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1 • INTRODUCTION 

This work has arisen from processing of the experimental data 
obtained at NA-4 set-up in CERN. 

The NA-4 set-up created for muon-nucleon and nuclear inter­
action research is a cylindrical-synnnetric focussing spectrome­
ter with the toroidal magnetic field11~The spectrometer is ~ss m 
long and has a diameter of 2.75 m. An extended target is inside 
the torus. A scattered muon oscillates inside the spectrometer 
due to the field effect. Parameters of secondary particles de­
termined in the experiment differ from true parameters because 
of multiple scattering of particles in iron of the magnet, the 
discrete step of registration apparatus, inaccuracy of the ana­
lysis programs and other causes. For reconstruction of the true 
spectra of secondary particles we propose to solve the Fredholm 
integral equation of the first kind. \le have chosen the statis­
tical regularization method for solving this equation. Among 
known methods/2,3/ this one better corresponds to the probabi­
listic character of the data processing problem. 

2. THE PROBLEH 

Deep inelastic muon-nucleon cross section can be written 
as 141 

d 2 a I dxdQ 2 = F 2 (x, Q 2) . K (x, Q 2, E) . /). (x, Q 2 , E) , ( 1) 

where F2 - the nucleon structure function, K - the kinematical 
factor, !l.-1 - the radiative correction factor, E - the muon beam 
energy, Q2- the four-momentum transfer, x = QJ[2Mp(E- E')] 
MP -the proton mass, E'- the scattered muon energy. 

The measurable cross section d 2 a(x,Q2 )/dxdQ~xp is connec-
ted with true cross section (I) by the dependence: 

d 2a(x,Q2 ) 
2 dx dQ exp 

(2) 

where P(x', Q 2 '; x,Q 2 ) is the set-up resolution function for the 
point with kinematical parameters x' and Q2 ~ In (2) we integ­
rate over the kinematically permissible region. 
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We know the left part of (2) and the functions K, A, too. 
A resolution function can be obtained by its direct measure 
when it is possible, or by the Monte-Carlo simulation of th~ 
experiment. 

Our problem is to obtain the structure function .F2 from (1), 
(2). 

It should be noted, that an actual incident muon beam is 
not monoenergetic, therefore eq. (2) must be integrated over 
the beam energetic distribution P(E). We do not write this more 
complicated equation and take into account the energetic dis­
tribution just on an average. 

3. STATISTICAL REGULARIZATION METHOD 

After algebraization of equation (2) we obtain a system of 
linear equations 

-+ -+ -+ 
f = Pc/J + £ , (3) 

... 
where r is an m-dimensional vector corresponding to the mea­
s~red cross section, ¢ is an n-dimensional vector correspon­
d~ng to the true cross section, P is the m x n matrix corres­
ponding to the resolution function multiplied by K and A, ("" 
is an m -dimensional random vector with an average value Ef"= 0 
~nr1 ,.:~; ~O'I"'U"'\~1 "'T..,_.: ...,_"" _ ...... -.: .. ... ----o----- ·-----··-- ...... __ ._.a. ... I> 

V -+ - d" ( 2 2 art - 1ag u 1 , ••• , um), 

where ui denoted statistical errors of the measured cross sec­
tion. It is well known 12,3 I that a system of linear equations 
obtained from integral equation (2) is a poorly determined sys­
tem, i.e., its solution is in an extraordinary strong depen­
dence on variations of the inhomogeneous terms, also on the 
errors in matrix elements and computer round-off errors. There­
fore, if we solve equation (3) by the least squared method 

J = (P T v-1 P)-1 pTy-1(, where V = Var£: (4) .. 
we can obtain¢ with very big e~ors or do not solve (3), as 
there is no inverse matrix for P v-1 P. 

To obtain a stable solution for equation (2) we will use the 
statistical regularization method. The essence of the method 
is that we use a priori information about the solution. In our 
case this information is that solution is a smooth function. 
We can make this information more precise by introducing a func­
tional characterizing the degree of smoothness of the function 
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a 1 , a 2 are constants, a1 >0, a2 >0, and by fixing an expected 
approximate value of this functional O[.F

2
(x, Q2)] .. cu. 

After the algebraization is performed the a priori informa­
tion has the form: 

-+ -+ 
(c/J' {} cP) = I. cPt {} ij cP J ... w. 

i,J 

Further we choose density of the a priori distribution P(;). 
In order to introduce as little arbitrariness as possible we 
choose P($) which minimize the quantity of information: 

-+ -+ -+ 
f P(c/J) ln P(c/l) dcP 
on condition that: 

~ -+ ..... -+ 

J (c/J' {} cP) p (c/J) dcP = w. . ... 
This funct~on P(c/J) will be 

n·-r 

Pa <J) c 1 a-2 -expl- f<J. oJH 

where a = n/ w , r 
zation constant. 

is a defect of the matrix 0, c1 

'1"1... .............. --1!•!---1 -- .... t..-1...!1! ........ ~ ........... .: ..... .. 
.&.1.1."- '-VI.I. ..... .._ ... .._VI.I.-.&. ..... ...,.., ..... u.a..&..&.""'J ..... ._ .... ~.a.. ... J 

is a normali-

,...1-,...,.,... ... ,... ....... _ ................................. 

rizes the measurement process is taken in the form of a normal 
distribution /3/ 

n 

... .. 
P(flc/l) 

m (f j - I. P ij cP I ) 
1 t -1 1 n -===:-expl- - -. 

j = 1v'2Yruf 2uf 

By the method of statistical regularization the estimator of 
the vector $ is expectation cP-+ over a posteriori distribution: 

-+-+ 1-+ T 1 -+ 
P(c/J/f,a) =C2 expl-r(c/J,[P V-P+aO]c/l) + 

+(;, PTV-1 f) - t<r, V-1 (}1 

obtained by the Bayes formula. 
Calculation of the expectation gives us 

(5) 
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We can choose a parameter by the maximum likelihood method 18~ 
here a is found from the equation: 

... ... 1 ,.. ,.. 
+ 2 (cpa ' {}cpa) .. 0 ' 

.... 
where $a is the regularized solution with a given a. 

4. GENERALIZATION OF STATISTICAL REGULARIZATION METHOD 
FOR THE MATRIX P GIVEN WITH STATISTICAL ERRORS 

(6) 

Either of two mentioned in section 3 methods of obtaining 
the resolution function, as well as P matrix,allows one to get 
it with statistical errors. The real matrix element Ptj equals 

P ij = p ij + e iJ • 

where p 1J is the true value of the matrix element and ( 1J is 
a random value with 

E(1J = o, vare 1J =d 1J. cov(1J(kf .. o. 

It is shown in paper/6/ that for the estimation of J by the 
least squares method with an approximately given matrix P 

there is a bias, which may be significant for ill-conditioned 
matrix P and large values of diJ. For this case a satisfactory 
estimation of $is suggested in ref.161 

i = <Prv-1 P -a> iTv-1r, <n 
- 0 2 2 n 2 2) where V = diag( I. cfJ

1 
d

11 
+ u

1 
, ... , I. cp. d 1 + u • 

i= 1 i = 1 1 m m 

m n 2 2 a I. diag( djl'"''dln )/( I. cpi dji + (7 j ). 
j=1 1=1 
Since the true value of q, 1 which enters the right-hand part 

of (7) is unknown values of ¢ from the previous experiment 
can be employed, ~r 1 can be found by means of iteration which 
• • 'I' h . f 161 
~s convergent, as ~s s own ~n re • : . . . 

Generalization of (7) by the stat~st~cal regular~zat~on ... 
method leads to the final expression for the estimation of cp: 
~ ~T--1 - -1 - T- -1-+ (8) 
cp = (P V P - a + a{}) P V f • 
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Matrix (P TV-1P -a + aO) - 1 is the estimator of the full 
matrix of errors for /. 

Parameter a can be obtained from Eq. (6), if one reElaces 
everywhere P with fJ , V with V and P Tv-lp with fiT V-1 P -a. 

To make the regularizations equivalent in both directions, 
we shall solve Eq. (2) with weights ap a 2 equal to: 

a 1 = n:!w 1 , a 2 =nlw 2 , 

where w 1 and w2 mean the same as w, but for matrices 0 1 and 0 2, 

respectively. Estimations for a 1 and a 2 can be obtained in the 
same way as for a by the maximum likelihood method. 

5. CHOICE OF BINNING, CALCULATION OF MATRIX ELEMENTS 

Without limiting the general discussion, below we shall de­
scribe the method as applied to the part of experimental materi­
al obtained in 1979, for the 280 GeV beam. The number of experi­
mental events is 80K. The number of simulated events is 400K, 
among them 130K are under reconstruction. 

Figs.l and 2 show binnings for the ex~erimental data and 
the structure function, respectively. 

Boundaries of the binning for the experimental data are 
chosen in such a way that maximum of the available experimen­
tal infnnn.<~t"inn W.<l" ,..,.,,t_ Th<> .,;'7<> nf hin., <>llm.,., <'It}<>"'"!: 

20 events within them, and good providing with statistics assu­
res for each 4 bins of experimental informa,ion one bin for the 
structure function. 

Boundaries of the binning for the structure function are 
set by kinematic parameters of the events detected in the ex­
perimental set-up. In this case the boundarfes can be deter­
mined through distribution of the reconstructed model events 
by their original kinematic parameters. The lower boundary in x 
is replaced by the lower boundary in the scattered muon energy. 
The boundary E~1nis shown in Fig.3. When normalizing to the bin 
areas for bins I, 10, 19, 28, 36, 44, 52, 60, 68, 75, 82, 88, 
94, 99, the lower boundary in x is determined by the formula: 

X min = 2Q
2 

M p I (E A - E ~in ), 

where E A is a mean value of the beam energy. Thus, the norma­
lization somehow brings back a number of events which are out 
of the boundary xmin because in their case the incident muon 
energy E was higher than the average beam energy E A' 

The value of the structure function in the bin can be as­
cribed to mean values of kinematic parameters in this bin. 
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Fig.3. Minimum energy E' of the scattered muon registered in 
NA-4 set-up vs Q2• 
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These mean values are calculated by formulae: 

here summation covers all simulated events in the bin, and 

Q·.2 2 
Ut =..!ti..

1 
.F2 (x 1,Q 1 ), v 1 =P(E 1)/P(E 1 ) 0 , 

-xi 

where (1-x)/Q2 and P~) a are the distribution of the event 
simulation. For .F2(x, Q ) the parameter formula was used 

2 P8 Q2 P4 In4x 
F 2 (x, Q ) = p 1 (1 + p 2x )(1 - x) (6) , (9) 

where Pt =.52, P2= .9, Ps= 3.2, P4 = -.155. This parametri­
zation describes satisfactorily the data on the structure func­
tions obtained in other experimentsand ensures agreement between 
the spectrum of the reconstructed simulated events and the ex­
perimental spectrum. The dispersion in actual distribution P(E) 
is -:_4%, and simulated distribution P(E) 0 is close to the actual 
one. 

The matrix elements are calculated by the formula 

Igt 
P .. -.w 

iJ ~m. ' --- ( 

summation covers all the events simulated in the j -th bin for 
the structure function, here: 

{ 

Wt,if the event was reconstructed 
ruction got into the 1- th bin for 
data; 
0, if any of the two conditions is 

and after reconst­
the experimental 

violated, 

sis the bin area, aN is the normalization constant, a.N=N•p·t·NA, 
N is the muon flux, p is the target density, t is the target 

length, N A is the Avogadro number. 
The e~ Pij is approximately 

.JI.gf 
11p 1J .. - .w. 

Iwr 
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Fig.S. Q2 resolution FWHM vs Q2 of NA-4 set-up, 

The use of weights wf helps to reduce a little.the approxima­
tion error caused by the fact that bins are not infinitesimal 
in their size. The error can be reduced even more by repeating 
the whole procedure after .F2 is calculated. 

For a large number events obtained at the set-up (~17%) the 
incident muon energy is not known; all kinematical parameters 
for these events are calculated in the reconstruction program­
mes with the energy E = E A' Therefore, simulated data were pre­
pared as a statistical mixture of the events with known and un­
known (after the reconstruction) energy of the incident muon, 
the ratio being 83:17. x and Q2 resolution of the NA-4 set-up 
FWHM is shown in Figs.4 and 5 111 
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6. TRIAL FUNCTION .F2 

There are two obstacles to the effective use of the method 
described in sections 3,4. The first one is the fact that the 
method is good for comparatively smooth functions, and F2 des­
cends rapidly with increasing L This leads to the fact, that 
the reconstructed function F2 is too smooth at small x and 
fluctuates much at large x. 

The second obstacle is that values of x for which .F2 is 
determined in some intervals do not lie on the same straight 
line, e.g., for bins 2, 11, 20, 28, 36, 44, 52, 60 x equal .253, 
.253, .253, .225, .236, .248, .264, .284, respectively, and the 
a priori information on smoothness in Q2 cannot be applied to 
this set of points. 

These two obstacles can be eliminated; for this purpose let 
us present (3) in the form 
-+ ... -+ 

f=P'if>'+E, (10) 

where 

-+, -1-+ 2 ( Q2)) P',PD, q, = D ¢>, D=diag(F 21 (x ,Q ), ... ,.F2 t x, , 

here F 2t (x, Q 
2') is a trial function for .F 2 which is given in 

the parametric form and shows the assum!d behaviour of the re­
""1 t-- Tn nPw PnnAti on (<n the unknown ch' does not cause so much 
changes as ¢ does in (3), therefore b~th obstacles become in­
significant. Eq. (9) being solved, ~ is easily obtained from 
the equation 

and if we want to know the value of the structure function in 
bin centres, we can find it by the approximate formula 

... ... 
if>c"" 0 cif>' • 

where De is a matrix with the trial function values in bin cen­
tres. 

7. ANALYSIS OF RESIDUALS 

Let us find residuals through r 1 

m 
noteworthy is that I. r 2 = x 2 • 

i = 1 i 
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The analysis of residuals allows: ... 
(i) to reveal sharply distinctive components of r, e.g., 

for which I r 11 > 3, in order to analyse better the reasons for 
their origination (a systematic error, resonance, etc.). 

(ii) to select .F2, more thoroughly. 

It was observed, that if some components became distinguished 
due to systematic errors, this leads to wrong ~stimations of 
a 1 , a 2, a. Therefore, when determining a 1, a 2 , a, these com­
ponents can be excluded from the process and introduced again 
when a 1, a2, a are calculated. 

By the distributions of residuals for various parts of the 
experimental data binning one can judge about the regularization 
effect in these parts. Thus, if one does not use the trial func­
tion, i.e., F2,s1, one obtains significantly different root­
mean-square dispersions in the distribution of residuals for the 
upper and the lower parts of the binning. In this case a smaller 
smooching effect corresponds to the smaller root-mean-square 
dispersion 171'. 

By the deviation of the means fro~ zero for the distribution 
of residuals one can judge about the distortion due to a priori 
information. 

We would like to note, that for the least squares method 
the residuals may be considered as independent and equally dis­
tributed by random values of normal distribution with Er 

1 
=0 

and Var r 1 = m/(m- n)/6.', 

The dependence of the result upon .F2 t is quite weak. Never-

theless, it depends upon .F2, for the bins with poor statistics 

or very bad resolution. Here the best .F 2, is the one which 
gives: 

(i) 
(ii) 

(iii) 

(iv) 

(v) 

a smaller values of x 2; 
smaller (in absolute value) means in the distributions 
of residuals; 
a smaller difference between the values of the root­
mean-square dispersion in the distribution of resi­
duals for various parts of binning; 
better agreement with .F2 reconstructed with the accu­
racy up to normalization; 
smaller errors in the reconstructed F2 • 

8. SIMULATIVE PROBLEM 

Solution. of simulative problems is not 'unimportant for the 
reconstruct1on procedure. In this case pseudodata are obtained 
as follows: 

10 

.1. A parametric formula for ~2 is taken and the vector l 
is formed. ... 

2. The actual matrix P is multiplie~ by the vector c/J and 
we obtain a pseudoexperimental vector r. 

3. Using the generator of random numbers w],.th normal distri­
bution, fluctuations are added to the vector t. These fluctua-... 
tions correspond to the actual statistical error ~t. 

4. In the same way fluctuations are added to the elements 
of matrix ~. These fluctuations correspond to the actual statis­
tical error ~P. 

Since we know the true .F2 in the simulative problem, its 
solution allows us to understand in general the influence of 
the set-up resolution, errors of experimental data, errors of 
matrix elements, systematic error, etc., upon the quality of 
the reconstruction. As a simulative .F2 and .F2 in the following 
form can be chose (the Ganzalez-Arroyo parametrization 181) 

2 ao+ a ls fJo+ {Jls F 2 {x, Q ) = ex (1- x) (II) 

where s = -lri g2(Q2) g 2(Q2) = 16tr2 
g2(Q5)' Poln(Q2/A2) ' 

with the fol!_owing parameters: Q~ = 110, c = 1.46, a 0 = 0.49, 
a1 = -0.81, /3o = ll-2/3f, f = 4, A= 0.26, f3t= 1.57, /:Jo= 
= 4.08. This parametrization describes satisfactorily the data 
obtained in experimen7 NA-4 at energies 120 GeV and 200 GeV 
and published in ref. 41 • • 

For the reconstruction a trial function F2 in the form of 
(9) is used with parameters p 1 = 0.17, P 2= 10.66, Ps= 3.52 
p 4 = -o.22. In Fig.6 one can see the results of the reconstruc­
tion. In the intervals x = 0.25..0.65 the reconstruction is good, 
in the intervals 0.15, 0.75+0.95 the reconstriction is worse. 
We would like to command attention to the poorest agreement 
between .F 2, and the recons true ted .F 2 • For the sake of compa-

rison the reconstruction was carried out with .F 2 in the form 

of (II) "!_ith parameters: Q~ = 108, c = 1.43, a 0 = 0.46, a 1 = 
= -o.8, fJo= 11-2/3 r , r = 4, A= 0.265, fJ 1 = 1.53, fJ 0 = 4.085. 
In Fig. 7· one can see the results of this·· reconstruction. 

The Table lists values of x 2, mean values (M. V.) and root­
mean-square values (R.M.S.) for all residuals and the residuals 
in various parts of the binning for both cases. 

According to the criteria from section 7 the test function 
of the second form is more preferable, as a matter of fact, 
in the second case the reconstructed structure function is clo­
ser to the true F 2• 
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Table 

N All :Q :$ X ~0.6 

)(2 
M.V. R.M.S. M.V. -i R.M.S. 

I 236.0 0.016 0.92 0.086 I 0.86 

2 233.7 0.017 0.92 0.031 i 0.87 

N 0.6_s:x <2.0 Q2 :s 120 ' Q 2 ;::120 

M.V. R.M.S. l-1. v 0 R.M.S. M.V. R.M.S. 

I -o.o87 0.99 0.007 0.91 0.039 0.94 

2 -0.011 0.99 0.013 0.90 0.027 0.97 
- --·--
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M.Yu.Kazarinov for remarks after reading the manuscript. 
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raryHa.BMnM H.A. 
MeTQA aoccTaHO&neHM~ CTPYKTYPHOA •YHKqMM HYKnOHa 
Ma .qaHHWX no rny«SC)KOHeynpyrOM)' pacce~HMID 

El-83-703 

~ ~TaHO&neHM~ CTPYKTYPHOA •YHKqMM HYKnOHa Ma Henocpe.qcTaeHHo Ma­
MepeHHOro 3KCnePMMeHTBnbHOA ycTaHDeKoA ce~HM~ rny6oKoHeynpyroro pacce~HM~ 
MDOHOB PBCCMaTPMBaeTC~ MHTerP&nbHOe ypaBHeHMe .pe.qronbMa 1-ro po.qa 8 .qay­
MepHOM 88PM8HT8. C~ ~H YPBBHeHM~ /3KCnepKMeHT&nbHoe ce~eHMe/ M RAPO 
MMeGT o.M5KM CTBTMCTM~Koro xapaKTepa. P ... HMe ypaaHeHMR /CTPYKTYPHaR 
~YHKqMR/ HaXQAMTC~ MBTQAOM CT8TMCT~8CK0A perynRpMaaqMM C Bw60PQM napaMeT­
POB perynRpMaaqMM M3 nPMHqMRa M8KCMMYM8 npa~onQAo6MR 8 CnoMCTOM 8HCaMfine 
rna.qKMX .YHKqMA. n~HO ~HMe MBTQAa, 8 KOTOpoH ~MTWBaGTCft OWM6KM 
R.qpa. noKaaaHO t ICBK MCnonbaoaBTb TaKYG anPHOPHYG MH$0J)MaqMtD, K8K poe r CTPYK­
TYPHOA .YHKqMM no ~ M3 Hanpa&neHMA. 

Pa6oTa awnonHeHa a naeGpaTOPMM AAePHWX nPD6neM OHRH. 

Gagunashvlll N.D • 
Method of Nucleon Structure Function Reconstruction 
from the Deep Inelastic Scattering Data 

El-83-703 

To reconstruct the nucleon structure function from the directly mea­
.sured experimental cross section of the deep Inelastic scattering of muons, 
Fredholm Integral equation of the first kind Is considered In Its two­
dimensional version. The free term of the equation (experimental cross sec­
tion) and the kernel have statistical errors. The equatlon·s solution 
(structure function) Is found by the statistical regularization method, 
the regularization parameters being chosen on the basis of the maximum 
likelihood In a laminar ensemble of smooth functions. Generalization of the 
method Is suggested, where the kernel errors are taken Into account. The 
use of this a priori Information as growth of the structure function In one 
of the directions Is shown. 

The Investigation has been performed at the Laboratory of Nuclear 
Problems, JINR. 
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