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On the Possibility of the X° (958) Meson Spin
Determination in the Reaction = p.~+X°n

) YY
i blem can be -

It is shown that the X%958) spin pro . : .

unambiguo'usly solved by studying the Adair dlstrlbutlox{ )

in the reaction = p » X° n in a wide angular xf:arllge inclu
s
ding very asymmetric X° .2y decay&_:. It then fo ~cmzwoo

that for the detector with an opening angle o o2

the beam momentum should be about 30 Gev/c. If t.e e

intensity is 106 2~ per cycle, the accelerator time

needed is expected to be about 10 days.
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1. At present the ambiguity in the X°(958) meson
spin still exists J (X°)=0" or 2°/V although this
question emerged more than 7 years ago/ . The majori-
ty of physicists prefer spin parity 0 rather than 2™ ;
in different kinds of theoretical estimates the X° meson
is supposed to be the ninth pseudoscalar meson, it is
even called the 7" meson. At the same time there
exist the symmetry formulae /3/ predicting the 75’
mass near the mass of ‘another ninth pseudoscalar
candidate - E(1420) meson. Furthermore, the hypothesis
]P(X°)= 2" needs special attention because in this case
the X° meson Regge trajectory has the intercept near
1 and can play a serious role in spin forces at high
energies '4/.

It is now well-known that only the analysis of the
correlations between X° -meson decay and production
can resolve the spin alternatives 0~ and 2~ * Such
correlations were studied in the reaction

K'p =+ X7 A o)

at 2.18 GeV/c'®’ 7", The deviations from the isotropy
in the Adair distributions were observed strongly support-

* The Dalitz plot analysis of the X°-+ nn and
X°s yrtp- decays cannot distinguish between the 0~
and 2° hypotheses.



ing the 2~ assignment. Note that the anisotropy was seen
for a very small perpendicular X° meson momentum*

pT < 100 MeV/c . 2)

Thus,it appears that in other studies B=11/" of the
reaction (1), where the statistics was not enough to make
such a pq cut, the deviation from the isotropy was not
found ** p

It is however dangerous to conclude that J (X°)=2"
basing on the 30 effect found in the only experiment /6.1/
Further studies of the Adair distributions are needed.
Unfortunately, a high statistics bubble chamber experiment
cannot be done over a reasonably short period of time.
Therefore we suggest to study the Adair distributions
with the aid of electronics in the reaction similar to (1)

7 p~»X°n. (3)
The reaction (3) was studied in many experiments with
a detector after a target, see/l /. In this arrangement,
however (if the incoming momentum is not high), it is
not practically possible to study the decay-production
correlations in a wide angular range. For such a study
the incoming momentum should be increased (p _>
> 10 GeV/c)or a 4, detector should be used. 4

*For_the Adair analysis the average orbital momentum
projection on the beam direction <{;>~pyp/ mp  should be

‘near zero. In thereaction K~

g +X°A the characteris-
tic distance R is determine bX the mass of the K*(898)
meson. In the reaction »—p »X° n the nearest possible
poles are A;(1080) and A,(1310) so that the Pt <
<100 MeV/c cut provides <f, ><<1 in both the relations

Kp »X°A and » p »X°n.

» Note that i{x the recent near threshold experiment at
1.75 GeV/c v only the cut Py < 200 MeV/c could be
done. .

4

2.. Cpncerning the X° meson spin determination the
dc:mlnatxfg 3-particle decays X° - 5 nn (72%) and
X®synTr= (26%) are rather complicated since the

decay mechanisms depend on free parameters™, the
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Fig. 1. The distributions of the cosine of the
angle in the X° meson_rest frame for the X);.. polar
gsga{' providing JP(X°)=2" | Pyy = 0 and p00=0, f/%, 1/2

*In the X°>p7n decay (in a low orbital momentum
approximation ) a free parameter is the complex mixing
parameter of the ampkltu_des with =0,0,z=2and £, =2,
br 7 =0. In the X°-> yr'n decay sucha parameter comes
from the mixing of the E2 and M1 transition amplitudes.
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question of the best decay analyzer arises /13,1415 At
the same time the matrix element of the X°» yy
decay (2%) is determined unambiguously and yields the
strongest anisotropy in the Adair distribution for spin

2~ /13,15/ A relative simplicity of the experimental
study of the reaction
Tr_p + X°%°n (4)
L Yy

is also attractive.

Let us therefore discuss the reaction (4) in more de-
tail for J¥(X°)=2". Requiring the Adair condition (2)
the decay angular distribution in the X° rest frame
with respect to the beam direction in the c.m.s. depends
on the Poo -spin density matrix of the X° meson

(P22 - 0)/5,13/

1511 2 S 4

W(x) = ==[=— 1-2 -(1- 5
(x) 2[6p00+( pm)x ( 2;D)X], ®)
x= cos@*, 0<pge <1. In fig. 1 this distribution is plotted
for different Poo -values. We see thatthe mostunfavou-
rable case for differentiating the distribution (5) from

00

the isotropic distributions WO-(X)= 1 occurs at pg
close to 0.5. In this case the X values should be measu-
red up to x™¥ near 1, i.e., very asymmetric X°- yy

decays should be detected * . This question is analysed
in more detail in the Appendix. It is shown that for
x™* > 0.94 and N= 100 events the confidence level
of the wrong hypothesis is expected to be smaller than
CL = 0.29%. With decreasing x™* the high bound on the
CL value of the wrong hypothesis rapidly increases,
see fig. 2.

*Such a problem is absent in the reaction of the

X° photoproduction on the zero spin nucleus, for
example, y He*- X° He* /15 where poo =0 as well, so that
the Adair distribution (5) is deterthined unambiguously
W(x)=15/2x2(1=-x2) and strongly differs from the
isotropic distribution even at small x values (see
fig. 1, p00=0 ).

10—————10"

205} 105
SN !

o3L__. . . . No3
05 06 07 08 09 10

xmm.l

Fig. 2. The hmaximal confidence level CL of the false
hypothesis J"(X°) = 0" or 2- for N = 100 events and
the corresponding P o0 value as functions of xmex ,

3. The reaction (4) was studied at incoming momenta
1.6/16/ | 1.917/ 365’18 | 3.8/!% and 30-50 GeV/c/'2/
In all the experiments y’s were detected by means of
an optical spark spectrometer. For increasing the signal-
background ratio both the y’s were detected, and dif-
ferent kinds of neutron detectors were used. The number
of X°»>yy decays found in these experiments was typi-
cally 20 + 50 events.

Because the cross section of the reaction (4) linearly
decreases with increasing the »~ laboratory beam mo-
mentum /1%



—LI1+0.12
crzy(ﬂ_p > X%n)=(3.31% 1.1)(-pp—) b, pg 1 GeV/e, (6)
0
the beam momentum should be chosenas small as possible.
In Table 1 the fractions and corresponding cross sections
(in nanobars) of the events expected under conditions
pp< 100 MeV/c and T, > 2 MeV, p;< 100 MeV/c ( T, is
the neutron kinetic energy, Tn = 2 MeV is the neutron
detector threshold) are listed for beam momenta from
1.5 GeV/c up to 40 GeV/c. In the calculations we suppo-
sed the differential cross section of the reaction (3) to
be of the same form as for thereaction 7" p -  °n, i.e./20/

do _ _ ct
r—A(l gct)e s

(D

¢=52+131n3-, s = 10GeV? , g - 15.
1

Note that, near threshold, the Adair condition 2) is
fulfilled almost for all the events of the reaction (3) and
that for p_ - > 2 GeV/c the fraction of the events satis-
fying this condition is ~ 39,

For the forward X° production we have calculated
a minimal opening angle of y’s,y™" | a greater value
a of two y production angles corresponding to x™2*. 0.9
and x™**  at a=10° Looking at Table 1 we see that the
value x™*>0.9 can be reached if p~ = 10 GeV/c (we
suppose that only the production angles a < 10 = 20°are
measured). For example, for the angle a=10° the opti-
mal beam momentum is p__ =25+ 30 GeV/c (x™*X0.9: 0.94).

We. have aiso calculated the neutron characteristics
such as maximal neutron production angle 67** apd
neutron production angle 6, . time of flight 7 at the
distance 1 m and neutron kinetic energy T, under
boundary conditions p g = 10 MeV/c and T, = 2 MeV.
From Table 1 we see that for momenta P,-> 10 GeV/c
neutrons should be detected in narrow On intervals,
with time of flight s~ 30 - 50 nsec/m and kinetic
energy 2-7 MeV. Since for the neutrons with a kinetic

T s —
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Fig. 3. The dependence of the neutron registration effi-
cilegncy on the r?eutr9n kinetic energy for different neutron
detector thresholds /2.

energy of 2-7 MeV the registration efficiency can reach
~ 70%/2!/ (see fig. 3), a cylindrical neutron detector can
be used as an additional trigger. Note in this context
that in the experiment /!2/ at p - = 30-50 GeV/c the
squared four-momentum transfer resolution
~2.10~3 (GeV/c)? (at t~0 )wasobtained w1thou.t measuring
the neutron characteristics. Such a resolution is quite
sufficient for separating the events with P 1< 100 MeV/c

(] t1< 1072 (GeV/c)?).
Let us estimate the number of events expected per
10 day accelerator run. For the 3% cm liquid hydrogen
target and the beam intensity 10" 7 / 9 sec we have
N=100 2, & =1nb (8)

99 0

which, at p_- = 30 GeV/c, correspondg t9 230 events with
p. < 100 MeV/c (1009 registration efficiency supposed).
T In conclusion it seems quite possible to get maxz 100
events of the reaction (4) at p,. ~ 30GeV/c with x "~ 0.94



nbn
a4 .4
13.2
5.7
3.3
2.4
1.5
1.2

164.8

P {100 NeV/c
T,> 2 MeV

%
10,3
2.9
2.4
2.2
2.0
2.0
2.0
2.1

events
6.7
4,5
3.4
2.3
1.8

Fraction of
13.2

nbn
84 .4

164.8

PT < 100 MeV/c

%
10.3
2.9
2.4
2.6
2.8
2.9
3.1
3.2

xnax
0.
0.76
0,86
0.9%
0.96

I
o«
97.4°
a5,7°
23.6°
15.9°
11,9°
8.0°
6.0°

121.2°

B e X

TABLE
1° forward
Ynin
58.6°
22,2°
11,0°
7.4°
5,4°
3.6°
2.8°

88.6°

MeV
157.4
52.9
11.0
6.8
6.1
5.8
5.6
5.5

nsec

10.3
30.2
30.8
31.0

P, = 100 MeV
6.5

69.4° 29,5

61.8° 27.8
73.4°

33.8° 21.9

18, 2°
77.6°
79.7°

10,2°

37.9°

% =52 nsec
57.1°

76.13°

65.1°
72,6°

T, = 2 Mev

Max

-
14,1°
36.3°
62.0°
71.1°
73.7°
76.8°
79.2°
80.5°

5
10
15
20

1.5
30

GeV/c

satisfying the Adair condition p.. < 100 MeV and thus to
resolve the 0 and 2~ alternatives for the X° meson
spin parity.

The authors are much grateful to I.M.Gramenitsky,
V.I.Ogievetsky and A.N.Zaslavsky for very useful dis-
cussions.

Appendix

Suppose ]P(X")nz’. L.et N be the number of events
of the reaction (4) measured in the interval <0,x™*> and
satisfying the Adair condition (2). Dividing this interval
into n bins of the same length Ax=x™* /n with Nj
events in the 1 -th bin, we can calculate X for both

the hypothesis 0~ and 27

[N, ~¥ p(x JAXN 17
J i ’ (A.])

! gz

: 'QJP(X)AXN

max
where W o (X)= V‘JP(x)/f Wyp(Hdé Wy-x)= 1 and Wy- (¥ s
given by the formula (5) Neglectmg the dlfference bet-
ween W,-— and W,- in the denominators of the expres-

sions (A.l), we can write

2 _ 2,2
Xo= = Xg=- *Xp
(A.2)

max
X

9 - ] ~ 2 . g _,“ 2
Xy = %. [W2_ (xi)—WO_(xi)] AxN= NJ[WT (x) WO_(x)] dx.

Therefore the expected xz_ value is

2 =n—l+x2 . (A.3)

<X2_. > - <X2_ >4 XD

In flg 2 we show the confidence level CL of the maximal
<X0—> value for N= 100 and n = 10* and the corres-

pondmgp value, coming from the condition ak opOO =0,
as functlons of x "‘ax

*n should be chosen as small as possible so far as
the approximation - [ in (A.2) allows.
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