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1. Introduction

A significant amount of experimental information about the structure of
nucleons and nuclei is obtained from deep inelastic interaction of muons.

The experimentally measured distribution of events exhibits, besides
statistical errors, certain dist;rtions due to the finite resolution.of the detector.
In the following we propose a method to reconstruct the original distribution.
The method is quite general and involves solving a Fredholm integral equation of
the first kind. Tl:»ere is an extensive body of literature [1-5] on this problem.
The approach used here was first proposed by Tikhonov [1] and Phillips (2]
and the statistical interpretation performed by Zhigunov [4] and Pyt'ev [5].
Methods of regression and ridge analysis [6] are also used in this work. The.
main difficulties in our case are that (1) the integral equation is two-dimensional
and (2) the resolution function is known with statistical errors of the same
order as the experimental distribution errors.

This work was initiated for the analysis of data taken with the NA-4
experiment at CERN., Without limiting the generality of the discussion, we shall
describe the method as applied to this experiment. >

The NA-4 set-up was conceived for muon-nucleon interaction research and is
a toroidal iron spectrometer with a focusing magnetic field of azimuthal symmetry
[7]. The spectrometer is = 55m long and has a diameter of 2.75m. The
extended target is inside the central bore of the torus. A scattered muon
oscillates inside the spectrometer due to the field. Multiple scattering of the
muons in the iron of the magnet, statigtical fluctuations of their energy loss,'
and thevl'imited number and comparatively coarse sp;atial resolutic;n of the
multiwire chambers used to measure the track are the principal sources of

distortion of the experimental distribution.
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In section 2 we derive the form of the integral that describes our problem.
In section 3 we desfribe the system of linear equations obtained by
algebraization of the integral equation, and in section 4 we propose a method of
solving this system. The. generalization of this method to a system with
coefficients that have statistical errors is proposed in section 5. The problem
of choosing the basic parameters of the method is discussed in section 6. All

our steps are illustrated by cdmputer experiments.

2. The problem

The deep inelastic muon-nucleon cross section can be written as

.

d?c/dxdQ? = Fa(x,Q?) . K(x,Q2,E) - A(x,Q3,E), €))

where

Fa is the nucleon structure function,
K is the kinematical factor,

A" is the radiative correction factor,
E is the muon beam energy,

Q? is the four - momentum transfer, -
x = Q’/(ZMPV).

MP is the proton mass,

v is the transferred energy.

The measured cross section (d’o/dde’)exp is related to the true cross

section (1) by

%

(d’a(x,Q’)/dde’)exp= j[d*a(x',Q")/dx'dQ"]P(x'.Q";x,Q=)dx'dQ='. 2)

where P(x’,Q2";x,Q?) is the resolution function of the experimental set-up. Here
X, Q® are the measured parameters and x', Q* the true ones. In (2) we
integrate over the kinematically allowed region.

We know the left-hand side of (2) and the functions K, A. -The resolution

function can be obtained by direct measurement, if possible, or by Monte Carlo

simulation of the experiment.

Our problem is to extract the structure function F, from eqs.(1) and (2).
It should be noted that the actual incident muon beam is not monoenergetic,
therefore eq. (2} must be integrated over the beam energy distribution. We do
not write this more complicated equation here but assume the beam to be

monochromatic for simplicity.

3. Basic equation

After algebraization of equation (2) we obtain a system of linear equations
7T=pF+1, 3)

‘f’ is an m - dimensional vector representing to the measured distribution,

3 is an n - dimensional vector representing to the structure function,

P is the m;c n matrix representing the resolution function multiplied
by K and A,

€ is an m - dimensional random vector{(noise) with an average value E€ = 0
and diagona! variance matrix V,

V = Var ¢ = diag(o,?,..., o).

where the o, are the statistical errors of the measured distribution.

Without limiting the general nature of the discussion, we describe the
variables defined above (and, later, the solution of the problem) as applied to
experimental data measured with a 280 GeV beam. The number of experimental
events is 8 . 10*. The number of simulated events is 4 - 10%, among which 13 -
104 are reconstructed. The x,Q? distribution of the simulated events is Q2(1 -
x)~*. Figs.T and/Z ‘show binnings for the experimental data and the structure
function, respectively.

The binning for the structure function is defined by the kinematic
parameters of the events detected in the experimental set-up. The boundaries
are determined through the distribution of the reconstructed simulated events
by their original kinematic parameters. .

The binning for the experimental data is chosen such that the maximum of
available experimeﬁtal information could be used. :l'he size of the bins is chosen

to allow at least 20 events within each, but, where statistics are sufficiently
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Fig.2. Binning for the structure function.

large, thgy are chosen such that up to 4 bins of experimental data correspond
to one structure function bin. As f, we take the number of events in the i-th
bin of the experimental data, i.e. oi’ = fi.

The structure function in the j-th bin is calculated at the average values of

the kinematic parameters in this bin. These mean values are defined as

< <

x; =z uixi/I ui,_ Q‘i =X uiQ'i/I ui,
[3 i i i

i ey 3
]

where the summation extends over all simulated events in the bin j.

~xi, Qzi are kinematical variables of the simulated events,

ui are the weights of the simulated events,
o = @fr - iR Gd,ath).

For F.(x,Q?) we use the parametrization

F2(x,Q) = pa(1 * pax)(1 - IP3(Q/5)PIndX, : @)
where ps = .52, p2 = .9, p3 = 3.2, ps = -.155. This describes satisfactorily the

data on structure functions obtained in other experiments and ensures good
agreement between the spectrum of the reconstructed simulated events and the

experimental spectrum.
The elements of the matrix P are calculated as
Bl Wi O 1 g‘/Z w',
i |
where the summation extends “over all events simulated in the j-th structure

function bin. wl is defined as

(5)

Wed oV kedeth e - acdete

and :

gl = w', if the event was reconstructed and its reconstructed parameters
fall into the i-th bin of the experimental data;

or

g' = 0, if this condition Is not fulfilled.
Wi is defined as

W K,(xi,eg,E) . A(x,-,Q_’i,E) 8y Ay
where
s. is the bin area,
ay is a normalization constant.
aN=N-p~t-A; where
N is the muon flux,
p is the target density,
t is the target length,

A is Avogadro's number. |
Use of the weights w' helps in reducing somewhat the approximation error due

to the algebraization of eq. (2). The error can be reduced even more by
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repeating the whole procedure upon calculation of. Fa. The FWHM x and- Q2

resolutions of the NA-4 set-up are shown in figs. 3 and 4 (see ref. {71, 181)
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4. Solution of the basic equation
Equation (3) can be solved in the least-squares sense by minimizing
m n 3
x*=2X (fi -z pijsi)’/a’i.
i=1 =1
X : S »
The ¢ that yields the minimal x2 is taken as the estimator of ¢ {6]:
~ >
&= (pTvipy-1pTy-af, (6)

where T indicates transposed matrices. By substitution of (3) into (6} we

obtain the expression:

-
$ =8+ (PTv-1p)-2pTym2

which shows that the least-squares method estimator is unbiased. The complete
-

matrix of statistical errors for $ is [6]

Var § = (PTV"P)'*ﬁ

It is well known [1] that a system of linear equation obtained from the integral
equation (2) is a poorly determined system, i. e., its solution exhibits an
extraordinarily strong dependence on a variation of the nonhomogeneous terms,
as well as on the errors of ﬂ;e matrix elements and the computer round-off
errors. Therefore, when solving equation (3) by the least-squares method, we
may obtain 5 with very large errors or may not be able to solve the equation at
all if there is no inverse matrix for PTV‘*P.

For the x? functional this means the existence of a direction along which 2
varies ‘too littie and for which the minimum is therefore very poorly determined.

It is reasonable to assume that the stucture function is a smooth function,
and this condition can help us to find a stablte method of solution of (3). For
this purpose, we shall search for the solution of (3) in the form of a minimum

of the functional

n
A

x'r = x’ *a 11 (¢i =) s;)’(xi "Xit)_zlsi (7)
i= v

'($i i 351)’?’(0}’ ks Qizﬂ-’s‘
,(si s $i;):[(xi 5 xi,)z + Bz(Qiz 2 Qiaz)zldsi

th; - 8, )°00x; - x, )7 ¢ B2(Q? - Q %]y,

where,

a and B are regularization parameters,

Ny, ia, i3, is indicate bins adjacent to the i-th bin, where

iy is the nearest upper qeighbour bin,

iz is the nearest right neighbour bin,

iz is the nearest upper right neighbour bin,

is is the nearest upper left neighbour bin.

For example, for i = 40, iy = 41, ia = 48, i> = 49 and i, = 33 (cf. fig. 2). If a

bin does not exist, the corresponding term in eq. (7) is equal to zero. For



example, for i = 1 there exists no upper left neighbour, and the addend with i,
does not exist for i = 1. :

As can be seen from (7), an increase of a leads to an increase in the

smoothness of the solution, while B regulates the relation between the

smoothness in the x and Q2 directions.

Expession (7) can be represented in the form

n
X2, =x*ta-X sinii(p)sj, (8)
iF '
where Q(B) is an n x n symmetric non-negative definite matrix and
Q(B)E =0, if 3 =fciicini ‘c)T, c = const. (9
As shown in \[1], the minimum of x2_is given by -
/ ;
Sz (pTy-1p « -apTy-1F
b = (P V1P ¢ aQ(B)) 3P V-3f. : (10)
By substitution of (3) into (10) we obtain the expression
a >
$=F - PTv-1P + cQ(p))20(P)E + (PTV-2pP + aO(p))2PTV-32
which gives us the bias of the egtimator with regularization
3 T
Bias § = - (PTV-2P + aQ(p))"*e0(p)$. an
The complete matrix of statistical errors for ‘i {4] :
z T T T,
Var § = (P'V-2P + aQ(B))"2P V-1P(P ' V-1P + aQ(B))"2. (12)

The least-squares method excludes distortions, and as a result we have a big

noise in the solution. The solution obtained fro}r\ the

distorted by the stabilizer aQ(B), but here the noise

regularization method is

component can be made
reasonably small. The dependence of the bias and the

sketched in fig.5.

statisti®al error on «a is

As can be seen from (11), the bias decreases if a decreases. The bias can
be considerably diminished if one uses some a priori information in the form of a

parametrization of F; = Fa(x, Q?, pa, Pz,...) which follows from theory or

“from other experimental data; we will call this Fy the trial function. For this

purpose let us represent equation (3) in the form

T=ropd 2

where

D = diag(dq gpre-er Py 0
and

& ¢ = Falxp Q% Pa, P2, -o0)e

We now obtain a new equation

IR 8 ‘ | o
where

Y >
P' = PD and ¢' = D *¢.

->» .
For a properly chosen trial function ¢'_'has equal components. As follows from
B hl .
(9), Q(B);’ s 0, therefore the bias in ¢’ is small.
a .
After solving equation (13), 3 is readily obtained from the equation

- -»

% = b},

and we can find the structure function in the bin centres, with the approximate

formula

X z,

N 1

¢, = D¢ ' .

where D_ is a matrix with the trial function values in the bin centres. The
c.

bias of the estimator $ obtained using a trial function is



Bias 3 = - D(PTV-1P" + oQ(B))-200(MF'
and the complete matrix of errors

var § = D(PTv-2p" + a())- 2P Tv-2p (P Tv-2p" + oqa(p))-*D.

5. Generalization of the regularization method for a matrix P with errors

Any of the two methods mentioned in section 2 allows to obtain the resolution

function, or the matrix P, with statistical errors. The real matrix element Pjj

.

equals

Pi; =p.* g

i ij ij,

-

where Sij is the true value of the matrix element and zij is a random value with
E{ij = 0, Var {i} = dij . Cov t.ijckl = 0.

if we calculate pii by the Monte Cario method, then

d; =W - I (ghva whe ; .
Lok

Here, the summation convention is the same as for the corresponding matrix
element pij (5). When the matrix elements in eq. (3) have statistical errors, it
cannot be solved satisfactorily in the least-squares sense [6], but it may be
solved in the framework of the maximum likelihood method by minimizing the

likelihood funct'ign logarithm [9]

m n n
nL=Z(f-Z pij$i)z x (z1diisi2 * 6;2)"* ¢ const. ;
i=1 i=1 j= :

10

As shown in [10], a good approximate solu_tion of this. problem is

.
3 = (PTv-2p - D)PTV-oT, (14)

where

n n
diag(X d’i’dli e P ) X ¢izdmi t o
i=1 i=1

<
"

3)‘

m

m n

i g fa g
3: dnag(dj],...,djn)/(.}: :pi:dji + o ).
=1 §E

i
n

Since the true value of ebi which enters into the right-hand part of (9) is
5 -

unknown, the values of 3 from the previous experiment can be emp!pyed, or 3

can be found by an iteration. This procedure is convergent as is shown in ref.

[10]. Generalization of (13) by the regularization method leads to the final
- 2

expression for the estimator of $:

3= 0@ Tv-ip - =« a2 Tviosf

and for the bias and the complete error matrix

Bias 3 & - D(PTV-3p - = . aQ(B)1(-T * QBT (15)
Vir B a D(P'TV"-*F;‘ -2 v ()P TV (16)

« (P'TV-1p' - '+ aQ())"2D,

where

n n
V' = diag(X dli #rigedoi G dmi * cm’),
i=1 i=1

m ' n
Ly i i
T' = I diag(d, trdﬂ""' b, trdin)/(z dji 29 ).

i:] i=1 i

i1
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6. Choice of regularization parameters and of the trial function

For choosing a we used the graphical method first applied in ridge analysis
[11]. By plotting th.e z'i(e) (ridges) versus @ we can obtain some idea as to the
ill-conditioning of (3). The value of a can then be chosen to be the minimal one
below which the system (3) becomes unstable. For illustration purposes we have
performed a computer experiment. in this case pseudodata are obtained as

follows:

s
1. A parametric formula for the true function F, is assumed and the vector ¢

is formed.

2. The actual’ matrix P is multiplied by the vector z and as a result we

£ -
obtain a pseudoexperimental vector f.

3. Using a random number generator with normal distribution, fluctu\ations
are added to the vector ? These fluctuations correspond to the actual

statistical errors of the experimental distribution.

4. In the same way fluctuaticns are added to the elements of the matrix P.
These fluctuations correspond to the actual statistical errors of the matrix

elements.

Since we know the true F; in the simulation problem, its solution allows us to
understand, in general, the influence of choosing the a, B and trial functions
on the quality of the reconstruction. As a true F,, we chose the following

parametrization {12] -~

Falx,Q%) = cx% %87 - x)Bn'ﬂ;"

where
s = -In[g?(Q?)/9%(Q%:)], 92(Q?) = 16n2(BoIn(Q2/A2))"2, .
with the following parameters:Q?, = 110 GeV?, ¢ =

1.46, oo = 0.49, a, = - 0.81,
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Bo =11 - 2/3f, f=4, A =0.26 GeV, B, = 1.57, Bo = 4.08. This paran'letrization
satisfactorily describes the NA-4 data published in ref. [13]. In figs. 6 - 9,
ridges are shown for different values of x. We use 8 = 1/30 and a trial F,
equal to the true F,. The ridges are shown as a function of n, which is
related to a simply by @ = 100/1.2". We have chosen a = 100/1.23% = 0.17,
above which the system (3) is stable. Fig.10 shows the reconstructed Fq for
this a. Fig.11 represents the _correla_tion with\the reconstructed F, fer
different bin pairs. For comparison, figs.12 and 13 show the reconstructed Fa
with a = 100/1.22% = 1.05 and the corresponding correlation matrix. Figs.14 and
15 represent the reconstructed F; and the correlation matrix with a = 100/1.2*%
= 0.03. A large positive corge{ation and the resulting smooth F, correspond to
a reconstruction with a = 1.0;. In the case where the trial function does not
coincide with the true function, the reconstructed F, for a = 1.05 has a larger
bias than in the case of a = 0.17 and a = 0.03. The noise component increases if
-« decreas.es,' as we have see f.rom fig.15. If a is smaller than 100/1.27°, F, can
even become negative in some bins due to the behaviour of the ridges. The
large positive correlation between the F.'s in adjacent bins in the region of
farge x (x > 0.65) is due to the insufficien(.: experimental information (events,

bins) in this region. i
The choice of the parameter § mainly influences the character of the

correlations for different parameters x and Q?, and the value of a for which

system (2) becomes stable. The best B, in our opinion, does not give large

correlations in any particular direction. This means that the smoothness in the x
and Q2 directions is the same. The best B is considered to be j(hre one for
which different ridges become stable at the same value of a. Figs.16 and 17 are
show F; and the corresponding correlation matrix for B = 1, and figs.18 and 19
show F; and the corresponding correlation matrix for § = 1/60. We chose:x in
: both cases by the method described above. In the first case, we have a large
positive correlation in the x direction, and the smoothness in the x direction is
farger than in the Q? direction. In the second case, we have large positive
correlations in the Q? direction and a large smoothness in this direction. In the

case of B = 1/30, the smoothness is approximately the same in both directions.

¢

It follows from (15) that the choice of the trial function influences the value
of the bias of the reconstructed structure function; the dependence of the

result on the choice of the trial function is different for different regions.
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Figs.20 and 21 show the reconstructed structure function for two trial functions
not equal to the true Fa: in the form (4) with parameters p, = 0.7, p2, = 10.66,

s = 3.52, pa = - 0.22 and in the form:
Fa(x,Q%) = pu(1 - x)P? , 5

with p; = 0.5 and p, = 3.52.

We see that, the reconstructed F, depends strongly on the trial function in
the region of large x, due to insufficient statistics of the experimental data and
the poor resolution of the experimental set-up in this region.

The bias can be diminished by choosing the most probable parameters for the
‘given parametrization, using an iteration procedure. This procedure uses in
each step the trial function parameters obtained from a fit to the structure
function reconstructed in the preceding step. Fig.22 shows a reconstructed
structure function at the 10th step of an iteration procedure with a trial
function in the form (4) (first step as shown in fig. 21).

The proposed procedhf-e of choosing the regularization parameters gives a
value close to the minimal root-mean-square error of the structure function for
the given trial function, or for the respective parametrization of the trial
function when .an iteration procedure is used. The root-mean-square error of a
9, is defined as

Asi m.s.” (Aszi

stat (Bias s‘t)z)-z'
In fig.5, this is the distance from the origin of the coordinate system to the
curve (A$i sfat(¢x), Bias $i(a)}.

Bias and statistical errors decrease if the statistics of the experimental data
is increased, increasing the number of bins for the experimental data
accordingly, and if the statistical errors of the matrix elements are reduced [1,

4, 10}.

7. Conclusion

We may summarise the main results of this paper as follows:

1. We have derived the basic integral equation. :

2. We have transformed the basic equation to an algebraic form suitahle for
cv;amputer calculations, and proposed an algorithm giving expressions for
the estimator of the structure function, for the bias of the estimator, and

the fult error matrix.

3. We have shown how to choose the basic regularization parameters and how -

to use a priori information to reduce the bias of the estimator,
% ~

The proposed method is very general and can be used in any scattering
experiment to correct measured distributions for effects of experimental
resolution, :

The author would like to thank I.A. Savin and V.V. Kukhtin for support of
this work and useful discussion, and D.B. Pontecorvo and R. Voss for a critical

reading of the manuscript.
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B 06veauMHEeHHOM MHCTUTYTE AAEPHHIX UCCNE[OBaHWKA Hauan
BuxoauTh cbopHux "Hpamxue coobuyenus OHAH", B Hem
GyAyT noMewlaTbCA CTaTbM, cCofepxalue OpUIrMHanNbHue HayudHble,
"HaYUHO~TeXHUUECKue, MeToauuYecKue KU NpuKnagHwe pesynbTaTl,
Tpebyoume cpouHoit nybnukaumm. Bygyuu udacTtew ''CoobueHnit
OHAK'', cTaTeu, Bowepuune B cOOpHUK, MMENT, KaK U Apyrue
uspatua OUAKW, ctaTyc oduumanbHuX nybnukaywii,

C6opHuk ''KpaTkue coobueHus OUAU'' Gyper swixoauTb
perynsapHo.
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‘Theory of condenced matter.

Applied researches.

Being a part of the JINR Communications, the articles
of new collection like all other publications of
the Joint Institute for Nuclear Research have the status
of official publications.
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