasi

diagonal opérator of the same type as Q: 

w =tw_m, ••• ,WnJ z(W_m,o, ••• ,OJ + + (0" ••• ,0.W 1 · (7)
n 

The correspon~ing sequences w(j) are formed by the partial 8ums 

w(j) r. q~j). n 
te-i 
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Observe that any term in the sum (7) is obtained from a diagonal 

operator 0wU } 'via app Lí c a t ion of some power of R o r L. Therefore 

the assumption implies th8t any Dw(j) ~ L~ (n ) by (1) and any t~rm 

o f (7) also defines an o pe r ar o r belonging to .c+ ('J:S ). Thus IN E .c('2S" 

and the proof is complete. 
q.e.d. 

Corollary 3.5 

let n E fI), R,L ç.LT(1$). Then Ra,L are commutators a f a '(a as 
a n) 

T-addable. 

Remark t~at for Ra,L the T-addability of a (a automatically im
a n) 

plies Ra, La e r..+ ('1J ) • 

Now we consider the case ~. 

For ~E (11) we rema,-k only the following. Since in this case 

'h:: "ato li} ~OQ(Tl)' ~""(Tl) ~ (I) (cf .section 2). 

the results tor the bounded case and for type (I) can be combined 

to iden~ify a lot of operators of the form 

A· [~~ J · 8 • ~ Ot,). C <r.' ( l:!~(T,)) 

as commutators. [O B] [O 01 
Moreover, operators of the form A:: O O and hence also 8 O 

ara emm:fT:0.:T[:e :T_tr(:'a:r(:om:r' 
Next let t E. (111). In v í ew of the considerations of section ? we
 

consider firstthe case ~(IIIA)' Le.
 

't L ~ de..... (8) 

(t ~) 

If A:: ~ li} A , A f:'l3{'Je.,} and I\A \\ ~ C (t')s for alI n andL-. n n n.. n n 

appropriate C',s > O, then A E.(+(:S). In the case that the sum repre

senting A contains only finite many terms differe~t from zero, the 

results of the bounded case can be applied (cf.also Proposition 3.6). 

In the geneaal case one could proceed as follows. Suppose An::
 

.. (B~,Cn1 :: BnC - CnB • If B :: L IM and C .. L li) belong
n n 8 n Cn
 

to L+- (~), 't hen A :: t l3,c"1 • But this procedure s e ems to be not
 

8 

very useful for concrete app licat Lons , let us therefo.re describe 

another possibility to construct commutators. To do so, we will in

troduce a generalized shift operator which does not correspond to the 

orthonormal basis (~~) but to the representation (8). Lat 

"t "C "t .. ' "h , ••. ) ~ tf (c f , sect .2). Then define 

R"t .. (O, "\'.. , "\-1. , ••• L ~ :: ( "t 1.' "'\-~ , • •• ). 

Analogously to 'lS(I) one has: R.l E C( ti) r f and only if (t~) is
 

shift-admissible.
 

Now we use t he mat rix represent at ion o f A E t:"( tr) wi t h 'respect to (8)',
 

1.e., A'" (A1 j) • E. ~ ('C\e.~ , de~') ;: ~ (X ). It is natural to cal!Ai j 

"'1an operator o f t he f[O,ç O a 

A:: .~ ••~~~~. "'j 
generallzed diagonal operator o~ diagonal operator with respect to 

the representation (8). 
The notion of T-addability i5 generalized as follow5. Let A.. ~ li} Ant 

t .r... (ts > a generaUzed diagonal operator and 'A • an' n 
We say that A is T-addable 1f (a n) 1s (~~)-addable. 

Proposit ion 3.6 

Supposa 1) :: n-(T) ~ (IIIA>. (t~) - s h í f t e-a deu s s ab.Le and A t t,+(2S ) 

a T-addable generalized diagonal operator. Then A 15 a commutator. 

Proof: 

As 1n the proof o f Lemma 3.1 it t s aeen that formally 

A WR - RW (9) 
w1th 

[ 
O O O... ] [O Ai O O .l'R- I O O ••• t.c.·( n ) and VI ~ O O Ai.+A" Q
 

O", I.. O..••• . o O" O"
 
-. . ~ 

A1+A2+A.. -.3. >I 

This repre5entation is understood with respect to (8). To see that 

W ~ L+(~) one e5timates as followa: 

jlat "to • L li) "T", E b' • then \\ TjW "\'.~ :: \\ T i:: li} C i:::. A,,) "t.....,,\\2o ~ 
ft." "_,, 

s. i::. (t~+1)2j ( .z.. nA,,\\ )2 \\"\'1\.+,,\\2- = ~ (t~+1)2j ( ~ a,,}2 • (M). 
~.i. ~.~"'W" k=1 

51nce (8n ) was (t~)- addable, Le. ~ a "C (tn·)r for some c .r s o
"W" I' 

and aI) n, the e5timat10n can be continued 
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4. Finite dimensional operators 
( ) ~ C? ~ (t' ) :;> ( j + r) 11"t' \I~ "00 .
• L..-- n+1 9\."'1	 The aim of this section i5 to show that most of the finite dimensio""-i, 

The estimatian o f II rjw·,,\,u l is almost the s am e , Thus 'tI €o L+ (tJ ) •	 nal o p e r-a t o r-s are commutators. For t t (lI) o r E ( r t r ) the problem 

can be reduced to the bounded ca~e.
o.e.d. 

proposition 4.1Now one could prove several.variants of resul~s analogous to Lemma 3.3 

but we mention only one af them.	 Le t tr ~ (I). t h e n a n y fi n 1t e d i me n s i o n a 1 o p e r a t o r F E í..+ (1) ). i 5 a com 

mutator.]

Pr.oa f: 

Co ro lIa ry 3.7 ./ 

Let F = ~ ("t;. J • > 'X. .. • Since 'JJ ~ (I) there í s an infinita di-
I f t ~ C'.I n~ for some p.:. > O. then any bounded generalized diagonal "".'"

mensional Hilbert space ~o c't . Put ~. lin{"\"""'~t\.I"X"""J.",,'ato\'e 

operator is a commutator.
 
Then de..c'b and F =: FIl{,Hi)(~)has a large k e r'n e L, Co n s e oue n t Lv ,
 

1 
Now let us give a r e s u Lt wh í c h s valid in the g~neral case ir E (111).í 

F 1 =: [A1 ' 81:l , A1 ,B1 f. n (~.) . T h u s F '" F 1 li} O '" C A. 8 j , w it h
 
First remark that in a natural manner o o e r ar o r s A E ~ (ae.'1"). J-I. > 1
 

A '" Ai li} O , B '" B li} O. Here O denotes the zero operator on dt~( s e e sect .?) can be viewed i1S operators in .L1' (J5 ) identifying A 1 
and A f4Í O, O - zero o p e r a t o r on (dtl.....l)~ j • CLe a r Lv , A,B E ,tt(tJ) and we are doo e , 

a.e.d.
 
Pr.oposition .3.8
 

Now we consider domains ~ ~ {Il. The f í r s t r e s u l t sâys that there
 
Let b E (III). Then any o o e r a t o r A t~(Ct{"I). 1 .. ,...<00 s a co mmut at o r .
í 

are "enough" commutators in L+ (3:> ), c í , Proposition 3.9.
 

Proo f:
 
proposition 4'.2
 

The proof can be reduced to the bounded case. Let ~ ~~ be chosen
 
Let ts E (I). then the commutators are 'l: ll - d e n s e in L+ (ts).
50 that ~t")e'et("') is infinite dimensional. Then A has a large ker


nel f considered as an o p e r a r o r in l!> (lt,t'\l'). Hence t I s a commuta Proo f :
 í	 í 

t o r /4/. Con s e nu e n t Lv , /I is a I s o a commutator in .s:,+(;t").	 Let leI\. = lin t'f'I""''t'...\ and Qn the o r o j e c r t o o onta ~ .... then for a Ll 
o ..e. d , A EL+('õ):
 

Remember that for s r b í r r ar v lJoo (T) o n each ~ (~~\) the topology A = .~~ -li.m QnAQn = til -li'm A , (10)
n
 
induced by ~~ coincidns wlth the usual operator norm topo10qy. More


Then A f: E. (V- ... ) has the matrix representation
 
ov e r , the co mmut a t o r s are n o r m dense in ~('de.) for any i n f í n í t e di  n
 

ímensional separable Hi l b e r t 508ce at /'?/. Co mb n i n q r h e s e observa-	 A ......., fi
[ A 

n :]Or o n s with the f a c t t h a t ~~(~',..\) is 't1J -dense in s..,+ (.ir) ( viaí 

obvious embeddings) (sect .~). one ~ets:	 Let a .. Tr A • then 
n~. n n 

A = (1i)11m B(n)
't:li n j j
 

proposition 3.9
 

Le t ts = ~ <>O(T) ~ (II) o r ~ (IlI). Then the c o mrnut a t o r s a r e ~t1-den	 8(n)with	 where -a stands at the diago
j	 n[:n ...-:n...lse in J..... (!f ) • nal place with number (n+j+l). 

In section 4 this result wi11 be genera1ized to include also the ca
Since Tr Bjn) • O for alI j.n. the B~n) are commutators in ,(+05'). 

se 1S4:(I). Because t h í s wil1 use finite dimensional o pe r a t o r-s , we 

did not" include i t in this sect ion.	 Relations (10) and (11). together give the desired resulto]
 
Q.e.d. 
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I:
 

Combining Propositions 3.9 and 4.2 we get a main result of the paper. 

Let ts '" ~(T), 

Theorem 4.3 

then the co mmut e t o r s are 't:tl-dense in c: ~ ). 
This Theorem has 

mentioned. 

Corollary 4.4 

an interesting corollary which i5 worthwhile to be .j 

( 

Let b lO ~-(T), then on J:.+(cn) there are no nonzero ~~-continuou!l tcomplex homomorp~i5ms (i.e. multiplicative lih~ar functionals). 

Our final aim in this section Ls to' show that in the case that R,L 

belong to L" (tr ), any finite dimensional F ~ L+( 1S) is a commu t a t o r ; 

Prop051tion 4'.5 

Let 2:) = 'l>-(T) "and R,L~L'(~),i'theJ'l. any finita d I merrs í onaI FE'L"(~} 

is a commutator. 

To separate the technical details trom the main idea of the proof, 

we start with two Lemmata. 

Lemma 4.6 k 

Let F E .L~ (2~ ) be fin i t e dimensional, F	 L <''X.~ I':>"\'â
 
j"'l
 

( "tá) - an or t hono rma I s e t , Then there is an op e r aj o rv.S so that 

S =< S" ~ l, S"t~ '" Sj~ã ' ("ti )cts an orthonormal basis and n 

• lSao (5).
 

Proof)
 

We gtve only a sketch df the proof. First, we use a fact which seems
 

to be well-known, but for which we can not give a re,fe,r:ence.
 

Our domain ~(tJ ... "t>""'(T) [t) is an (F)-space with unconditional
 

bas Ls (y",). lS" = lin -t"\'4, ...,"'hd is a topologically complemented 

subspace. Let P1 be the orthoprojection from "ae onto lS"'I .. Clearly, 

P1 ~ s...+ (JS ). The above ment ioned fact consiste in the following: 

1Sz. '" (l-P1 )15 has also an unconditional basis. 

Next we apply a resulto of Mitjagin /12/: 

Let E .. Js - (T) [ t 1 and X c. E a complemented s ub sp e ce with uncondt

tional basis. Then X is topolog~cally isomorphic to a coordinate . j 
subspace of E. • Especially, X Ls isomorpníc to some bOO(B), "here 

M 
B • B.. ~ l 1s a selfadjoint operator in 4eL ",~.z. ' B~.... '" b ~"'" forn 11 
some orthonormal basis (~n.) in ~L • rhen one can put S '" lk ~ B, .. 

Ili lk t he ident i ty on b" and "tM" = 9"" n=1,2, ••.• q.e.d. 

12 

Let us remark, that in what tollows we will aplly Lemma 2.? several 

times without axplicit mention it. The advantage of the representa

tiOn of n described in Lemma 4.6 i9 a Slmple matrix representation 

for F	 [F F F(With[ ~::pe~:2to .~~~»l: 
1 ? 3 

F '" ( f ij) = • • • • • • • • • • • • • • • = O O' O 1 
fl<l f k ? ••••• 

9 o; q ...	 J 
where the right-hand matrix has· (kxk)-matrices os en~ries: 

Fi = (f ; 1 !: 1,j !: k; ••• F = , 1 6 i é, k , (n-1)k+l é,'i j)	 n (f i j ) 

i: j fi: nk; ••• 

Moreover. F = L F in an obvious manner.n 

This ma t r x representation suggasts a s c Lí t t i nq o f ~í 

"ae = L li) ]{ ..... dim)(." '" k ; put P to be the projection onto lC..... n 

Without 1055 of generality we may sunpose that 1 ~ 51 f s2 f s3 ••• 

Put a '" Snk and form a new operator A by setting A \1{~ = anl • 
n k 

Us í nq the essumption R.L E: L"( ts) we get 1:5 1l0<3(A). more exactly: 

:'mli L li) X",= \. ~ LliJ~... : ~y\'E:}{., •	 L él
n \1 ~... \\1. < 00 \,J m"~1 '" 

(an) 

'" {. 'f : L \I Pn 'f \\lo a ~m <. 00 "J m EM) (1?) • 

Lemma 4.7 

With the notations above one has 

(13.)for al1 m ~~L a~m \\ Fn + 1 \\ 1 < 00 

Proo f: k 

Using F = P one immediately gets \\ F \\1. !: L \\ P 'X.,\\2. • 
n 1FPn n j =1 n .. 

This together with (12) applied to ~ = X'I' ••• ,)'.~ succesively 

gives 
k 

2mL a~m \I F \\ 2. ~ L (L \\P 'X. à"2. ) a <. 00n 
n	 n . j=1 

n n 

5ince ai ' a 2 '= ••• (13) follows. q.e.d. 

Proof of Proposition 4.5 

Referring to Lemma 4.6 and the considerations before Lemma 4.7 we 

use the representation 1S = 't>- (A) descr1bed t he r e , lf we put 

13 
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. ;1
 

o I o o-F 2 
-F 4 ... k 

o o I o 
-~3 

F o o ... kl :	 D = C .. I o o o I ko o ...f'1 

............
o o F • -
1,.: 

" 
one has formally F = DC - CD. Again D ~ L+(n) by the assumptions. 

! 

To	 check C E: LT (~) we first estimate: 
O" '.2m 

\\ A "c 't \\ Z = a im 
\\	 L F n .. 1 ~"" \\ 1. + L a n \I F 1 ~'I.-4 U2. ~
 

n=l
 n=2 
00 

?m _ 2
c. C 2m z.	 ~ 
- 1 a l \\ 't li +	 L a~ \\ ~'I._",II c 00
 

n-?
 

Here (12) and R,L E: /...:1- (n- ) are u s e d , It remains to estimate II AmCM~\\1. ..... 
M _ M - 2. \~ 2m M '2. 1

JI AmCM 'f 1\2. a~m 1\ F + l 'f"' + F l !fn..,,\\ ~ 2 L- a n \\ F n + l \\ \\~4\\'t
nL n=ln=l 

+	 L
o.:> 

a~m \\ F~ \\I.\\~1\."'\ \\'1<. 00 
n. .l 

The first sum is finite due to Lemma 4.7 ; the second sum is finite
 

because of (12) and ••• a ~ ~ ••••
n a n+ l a.e.d. 

5.	 5elfcommutators 

A special kind of commutators are the so-called selfcommutators.
 

50me information about the situation in the bounded case can be
 

taken from /4/. Concerning the unbounded case we will give only some
 

preliminary results. 

Definition 5.1
 

An operator S i 1..+( 13) is said to be a selfcommutator (or represent


able as a selfcommutator) if 

5 .. ( A.A + ~ '" AA+ - A+A fo r s ome A ~ l,+ (Ir ). 

Clearly, selfcommutators are symmetric ( S = 5+ ).
 

The following results are well-known /4/,/13/:
 

1.	 If 5 E "e>('ae) is a selfcommutator, the O belongs to the spectrum
 

and so 5 is not invert ible in ~ ('at ) •
 

2.	 If A 15 a closed operator and on 1S (AMA) = "ti (AA") one has
 

AAM _ AMA. I, then AMA ~as eigenvalues 0.1.? •••• alI with the
 

5ame multiplicity. 

.JTurning to. [..+ ( 1S) let us remark: 

14 

3.	 We consider here only selfcommutators S = A,A+ for such A that 

AA+ and AtA are essentially ~elf8djoiot operators. 

4. <3"(AA+) \J to~ '" G"(A"A) \1[0) • Mareover, if A is a closed ope

rator, then AMA and AA" have the same nan-zero eigenvalues with 

the same multiplicity /3/. 
5.	 Pro p e r t y 1. i s no t vali d f o r J. to(li ) • 

In the next lemma	 we collect some further' properties related with 

5elfcommutators. 

Lemma 5.2 

let li = ll..... ( T) t	 (I). O ~ 5 .... (sn),("\'''') a diagonal operator in L+(1r) 

with SE: (I) cf./8/. If 5 c AA+-A+A the following statements are true:J 

- ..- --+ - --. 
i) A 11 o p e r a to r s	 A A, AA , A . A a r e ~ (I) • 

i1) let (a ) he the eigenvalues o f A+A , then sn 'a • Moreover,n _+_ __+ _+n 
(a )c. <s'(A'A) and t f O Çr G'(AA ). then O~ t3: (AA ), i.e.~ O cann	 .~ 

be only an eigenvalue with finite multiplicity. 

Proo f: 

i) AA+ = S .. A+A	 leads immediately to 

(S'f ,'f> f <..S ~ -x > +<A+A'f ,,,,> =<AA+lfl~> =\\A+~\\2. (14) 

2)T h e r e f o r e. t> (S 1/ ? 'ti (Ã+) ":) :t5 (AA") a n d c o n s e o u e n t 1 y .n (A+) a n d 

1)	 (AA+) belong to (I). Here we used t h a t 1r (S) ~ (I) implies 

)J (Sl/?) E: (I). To see 'li (A) E(I) suppose t h a t there is an infinite 

dimensional Hilbert space 'aeo c JJ (A). lt" (\ ~ is infinite dimensional 

and for "f,,,\, e. x, (:K.. - unit bell in "Jt" ) one has 

sup \ <. Cf ' A""t >\ = sup \ < A 'f ,"\' >\ < 00
 

'f, '\f 'f..... \
 

Thus, A + s b o un d e d on 'attl f\ IJ, i.e. ~ ~l 0(\ lJ C ~ (A +) in con t radict ioní 

to n (;+) E: (I). Hence, ~ _(A) c:. (I) an d 50 ~ (A+A) E (I). t oo, 

ii) 8y (14) and the mini-max~principle one gets sn ~ an~ Property 4. 

above gives (an)	 C ()(AA+) and i) means especially that O canno t be 

in	 G"'~ (AA+), because r h í s would imply t h a t íJ (AA+) 4\ (I). 

q.e.d. 

Now we indicate some simple conditions which imply that diagonal 

operators (with respect to (~~) are selfcommutators. This should 

be also compared with lemma 3.1. 

Lemma 5.3 

Let IS = ~- (T) ~ (1), R,L ~ J:..+( b),O " D /V(d n) J "f( 2r) so that 

d = (~) is T-addable. Then D ia a aelfcommutator. 

15 
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~ 
We give at once infin1te many sue h representations. namely: 

Let Ak be ltheo~~~~a~:;lw:~~~.:or]respondSto the matrix 

A ~. a? •
 
k t'J ~,', ','
 

"" •. 'a
n'

'O ',' 

i.e.,in the k t h upper SUQdi~~On~l there stands the seouénce (an)· 

With other words A
k 

l'I(ag» • ag) = ÓL,i-l(,a i • Then the as s umo t on sí 

guarantee that A
k 

E: 1..+( 1) and 1t s easy to see t ha t O = (Ak• A~ 1í 

w1th appropriately chosen (a (c f , a1so the next remark).n) 
q.e.d. 

Remark 5.4 

i) In the classical ~ase O = l. of course O and AA+ commute ~ndthis 
is an essential poiot in the proof of property ?. above. The repre

sentations of O used in the proof of Lemma 5.3 also lead to operators 

AkAk ( and AkA which commute with O. Moreover. it is easy to deter-
k) 

+ +
mine the spectra of AkAk (and (AkA k): 

a 1 O O.~~ 
'02 ~.,.A"C 2A.~. ~ , O a~o. o.

1 
8

l 1 ? a 
2 

Ther~fore one has: 

2- 2 2 
a = = •• ' . ' ak •

1 
d1, a 2 d 2, dk 

a~+l :' • a~+2" ' ••• • a~k= d?k+dk ;d k+ 1+d1 d k+ 2+d 2 

2 2 
w • dnk+1+·.·+d2k+l+dk+l+dl • 8 n k +? • dnk+2+···+d2k+2+dk~2+d2'nk +1 

2
a(n+l)~ = d(n+l)k+ ••• +d2k+dk .. 

50, we see 8 clear structure of the spectrum of AkA~ for any k, A 

little bit more formally i~ can be described as follows. Consider a 

decomposition of (d ) into k-blocks: _ n 

( d n) = jY.o Oj , Oj = (d j k +l' ..., d ( j +1 ) k) • 

For~these ordered k-tuples define Di+Dj as an elementwise addition 

and for i< j put (Oi.Dj) = (dik+l'···.d(i+l)k'djk+l .. ···d(j+l)k)· 

16 

2)
Then (a = (O • D +0 1, O +0 1+0 , ••• ) is the sequence of eígenvaluesn o o o ? 

of AA+. The seouence ot eLgenvalues af A+A is then given by 
~? h .(O, •••• 0,a 1 ' 8 2 , ••• ); t e sequence sterta w1th k zeros. 

Furthermore. if each eigenvalue of O has eoual multiplicity d ~ 1, 

then by appropriate choiee of k (l~k~d) one can generate a spectrum 

of A+A with (homogeneous)multiplicity k , l"k!:d. 

Thus one sees also in which manner the eigenvalues (O.l.? •••• ) with 

e cu a I multiplic1ty arise in the c a s.e O = I (cf .2. above). 

ii) Let us remark that the case b ~(IIIA) can RIso be handled, if 

one modifies tho notions of diagonal and shift operators in th€ way 

described in the second part of section 3. 

6. Commutators and guas1-M-algebres. Concluding remarks 

We conclude with a small seetion which contatns the relationship bet


ween commutators and qUAsi-M-algebras and some conjectures as well
 

as problems.
 

First let us recall the notion of a topological quasi-.-algebra as
 

it was introduced by G.Lassner (cf./7/ and the references therein).
 

Oefinition 6.1
 

A topo Loq ceL quasi-M-aIgebra. (.A t\1. Ao ) I s a locally convex spaí 

ce .Ai'1 with a. distinguished dense La ne a r subspace Ao satisfying 

the following properties:
 

i) Partial multiplications A - 8A and A - A8 are defined as con


tinuous linear transformations on A for every 8tAo • With respect
 

to these multiplications Ao becomes an algebra and J\ is. an .Ao-mo

du L, 

i~) A cohtinuous linear involution A - A+ 1s defined on .A- which 

leaves .Ao invariant and fuIfills (A8)+ .. 8+A+ for ali At.A, BEAo • 

~ie use this notion only in a very special context which we describe 

now , Thereby.• we Le ave ae í de r o po Lo q í c'a I considerations. 

Let again 1'1 = b"" (T) be q v en , With (lf''9\.) there is in a natural wayí 

associated a domain lo c ~ consisting of alI finite linear combi

nat ions o f the ("fl\.)' i.8., 1)0 a s isomorphic to the sequence space.ct 

(alI finite sequences). Then, no c. ti" c ~ c. no' • where ts~ ia' 

isomorphic to d' , the space o f a Ll s e cuen c e s , According to Defini

tion 6.1 ( L ( to' e; ), 1.:( b'o » is a quasi-M-algebra, Clearly. any 

infinite matrix (aij) represents an operator A f: L ( no' b~ ). 

Proposition 6.2 

Any ope r-a t o r A E t.- ( %So • %S~) is a commutator in the quasi-M-algebra 

( C. ( 1)0 • n~ i. L" ( ~ o ) ) • 

17 



ir' 
~ } 

Proof:
 

We. will not pursue a strong de f n í t on . what commutator means and s o
 í í 

on. The meaning of the Proposition will be clear from the proof. 

First remark. that R.L belong to c: (1)0)' L ( 150' ~'.,) and L (t\~). 

Analogously to s~ction 3 we define the matrix (W ) corresponding ta 

A ~ (Ai j ). Then , ('li ij) de fines an operatar VI ~ t ( 
i j 
nD • ti~) (because 

any matrix defines an operator belonging to this set). ConseQuently 

A = WR - RW 

and the right-hand side i s well-defined as an element from t. ( ISo' i:5~ ). 

Hera, in the product WR we consider R as an element of ~+(~.). while 

in RW t he operator R s considered as an element of ~ (b'o)'í 

Q.e.d. 

To formulate a simple corollary remark that s:.;+ (1S' J C L (15
0 

.'»~ ). 

Corollary 6.3 

Let 11' '" 1!" {T) be q ven , With respect to the quasi-M-algebraí 

(L (tto , IS~) .. L+( 1r" » any A E:. C( n) is a commutator. 

The facts just mentioned can be interpreted as follows. If one leaves 

the domain ~ and the Hilbert space «t and uses more general struc

tures, the problem of the repr~sentation of operators as commutators 

becomes trivial. 

At the end of the section we list some conjectures and problems for 

further study. May be, some of them are not v€ry significant ar appear 

to be trivial. 

Con 1ect'u res 6.4 

i) If tr~ (II) the identity I is not a co mmura t o r , 

i i) If t1 E' ( I ). R, L f: l... ( %l ) a nd (t n) i 5 T - a d d a b I e. t h e n a n y A (: t.,;" (:r> ) 

is a commutator. 

111) If 2:l' t: (II) ( ~ (IrIA) r es p , ) and (t~) ( (t~) reso.) are shift 
admissible and (t~) - (t~)-)-addable. then any A (:-e('1r) í.s a 

commu t a t o r ; 

In case that A E e{b") is a commutator, A:: BC - CB, s it oo s s ab Le í 

111 to t ak e, s ,c from e (15' ). toa? 

Problems 6.5 
I 

I i) Extend the ~esult~ i~ an appropriate way to general Op"-algebras 

and to the ca s e where ~[tJ i9 a general (F)-space. 
ii) Under which general conditions on D,A one can prove that ~(AA+) 

ha9,a structure similar to that described in Remark 5.4 i)? 

Especially: Let D'" (dn), D '" AA+ - A+A, D and AA+ commute. Descri 

be ~ (AA+)! 
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In conclusion, we have presented a new high statistic measure
ment of the nucleon structure function F2 (x,Q2 ) from deep inelas
tic muon-carbon scattering at high Q2 (Q2 ~ 25 Gev2). Careful cali
bration of the experimental apparatus has allowed to reduce systema
tic uncertainties to a level close to the statistical accuracy of the 
data. R = ~ 1/t>T is found to be compatible, within small errors, both 
with 0 and with QCD predictions in the kinematic range 0.25~ x 
~ 0.1. The pattern of scaling violations observed in the data is in 
good agreement with predictions from perturbative QCD. 
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neHBeHyTH H np. El-86-650 

H3MepeHHe c BbiCOKOH CTaTHCKHKOH HYKJIOHHOH cTpyKTypbi ¢>YHKWlli F 2(x, Q2) 
B rny6oKOHeynpyrOM pacCe.IIHHH MIOOHOB Ha yrnepone npH BblCOKHX Q2 

npenCTaBneHbl pe3ynbTaTbi H3ytleHHJI HYKJIOHHOH CTPYKTYPHOH ¢>YHKUHH F 2(x, Q2) 
ITpH BbiCOKOH CTaTHCTHKe B KHHeMaTH'IeGKOH o6nacTH X?_ 0,25 H Q2 <: 25 r3B 2. AHanH3 
6a3HpyeTCII Ha 1,5 . 108 peKOHCTPYHPOBaHHblX co6biTHH, 3anHCaHHblX npH 3Hepnmx ny'IKa 
120, 200 H 280 r3B. CpaBHHBall .IlnHHble, nonyqeHHble npH pa3nH'IHbiX 3Hepnrnx nyqKa, 
Mbl HaWnH R = uL/uT = 0,015 ± 0,013 (craT) ± 0,026 (cHCT.) He3aBHCHMO ar x B o6-
naCTH 0,25 ~ X~ 0,7 H 50 r3Bil ~ Q2 ~ 150 r3B 2. KHHeMaTH'IeCKall o6naCTb 3THX 
.Il8HHbllt XOpOWO UO.IlXO.IIHT .IIn11 KOnH'IeGTBeHHblX nposepoK KBaHTOBOH XpOMO.IIHH8MHKH 
(KX,ll). ,llnJI Cllytlall HeGHHI"lleTHOI"O ¢lHTa BO BTOpOM nOpii.IlKe Mbl H8WllH MaCWTa6HbiH 
napaMeTp KX.ll A-= 225 ± 20 (cnT) + 70 (cHcT.) M3B. 
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A High-Statistics Measurement of the Nucleon Structure 
Function F2 (x,Q2) from Deep Inelastic Muon-Carbon 
Scattering at High Q2 

We present results from a high statistics study of the nucleon structure function F2(x,Q j 
in the kinematic range x <:, 0,25 and Q2 <: 25 GeV2. The analysis is based on 1.5 •10 
reconstructed events recorded at beam energies of 120, 200 and 280 GeV. By comparing 
data taken at different beam energies, we find R = uL/ u T = 0.015 ± 0.013 (stat.) ± 
± 0.026 (syst.) independent of x in the range 0.25 < x s; 0. 7 and 50 GeV2 .5 Q2 .5 150 GeV2 

The kinematic rar~ge of these data makes them well suited for quantitative tests of Quantum 
chromodynarnics (QCD). From a next-to-leading orber nonsinglet fit, we find a QCD mass 
scale parameter A- = 225 ± 20 (stat.) +70 (syst.) MeV. 
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