


1. INTRODUCTION

This work has arisen from processing of the experimental data
obtained at NA-4 set-up in CERN.

The NA-4 set—up created for muon—-nucleon and nuclear inter-
action research is a cylindrical-symmetric focussing spectrome-
ter with the toroidal magnetic field’ "’.The spectrometer is =55 m
long and has a diameter of 2,75 m. An extended target is inside
the torus. A scattered muon oscillates inside the spectrometer
due to the field effect. Parameters of secondary particles de~
termined in the experiment differ from true parameters because
of multiple scattering of particles in iron of the magnet, the
discrete step of registration apparatus, inaccuracy of the ana-
lysis programs and other causes. For reconstruction of the true
spectra of secondary particles we propose to solve the Fredholm
integral equation of the first kind. We have chosen the statis-
tical regularization method for solving this equation. Among
known methods’/2:3/ this one better corresponds to the probabi-
listic character of the data processing problem.

2. THE PROBLEM

Deep inelastic muon-nucleon cross section can be written
/4/
as

dza/dde?':F2(x,02)~K(x,Q2,E)-A(x.02,E). ()

where Fp - the nucleon structure function, K - the kinematical

factor, A™! - the radiative correction factor, E - the muon beam

energy, Q% - the four-momentum transfer, X = Q%[2MP(E-E’H

M, -the proton mass, E” - the scattered muon energy.
The measurable cross section dza(x,Qz)/ddegxp

ted with true cross section (1) by the dependence:

is connec-

a%(x,0% _ ( d%s(x, Q%"

Pix’, Q%" x,Q%)dx"dq?, (2)
axd@ 5y, dax"aQ? -

where P(x’, Q%7 %,Q2%) is the set-up resolution function for the
point with kinematical parameters x° and Q2" In (2) we integ-
rate over the kinematically permissible region.
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We know the left part of (2) and the functions K, A, too.
A resolution function can be obtained by its direct measure,
when it is possible, or by the Monte-Carlo simulation of the
experiment.

Our problem is to obtain the structure function Fy from (1),
(2).
It should be noted, that an actual incident muon beam is

not monoenergetic, therefore eq. (2) must be integrated over
the beam energetic distribution P(E). We do not write this more
complicated equation and take into account the energetic dis-
tribution just on an average.

3. STATISTICAL REGULARIZATION METHOD

After algebraization of equation (2) we obtain a system of
linear equations

F= P +¢, (3)

where f is an m-dimensional vector corresponding to the mea-
sured cross section, $’ is an n-dimensional vector correspon-
ding to the true cross section, P is the mxn matrix corres-
ponding to the resolution function multiplied by K and A, ¢
is an m-dimensional random vector with an average value E&=0

and Aiacnnal wravlanan mabwdee
f1ag e

Varé = diag (02, ..., 02),

where ¢; denoted statistical errors of the measured cross sec-
tion. It is well known/2,3/ that a system of linear equations
obtained from integral equation (2) is a poorly determined sys-—
tem, i.e., 1its solution is in an extraordinary strong depen-—
dence on variations of the inhomogeneous terms, also on ‘the
errors in matrix elements and computer round-off errors. There-
fore, if we solve equation (3) by the least squared method

¢ =@ VIR PV, uhere V= Vard, (4)

a
we can obtain ¢ with very big eryors or do not solve (3), as
there is no inverse matrix for P V~lp,

To obtain a stable solution for equation (2) we will use the
statistical regularization method. The essence of the method
is that we use a priori information about the solution. In our
case this information is that solution is a smooth function.
We can make this information more precise by introducing a func-
tional characterizing the degree of smoothness of the function

2

QLF, (x,Q%)] = [ (8, (Fj )% + 3 ,(F] ) Flaxda®,

a,, ap are constants, a31>0, ag>0, and by fixgng an expected
approximate value of this functional Q[Fz(x,Q N .

After the algebraization is performed the a priori informa-
tion has the form:

6,08) - % ¢,0,¢, ~o.

-

Further we choose density of the a priori distribution P(¢).
In order to introduce as little arbitrariness as possible we
choose P(¢) which minimize the quantity of information:

[ P(¢) mP@) dp

on condition that:

(@, 0 P(Hddb - .
This function P($) will be

P, =cja B expi-5( 09N,

where a=n/w,r is a defect of the matrix {}, ¢y is a normali-
zation constant.
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rizes the measurement process is taken in the form of a normal
distribution /8/

n
f. — .
IR o 1 (f 1§1p‘3¢’ )
P(t/¢) = 11 expi -
j =1 2
] = \/2"012 20]_

b

By the method of statistical Eegularization the estimator of
the vector ¢ is expectation ¢ over a posteriori distribution:

P($/1, a) =cyexpl- 3, [(PTVT'P +all]e) +

+(@, PTVIY) - -%-(F, ving,

obtained by the Bayes formula.
Calculation of the expectation gives us

-1

é=PTV-ip +a) tPTVIT, (5)



We can choose a parameter by the maximum likelihood method’3/,
here a is found from the equation:

9 h=B=f _1aapTy-lp sa) l+
Fw P/ = = 5 piQ( +

. R 2 (6)
+ 5 (B, ,08,) =0,

where $a is the regularized solution with a given a.

4, GENERALIZATION OF STATISTICAL REGULARIZATION METHOD
FOR THE MATRIX P GIVEN WITH STATISTICAL ERRORS

Either of two mentioned in section 3 methods of obtaining
the resolution function, as well as P matrix,allows one to get
it with statistical errors. The real matrix element Py equals

pij ‘=p“ +£i’!

where Py is the true value of the matrix element and ‘fij is
a random value with

E‘fij =0, Vanfu =dij . Cov‘fu‘fkgs 0.

It is shown in paper /8/ that for the estimation of & by the
least squares method with an approximately given matrix P
6 = @TVIBTIPTVT L
there is a bias, which may be significant for ill-conditioned
matrix P and large values of d, . For this case a satisfactory
estimation of & is suggested in ref./8/

-

- - g ~p—ay .
¢=PV'P -EB)P VI, : (7)
- n n
' £ 2 2 2
where V = diag( 2 ¢ d  +o0 .., o d 4 o)

i=1 i=1

E = Em diag ( d“,....djn )/ ( En d:f(lji + 02j ).
j=1 i=1
Since the true value of ¢; which enters the right-he_md part
of (7) is unknown, values of ¢ from the previous.exper)’.ment ]
can be employed, or ; can be found by means of iteration which
is convergent, as is shown in ref.’8/ ) )
Ceneralization of (7) by the statistical regularization
method leads to the final expression for the estimation of ¢:

-
A

T~ = -t ~T=—12
F-@V'B-gsa) BV T (8)
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Matrix (PTV-lﬁ -E + aﬂ)"1 is the estimator of the full
matrix of errors for ¢.

Parameter a can be obtained from Eq. (6), if one replaces
everywhere P with B, V with V and PTV™IP with P'V 'P -E.
To make the regularizations equivalent in both directions,

we shall solve Eq. (2) with weights a;, a, equal to:

31=n:/(a.)1, 32=ﬂ/&)2,

where @, and @, mean the same as o, but for matrices @y and Q,,
respectively. Estimations for a, and a, can be obtained in the
same way as for a« by the maximum likelihood method.

5. CHOICE OF BINNING, CALCULATION OF MATRIX ELEMENTS

Without limiting the general discussion, below we shall de-
scribe the method as applied to the part of experimental materi-
al obtained in 1979, for the 280 GeV beam. The number of experi-
mental events is 80K. The number of simulated events is 400K,
among them 130K are under reconstruction.

Figs.] and 2 show binnings for the exjierimental data and
the structure function, respectively.

Boundaries of the binning for the experimental data are

chosen in such a way that maximum of the available experimen-
tal information wac need. The eiza nf hince allawe at leact

20 events within them, and good providing with statistics assu-
res for each 4 bins of experimental informagion one bin for the
structure function.

Boundaries of the binning for the structure function are
set by kinematic parameters of the events detected in the ex-
perimental set-up. In this case the boundaries can be deter-
mined through distribution of the reconstructed model events
by their original kinematic parameters. The lower boundary in x
is replaced by the lower boundary in the scattered muon energy.
The boundary Ej, is shown in Fig.3. When normalizing to the bin
areas for bins 1, 10, 19, 28, 36, 44, 52, 60, 68, 75, 82, 88,
94, 99, the lower boundary in x is determined by the formula:

X, = 2Q°M, /(B -El, )

where EA is a mean value of the beam energy. Thus, the norma-
lization somehow brings back a number of events which are out
of the boundary x_ . because in their case the incident muon
energy E was higher than the average beam energy E,.

The value of the structure function in the bin can be as-
cribed to mean values of kinematic parameters in this bin.



These mean values are calculated by formulae:

‘ﬂ B "Fig.l. Binning for the experimental data. . .
@ ik X,= 2 uyx,/%u;, Q=X uQ/Iuy; Ey=ZvE,/3v,,
Z ] _Lj here summation covers all simulated events in the bin, and
y I o .
14 ] rﬂ uy ='1'T§-'Fg(lpqi)- V1=P(Eg)/P(E1)Q.
ol o T 1
“ | m where (1-x)/Q%® and P(E) g are the distribution of the event
I H1H e simulation. For Fp(X, Q") the parameter formula was used
o H 1L H i
o HHH 2 Pg g2 Pylnax .
a '—:'-'"- = | 'Fg(xvq )= 91(1 + pg‘)(’-") (=) ’ 9
- L HT ‘ b
= S o T
L = EEE:E_ ] 1 [ ] where py = .52, pg= .9, pg= 3.2, pg = -.155. This parametri-
&) T 1 — zation describes satisfactorily the data on the structure func-
) - sEngg —] — - tions obtained in other experiments and ensures agreement between
a3l | 'j‘:: a —— the spectrum of the reconstructed simulated events and the ex-
&) ] ﬂag perimental spectrum. The dispersion in actual distribution P(E)
af | is_+_loZ, and simulated distribution P(E)q is close to the actual
M A T T T T T T T T ¥ T T ™ T T Al T T T T T T ‘ one.
A A A -W(O‘Q.) The matrix elements are calculated by the formula
v
x 282
el e T ol 2 Ta Tol o T = 1 | Py -“.__:! '
b ST jIMIarim| 56 | 66 | 73 | 80 | 4 [} 7 o
7 e % | a5 o [] 0 . . . .
o ,:::‘,: ‘z :'Z 7w | a 20 = P summation covers al]_. the events simulated in the j-th bin for
Y Talnlwwlwl s T o] 7 | & o the structure function, here:
i lolulnuis] o (e o % |, | » » . .
MERCCCIG AR R ES wp =uy. vy - K(xp,Q5,E;) - Alx,, Q5,E)),
O Tl el | 2 [0 g =ug- Vg Kixg,Qp,Ep) g Qg Ep)
at{ 1 ri_.”_ —
M M I R R A A A TR A TR A TR a' wp,if the event was reconstructed and after reconst-
. .. . : ruction got into the i-th bin for the ex i tal
Fig.2. Binning for the structure function. (Gev2) . gy = da(t:a°o §ot 1 € tn o ¢ experimenta
»
£ (6ev) 0, if any of the two conditions is violated,
90
" W - K(x,,Q},E,) -Ax,,Q%,E,).5-a
m A* A EA A* A EA) N’ v
& J . . . . .
% ] 8 15 the bin area, ay 1s the normalization constant, a =N'p't'NA’
< | N is the muon flux, p is the target density, t is the target
%] length, N, is the Avogadro number.
:‘;~ The error p; is approximately
00N W M A R o me w no M w0 s s QY5 vg

- W.

. . Ap =
Fig.3. Minimum energy E‘ of the scattered muon registered in R
NA-4 set-up vs QZ, 7
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Fig.5. Q2 resolution FWHM vs Q® of NA-4 set-up,

The use of weights g, helps to reduce a little. the approxima-
tion error caused by the fact that bins are not infinitesimal
in their size. The error can be reduced even more by repeating
the whole procedure after Fg is calculated.

For a large number events obtained at the set-up (=17Z) the
incident muon energy is not known; all kinematical parameters
for these events are calculated in the reconstruction program-
mes with the energy E =EIA.Therefore, simulated data were pre-
pared as a statistical mixture of the events with known and un-
known (after the reconstruction) energy of the incident muon,
the ratio being 83:17. x and @® resolution of the NA-4 set-up
FWHM is shown in Figs.4 and 5 ’1C

8

6. TRIAL FUNCTION Fy

There are two obstacles to the effective use of the method
described in sections 3,4. The first one is the fact that the
method is good for comparatively smooth functions, and Fg des—
cends rapidly with increasing x, This leads to the fact, that
the reconstructed function Fp is too smooth at small x and
fluctuates much at large x,

The second obstacle is that values of x for which Fp is
determined in some intervals do not lie on the same straight
line, e.g., for bins 2, 11, 20, 28, 36, 44, 52, 60 2 equal .253,
.253, .253, .225, .236, .248, .264, .284, respectively, and the
a priori information on smoothness in Q% cannot be applied to
this set of points, .

These two obstacles can be eliminated; for this purpose let
us present (3) in the form

-
f =P ¢’ +¢, (10)
where

P’=PD, ¢’= D™'§, D=diag(F,, & ,Q%), 0, Fp (x .G %)),

here FBJ!.027 is a trial function for Fy which is given in
the parametric form and shows the assumed behaviour of the re-
enlt. Tn new eauation (9) the unknown &4’ does not cause so much
changes as does in (3), therefore both obstacles become in-
significant. Eq. (9) being solved, ¢ is easily obtained from
the equation

é =Dg’

and if we want to know the value of the structure function in
bin centres, we can find it by the approximate formula

-

¢c=Dc¢"

where D, is a matrix with the trial function values in bin cen-
tres.

7. ANALYSIS OF RESIDUALS

Let us find residuals through r;

n
fy - 2 Pydy

-

& 2 _ L2
t noteworthy is that 1211'1 =x*.

Vaf +j

i
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The analysis of residuals allows: N
(i) to reveal sharply distinctive components of f, e.g.,
for which |ty| > 8, in order to analyse better the reasons for
their origination (a systematic error, resonance, etc.).
(i1) to select Fg; more thoroughly.

It was observed, that if some components became distinguished
due to systematic errors, this leads to wrong estimations of
81,8p, a. Therefore, when determining 8,, 8, , a, these com-
ponents can be excluded from the process and introduced again
when 83, 8g, @ are calculated.

By the distributions of residuals for various parts of the
experimental data binning one can judge about the regularization
effect in these parts. Thus, if one does not use the trial func-
tion, i.e., Fy =1,o0ne obtains significantly different root-
mean-square dispersions in the distribution of residuals for the
upper and the lower parts of the binning. In this case a smaller
smoothing effect corresponds to the smaller root-mean—-square
dispersion /7, »

By the deviation of the means frof zero for the distribution
of residuals one can judge about the distortion due to a priori
information.

We would like to note, that for the least squares method
the residuals may be considered as independent and equally dis-
tributed by random values of normal distribution with Er; =0
and Varr; =m/(m~n)/6/,

The dependence of the result upon -F,, is quite weak. Never-

theless, it depends upon Fg¢ for the bins with poor statistics

or very bad resolution. Here the best Fo, is the one which
gives:

(i) a smaller values of y2;
(ii) smaller (in absolute value) means in the distributions
of residuals;

(iii) a smaller difference between the values of the root-
mean-square dispersion in the distribution of resi-
duals for various parts of binning;

(iv) better agreement with Fy reconstructed with the accu-
racy up to normalization;
(v) smaller errors in the reconstructed?Fg.

8. SIMULATIVE PROBLEM

Solution of simulative problems is not ‘'unimportant for the

reconstruction procedure. In this case pseudodata are obtained
as follows:

10 .

1. A parametric formula for Fp is taken and the vector ¢
is formed. . .

2. The actual matrix P is multiplied by the vector ¢ and
we obtain a pseudoexperimental vector f,

3. Using the generator of random numbers with normal distri-
bution, fluctuations are added to the vector f. Thgﬁe fluctua-
tions correspond to the actual statistical error Af,

4. In the same way fluctuations are added to the elements
of matrix P. These fluctuations correspond to the actual statis-
tical error AP,

Since we know the true Fy in the simulative problem, its
solution allows us to understand in general the influence of
the set-up resolution, errors of experimental data, errors of
matrix elements, systematic error, etc., upon the quality of
the reconstruction. As a simulative Fg and F, in the following
form can be chose (the Ganzalez-Arroyo parametrization/s/)

Fo(x, Q%) = cx 0" 1" a-x)Pot P an
.22 82

h =_mg(Q), 2(Q2)= - 1" s

R T M B on@%/A%)

with the following parameters: Q%== 110, ¢ = 1.46, ag = 0.49,
ay=-0.81, Bg=11-2/3f , f = 4, A=0.26, Bi= 1.57, Bo=

= 4.08, This parametrization describes satisfactorily the data
obtained in experimen54yA—4 at energies 120 GeV and 200 GeV
and published in ref. ™.

For the reconstruction a trial function F, in the form of
(9) is used with parameters p;= 0.17, py= 10.66, pg= 3.52,
p4= -0.22. In Fig.6 one can see the results of the reconstruc-
tion. In the intervals x = 0.2530.65 the reconstruction is good,
in the intervals 0.15, 0.75%0.95 the reconstriction is worse.
We would like to command attention to the poorest agreement
between F, and the reconstructed F,. For the sake of compa-

rison the reconstruction was carried out with.F2 in the form

of (11) with parameters: Q5 = 108, c= 1.43, ag= 0.46, a =
= -0.8, Bo=11-2/3t , =4, A=0.265, By=1.53, Bo= 4.085.
In Fig.7 one can see the results of this reconstruction.

The Table lists values of xz, mean values (M.V.) and root-
mean-square values (R.M.S.) for all residuals and the residuals
in various parts of the binning for both cases.

According to the criteria from section 7 the test function
of the second form is more preferable, as a matter of fact,
in the second case the reconstructed structure function is clo-
ser to the true Fg.

11
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Table

N All ‘0 < x<0.6
2

X M.V. R.M.S. - M.V. R.M.S.
1} 236.0 0.016 0.92 0.086 0.86
21 233.7 0.017 0.92 0.031 0.87
N 0.6<x <2.0 - @g120 Q23120

M.V. R.M.S. M.V. R.M.S. M.V. R.M.S.

1{ -0.087 0.99 | 0.007 0.91 0.039 |0.94
2] -o0.011 0.99 { 0.013 0.90 0.027 }0.97
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