ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

828/2-75 R.Lednický, M.D.Shafranov

6-46

ON THE POSSIBILITY OF THE X^o(958)MESON SPIN DETERMINATION IN THE REACTION $\pi^{*}p \rightarrow X^{\circ}n$ $\longrightarrow \gamma\gamma$

3/11.75

8452

E1 .

ЛАБОРАТОРИЯ ВЫСОНИХ ЭНЕРГИЙ

E1 - 8452

R.Lednický, M.D.Shafranov

ON THE POSSIBILITY OF THE X^o(958)MESON SPIN DETERMINATION IN THE REACTION $\pi^{-}p \rightarrow X^{o}n$ $\downarrow \rightarrow \gamma \gamma$

Submitted to $\mathcal{A}\Phi$

Ледницки Р., Шафранов М.Д.

E1 - 8452

О возможности определения спина X°(958) мезона в реакции $\pi^- b \to X^\circ n$

Показано, что для детектора фотонов с углом раствора 20° нужен пучок π^- -мезонов с импульсом около 30 ГэВ/с, чтобы однозначно решить проблему спина Х°(958) мезона. При интенсивности пучка $10^6 \pi^-$ /цикл необходимое время работы ускорителя не превышает 10 суток.

Препринт Объединенного института ядерных исследований. Дубна, 1974

Lednický R., Shafranov M.D.

E1 · 8452

On the Possibility of the X° (958) Meson Spin Determination in the Reaction $\pi^- \mathbf{P} \rightarrow X^\circ \mathbf{n}$

It is shown that the $\chi^{\circ}(958)$ spin problem can be unambiguously solved by studying the Adair distribution in the reaction $\pi^-p \rightarrow X^\circ n$ in a wide angular range including very asymmetric $X^\circ \rightarrow 2\gamma$ decays. It then follows that for the detector with an opening angle of $\sim 20^\circ$ the beam momentum should be about 30 GeV/c. If the beam intensity is $10^6 \pi^-$ per cycle, the accelerator time needed is expected to be about 10 days.

> Preprint. Joint Institute for Nuclear Research. Dubna, 1974

1. At present the ambiguity in the $X^{\circ}(958)$ meson spin still exists $J^{P}(X^{\circ}) = 0^{-}$ or $2^{-/1/}$ although this question emerged more than 7 years ago $^{/2/}$. The majority of physicists prefer spin parity 0^{-} rather than 2^{-} ; in different kinds of theoretical estimates the X° meson is supposed to be the ninth pseudoscalar meson, it is even called the η' meson. At the same time there exist the symmetry formulae $^{/3/}$ predicting the η' mass near the mass of another ninth pseudoscalar candidate - E(1420) meson. Furthermore, the hypothesis $J^{P}(X^{\circ}) = 2^{-}$ needs special attention because in this case the X° meson Regge trajectory has the intercept near 1 and can play a serious role in spin forces at high energies $^{/4/}$.

It is now well-known that only the analysis of the correlations between X° -meson decay and production can resolve the spin alternatives 0^{-} and 2^{-*} . Such correlations were studied in the reaction

 $\mathbf{K}^{-}\mathbf{p} \rightarrow \mathbf{X}^{\circ} \Lambda \tag{1}$

at 2.18 GeV/c^{/6}, $7^{/}$. The deviations from the isotropy in the Adair distributions were observed strongly support-

* The Dalitz plot analysis of the $X^{\circ} \rightarrow \eta \pi \pi$ and $X^{\circ} \rightarrow \gamma \pi^{+} \pi^{-}$ decays cannot distinguish between the 0⁻ and 2⁻ hypotheses.

3

ing the 2⁻ assignment. Note that the anisotropy was seen for a very small perpendicular X° meson momentum*

$$p_{T} < 100 \text{ MeV/c}$$
 (2)

Thus, it appears that in other studies $^{/8-11}$ of the reaction (1), where the statistics was not enough to make such a P_T cut, the deviation from the isotropy was not found **

It is however dangerous to conclude that $J^{r}(X^{\circ}) = 2^{-1}$ basing on the 3σ effect found in the only experiment $\sqrt{6,7}$. Further studies of the Adair distributions are needed. Unfortunately, a high statistics bubble chamber experiment cannot be done over a reasonably short period of time. Therefore we suggest to study the Adair distributions with the aid of electronics in the reaction similar to (1)

$$\pi \bar{p} \rightarrow X^{\circ} n . \tag{3}$$

The reaction (3) was studied in many experiments with a detector after a target, see $^{/1}$ /. In this arrangement, however (if the incoming momentum is not high), it is not practically possible to study the decay-production correlations in a wide angular range. For such a study the incoming momentum should be increased (p₋> > 10 GeV/c) or a 4 π detector should be used.

** Note that in the recent near threshold experiment at 1.75 GeV/c $^{/11/}$ only the cut $P_T < 200$ MeV/c could be done.

2. Concerning the X° meson spin determination the dominating 3-particle decays $X^{\circ} \rightarrow \eta \ \pi \pi$ (72%) and $X^{\circ} \rightarrow \gamma \pi^{+} \pi^{-}$ (26%) are rather complicated since the decay mechanisms depend on free parameters^{*}, the

Fig. 1. The distributions of the cosine of the γ polar angle in the X° meson rest frame for the X° $\gamma \gamma$ decay providing J^P(X°)=2⁻, $\rho_{22} = 0$ and $\rho_{00} = 0, 1/3, 1/2$ and 1.

* In the $X^{\circ} \rightarrow \eta \pi \pi$ decay (in a low orbital momentum approximation) a free parameter is the complex mixing parameter of the amplitudes with $\ell_{\eta} = 0$, $\ell_{\pi\pi} = 2$ and $\ell_{\eta} = 2$, $\ell_{\pi} \pi = 0$. In the $X^{\circ} \rightarrow \gamma \pi^{+} \pi^{-}$ decay such a parameter comes from the mixing of the E2 and M1 transition amplitudes.

^{*} For the Adair analysis the average orbital momentum projection on the beam direction $\langle \ell_z \rangle = p_T / m_R$ should be near zero. In the reaction $K^-p \to X^\circ \Lambda$ the characteristic distance R is determined by the mass of the K*(898) meson. In the reaction $\pi^-p \to X^\circ n$ the nearest possible poles are $A_1(1080)$ and $A_2(1310)$ so that the $P_T < 100 \text{ MeV/c}$ cut provides $\langle \ell_z \rangle \ll 1$ in both the relations $K^-p \to X^\circ \Lambda$ and $\pi^-p \to X^\circ n$.

question of the best decay analyzer arises $^{/13,14,15'}$. At the same time the matrix element of the $X^{o} \rightarrow \gamma \gamma$ decay (2%) is determined unambiguously and yields the strongest anisotropy in the Adair distribution for spin $2^{-/13,15'}$. A relative simplicity of the experimental study of the reaction

$$\pi^{-} p \rightarrow X^{\circ} n \tag{4}$$

is also attractive.

Let us therefore discuss the reaction (4) in more detail for $J^{P}(X^{\circ})=2^{-}$. Requiring the Adair condition (2) the decay angular distribution in the X° rest frame with respect to the beam direction in the c.m.s. depends on the ρ_{00} -spin density matrix of the X° meson $(\rho_{22} = 0)^{/5,13/2}$

$$W(\mathbf{x}) = \frac{15}{2} \left[\frac{1}{6} \rho_{00} + (1 - 2\rho_{00}) \mathbf{x}^2 - (1 - \frac{5}{2} \rho_{00}) \mathbf{x}^4 \right],$$
 (5)

 $x = \cos \theta^*$, $0 \le \rho_{00} \le 1$. In fig. 1 this distribution is plotted for different ρ_{00} -values. We see that the most unfavourable case for differentiating the distribution (5) from the isotropic distributions $W_0^{-}(x) = 1$ occurs at ρ_{00} close to 0.5. In this case the x values should be measured up to x^{max} near 1, i.e., very asymmetric $X^\circ \rightarrow \gamma \gamma$ decays should be detected *. This question is analysed in more detail in the Appendix. It is shown that for $x^{max} \ge 0.94$ and N = 100 events the confidence level of the wrong hypothesis is expected to be smaller than CL = 0.2%. With decreasing x^{max} the high bound on the CL value of the wrong hypothesis rapidly increases, see fig. 2.

*Such a problem is absent in the reaction of the X° photoproduction on the zero spin nucleus, for example, $\gamma \operatorname{He}^4 \rightarrow X^\circ \operatorname{He}^{4/15}$, where $\rho_{00} = 0$ as well, so that the Adair distribution (5) is determined unambiguously $\Psi(x) = 15/2 x^2 (1-x^2)$ and strongly differs from the isotropic distribution even at small x values (see fig. 1, $\rho_{00} = 0$).

Fig. 2. The maximal confidence level CL of the false hypothesis $J^{P}(X^{\circ}) = 0^{-}$ or 2^{-} for N = 100 events and the corresponding ρ_{00} value as functions of x^{max} .

3. The reaction (4) was studied at incoming momenta $1.6^{16/}$, $1.9^{17/}$, $3.65^{18/}$, $3.8^{19/}$ and 30-50 GeV/c^{12/}. In all the experiments γ 's were detected by means of an optical spark spectrometer. For increasing the signal-background ratio both the γ 's were detected, and different kinds of neutron detectors were used. The number of $X^{\circ} \rightarrow \gamma \gamma$ decays found in these experiments was typically 20 \div 50 events.

Because the cross section of the reaction (4) linearly decreases with increasing the π^- laboratory beam momentum $^{/12/}$

$$\sigma_{2\gamma}(\pi^{-}p \to X^{\circ}n) = (3.3^{\pm}1.1)(\frac{p}{P_{0}})^{-1.11 \pm 0.12} \mu b, P_{0} = 1 \text{ GeV/c}, \qquad (6)$$

the beam momentum should be chosen as small as possible. In Table 1 the fractions and corresponding cross sections (in nanobars) of the events expected under conditions $p_T^{<}$ 100 MeV/c and $T_n > 2$ MeV, $p_T^{<}$ 100 MeV/c (T_n is the neutron kinetic energy, $T_n = 2$ MeV is the neutron detector threshold) are listed for beam momenta from 1.5 GeV/c up to 40 GeV/c. In the calculations we supposed the differential cross section of the reaction (3) to be of the same form as for the reaction $\pi^- p \rightarrow \eta^{\circ} n$, i.e./20/

$$\frac{d\sigma}{dt} = A(1 - gct)e^{ct} ,$$
(7)
$$c = 5.2 + 1.3 \ln \frac{s}{s_1} , s_1 = 10 \text{ GeV}^2 , g = 1.5 .$$

Note that, near threshold, the Adair condition (2) is fulfilled almost for all the events of the reaction (3) and that for $p_{\pi} - > 2$ GeV/c the fraction of the events satisfying this condition is -3%.

For the forward X° production we have calculated a minimal opening angle of γ 's, ψ^{\min} , a greater value *a* of two γ production angles corresponding to $x^{\max} = 0.9$ and x^{\max} at $a = 10^{\circ}$. Looking at Table 1 we see that the value $x^{\max} \ge 0.9$ can be reached if $p_{\pi^{-}} \ge 10$ GeV/c (we suppose that only the production angles $a < 10 \div 20^{\circ}$ are measured). For example, for the angle $a = 10^{\circ}$ the optimal beam momentum is $p_{\pi^{-}} = 25 \div 30$ GeV/c ($x^{\max} = 0.9 \div 0.94$).

We have also calculated the neutron characteristics such as maximal neutron production angle θ_n^{max} and neutron production angle θ_n , time of flight τ at the distance 1 m and neutron kinetic energy T_n under boundary conditions $P_T = 10 \text{ MeV/c}$ and $T_n = 2 \text{ MeV}$. From Table 1 we see that for momenta $p_{\pi} -> 10 \text{ GeV/c}$ neutrons should be detected in narrow θ_n intervals, with time of flight $\tau \sim 30 - 50$ nsec/m and kinetic energy 2-7 MeV. Since for the neutrons with a kinetic

Fig. 3. The dependence of the neutron registration efficiency on the neutron kinetic energy for different neutron detector thresholds $^{/21/}$.

energy of 2-7 MeV the registration efficiency can reach ~ $70\%^{/21/}$ (see fig. 3), a cylindrical neutron detector can be used as an additional trigger. Note in this context that in the experiment $^{/12/}$ at $p_{\pi} = 30-50$ GeV/c the squared four-momentum transfer resolution ~2.10⁻³ (GeV/c)² (at t~0) was obtained without measuring the neutron characteristics. Such a resolution is quite sufficient for separating the events with $p_T < 100$ MeV/c ($|t| < 10^{-2}$ (GeV/c)²).

Let us estimate the number of events expected per 10 day accelerator run. For the 30 cm liquid hydrogen target and the beam intensity $10^6 \pi^-/9$ sec we have

$$N = 10^2 \frac{\sigma}{\sigma_0}, \quad \sigma_0 = 1 \text{ nb}$$
(8)

A . . .

which, at $p_{\pi^-} = 30 \text{ GeV/c}$, corresponds to 230 events with $p_T < 100 \text{ MeV/c}$ (100% registration efficiency supposed). In conclusion it seems quite possible to get ≥ 100 events of the reaction (4) at $p_{\pi^-} \sim 30 \text{ GeV/c}$ with $x^{\text{max}} \sim 0.94$

9

ABLE

н

Р - т - т		Tn = 2 h * = 52 r	lleV P _T 18ec P _T	= 100 K	Ae	X⁰ f 01	ward			Fraction events	of	
	р <mark>и</mark> ах С	°	Po I	р 1960 С	여 의 단 의 제	∎i⊐	مر ≭∎2•0	k = 10 ⁰ ∎ = 10 ⁰	Р - Ч - Т	00 MeV/c	ы 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 MeV/c 2 MeV
1.5	14.10		10 00		1	0,00	9.00		R	поп	ĸ	ndu
2		r	N •0	·· •	+•/CI	80° 0	121.2	I	10.3	164.8	10.3	164.8
2	36.3	ł	18. 2 ⁰	10.3	52.9	58 . 6°	97 .4 °	1	2.9	44.4	2.9	44.4
ъ	62 . 0 ⁰	ı	43.8 ⁰	21.9	11.0	22.2 ⁰	45.7 ⁰	I	2.4	13.2	2.4	13.2
9	71.10	37 . 9°	61.8 ⁰	27.8	6.8	11.00	23.6 ⁰	0.54	2.6	6.7	2.2	5.7
15	74.70	57.10	69 .4 °	29.5	6.1	7.40	15.9°	0.76	2.8	4 •5	2.0	3.3
50	76.8°	65 . 1 ⁰	73.40	30.2	5.8	5.4 ⁰	11.9 ⁰	0,86	2•9	3.4	2.0	2.4
õ	79.2 ⁰	72.60	77.60	30.8	5.6	3.6°	8.0 ⁰	*6 *0	3.1	2.3	2.0	1.5
ŧ	80 . 5°	76.30	°7.62	31.0	5•5	2.80	6 . 0°	0.96	3.2	1.8	2.1	1.2

satisfying the Adair condition $p_T < 100$ MeV and thus to resolve the 0⁻ and 2⁻ alternatives for the X° meson spin parity.

The authors are much grateful to I.M.Gramenitsky, V.I.Ogievetsky and A.N.Zaslavsky for very useful discussions.

Appendix

.

Suppose $J^{P}(X^{\circ}) = 2^{-}$. Let N be the number of events of the reaction (4) measured in the interval $<0, x^{max} >$ and satisfying the Adair condition (2). Dividing this interval into n bins of the same length $\Delta x = x^{max} / n$ with N_i events in the i -th bin, we can calculate χ^2 for both the hypothesis 0⁻ and 2⁻

$$\chi_{JP}^{2} = \sum_{i=1}^{n} \frac{\left[N_{i} - \overline{W}_{JP}(x_{i})\Delta xN\right]^{2}}{\widetilde{W}_{JP}(x_{i})\Delta xN}, \qquad (A.1)$$

where $\tilde{W}_{JP}(x) = W_{JP}(x) \int_{0}^{x \max} W_{JP}(\xi) d\xi$, $W_{0}(x) = 1$ and $W_{2}(x)$ is given by the formula (5). Neglecting the difference between W_{2}^{-} and W_{0}^{-} in the denominators of the expressions (A.1), we can write

$$\chi_{0}^{2} = \chi_{2}^{2} + \chi_{D}^{2}$$

$$\chi_{D}^{2} = \sum_{i} \left[\widetilde{W}_{2^{-}}(x_{i}) - \widetilde{W}_{0^{-}}(x_{i}) \right]^{2} \Delta x N = N \int_{0}^{x^{\max}} \left[\widetilde{W}_{2^{-}}(x) - \widetilde{W}_{0^{-}}(x) \right]^{2} dx.$$
(A.2)
Therefore the expected χ_{0}^{2} value is

 $<\chi_{0^{-}}^{2}>\simeq<\chi_{2^{-}}^{2}>+\chi_{D}^{2}=n-1+\chi_{D}^{2}$ (A.3)

In fig. 2 we show the confidence level CL of the maximal $\langle \chi_0^2 \rangle$ value for N = 100 and n = 10 * and the corresponding ρ_{00} value, coming from the condition $\partial \chi_D^2 / \partial \rho_{00} = 0$, as functions of x max.

* n should be chosen as small as possible so far as the approximation $\Sigma \rightarrow \int$ in (A.2) allows.

10

References

- 1. Particle Data Group. Rev. Mod. Phys., 45, No. 2 (1973).
- A.N.Zaslavsky, V.I.Ogievetsky, W.Tybor. Letters to JETP, 6, 604 (1967); YaF, 9, 852 (1969); Phys.Lett., 35B, 69 (1971).
- 3. V.I.Ógievetsky. YaF, 13, 187 (1971).
- 4. A.Bujak, A.N.Zaslavsky, V.I.Ogievetsky, A.T.Filippov.
- YaF, 18, 894 (1973). 5. S.Giler, I.Klosinski, W.Lefik, W.Tybor. Acta Phys. Polon., A37, 475 (1970).
- 6. G.R.Kalbfleisch et al. Phys.Rev.Lett., 31, 333 (1973).
- 7. J.S.Danburg et al. Phys.Rev., D8., 3744 (1973).
- 8. M.Aguilar-Benitez et al. Phys.Rev., D6, 29 (1972).
- 9. S.Jacobs et al. Phys.Rev., D8, 18 (1973).
- 10. J.S.Danburg et al. Experimental Meson Spectroscopy, 1972, ed. by A.H.Rosenfeld and K.W.Lai (American Institute of Phys., New York, 1972), p. 91.
- 11. C. Baltay et al. Phys.Rev., D9, 2999 (1974).
- 12. V.N.Bolotov et al. Phys.Lett., 48B, 280 (1974).
- 13. R.Lednicky. JINR, E2-7801, Dubna, 1974.
- 14. R.Lednicky, V.I.Ogievetsky, A.N.Zaslavsky. JINR, E2-7666, Dubna, 1974.
- 15. A.N.Zaslavsky, R.Lednicky, V.I.Ogievetsky, YaF, 20, 203 (1974).
- 16. M.Basilè et al. Nucl. Phys., B33, 29 (1972); P.Dalpiaz et al. Phys.Lett., 42B, 377 (1972). 17. D.Bollini et al. Nuovo Cim., 58A, 289 (1968).
- 18. E.H.Harvey et al. Phys.Rev.Lett., 27, 885 (1971). 19. W.D.Apel et al. Phys.Lett., 40B, 680 (1972).

- 20. V.N.Bolotov et al. YaF, 18, 1262 (1973). 21. M.Elfield et al. Nucl.Instr. and Meth., 100, 237 (1972).

Received by Publishing Department on December 17, 1974.