

Объединенный ИНСТИTYT яаерных исследованнй

дубна
$12 x 0^{2} 83$
$2^{8} / 2-8 ;$
E1-82-760

POLARIZATION OF Λ° PRODUCED

BY NEUTRONS WITH AN ENERGY
OF~ 40 GeV ON CARBON NUCLEI
BIS-2 Collaboration: Berlin - Budapest -
Dubna - Moscow - Prague - Sofia -
Tbilisi - Varna

[^0]A.N.Aleev, V.A.Arefiev, V.P.Balandin, V.K.Birulev, V.D.Cholakov, A.S.Chvyrov, T.S.Grigalashvili, B.N.Gus ${ }^{\text {kov, I.M.Ivanchenko', }}$ I.N.Kakurin, N.N.Karpenko, D.A.Kirillov, I.G.Kosarev, V.R.Krastev, N.A.Kuz"min, B.A.Kulakov, M.F.Likhachev, A.L.Lyubimov, A.N.Maksimov, A.N.Morozov, Nguen Mong Zao, A.E.Senner, L.V.Sil vestrov, V.E.Simonov, L.A.Slepets, M.Smizanska, G.G.Sultanov, G.G.Takhtamyshev, P.T.Todorov, R.K.Trayanov

Joint Institute for Nuclear Research, Dubna
K.Hiller, H.Novak, A.V.Pose, H.-E.Ryseck

Institute of High Energy Physics, Academy of Science of GDR, Berlin-Zeuthen
A.S.Belousov, A.M.Fomenko, E.I.Malinovsky, S.V.Rusakov Yu.V.Soloviev, P.N.Shareiko, L.N.Shtarkov, Ya.Ä. Vazdyk' Lebedev Institute of Physics, Academy of Sciences of USSR, Moscow
E.A.Chudakov
Institute of Nuclear Physics, Moscow State University, Moscow
E.D.Molodtsov

Institute for Nuclear Investigations, Academy of Sciences of USSR, Moscow
J.Hladky, S.Nemeĉek, M.Novak, A.Prokeŝ

Institute of Physics, Chekhoslovakian Academy of Sciences, Prague
V.J.Zayachky

Higher Chemical-Technological Institute, Sofia
D.T.Birulkov, V.I.Genchev, I.M.Geshkov, P.K.Markov

Institute of Nuclear Research and Nuclear Energetics, Bulgarian Academy of Science, Sofia
V.P.Dzhordzhadze, V.D.Kekelidze, N.L.Lomidze, G.I.Nikobadze, R.G.Shanidze

Institute of High Energy Physics, Tbilisi State University, Tbilisi
T.V. Gvakharia

Special Construct Bureau for Scientific Instrument, Academy of Scionces of Georgia, Tbilisi

The experiments ${ }^{1-8 /}$ have shown that in inclusive processes Λ°, produced by $>20 \mathrm{GeV}$ protons on nucleons and nuclei, have a significant polarization which increases with increasing the transverse (P_{\perp}) momentum of Λ°-particles.

A qualitative explanation of this effect is given, e.g., in papers $/ 3,9,10,11 /$.

Close to unity, the polarization of Λ°, produced by $\sim 7 \mathrm{GeV} / \mathrm{c}$ neutrons in a propane bubble chamber, is observed in the kinematically forbidden region of Λ° production on free nucleons /12/.

In this paper we present new results on a measurement of the polarization of Λ°, produced by neutrons on carbon nuclei, based on the analysis of about $80000 \Lambda^{\circ}$ decays.

First results of this experiment are presented in papers $/ 13 /$.
The polarization of Λ° was determined by measuring asymmetry in $\Lambda^{\circ} \rightarrow p+\pi^{-}$decays relative to the plane of Λ° production. The contribution of Λ° from Σ° decays was not taken into account.

The experiment was carried out at the Serpukhov accelerator using the BIS-2 spectrometer/14/on-1ine with an EC-1040 computer. A layout of the spectrometer on the beam of channel 4 N is shown in fig.1. The beam of neutrons at a mean energy/15/ of ($40+5$) GeV , preliminary cleaned from γ-quanta by a lead filter 10 cm thick and then from charged particles by an SP-129 magnet and a system of steel collimators, was incident on the target containing carbon nuclei.

The spectrometer comprise's two-coordinate proportional chambers (PC)/16\% The spacing between the signal wires is 2 mm for all PC, PC5, PC7 and PC9 were rotated at the angle of $+22.5^{\circ}$ relative to the others. The signal X-electrodes of PCs have both individual outputs and outputs joined in hodoscope counters/17/.The logic of trigger requires the passage of four and more charged particles through the detectors (PC and H1). When charged particles pass through the spectrometric magnet $\mathrm{SP}-40$, the transverse component of their momentum changes by $0.64 \mathrm{GeV} / \mathrm{c}$.

Two samples of targets (T) were used in the experiment: a carbon plate 5 cm in diameter and $6.24 \mathrm{~g} / \mathrm{cm}^{2}$ in thickness and two $4 \mathrm{x} 6 \mathrm{~cm}{ }^{2}$ scintillation counters 3 cm thick. To get rid of possible systematic errors in experimental results, the statistics was obtained with the vector of the magnetic field in the SP-40 magnet directed "up" and "down". Besides, the distance between the target and the centre of the SP-40 magnet was changed which led to changing the decay region for Λ° and the effective aper-

Fig.1. Layout of BIS-2 on channel 4 N of the Serpukhov accelerator. H1 - scintillation hodoscope; PC(1;1) proportional chambers; HCC - hodoscope of the Cherenkov total absorption counters; H2, H3 - hodoscope of the muon detector; M - counters for monitoring neutrons; MC - magnet; T target; A - anticounter.
ture of the spectrometer. The programs "Perun" / $18 /$ and "View" were used for geometrical reconstruction of $1.2 \cdot 10^{7}$ primary events. In the further analysis of particle tracks and the selection of Λ° candidates it was required to fulfil the following conditions:

1. The distance between the extrapolation of two particle tracks to the median plane of the magnet is $>10 \mathrm{~cm}$.
2. The effective masses of two particles with equal signs of charge are $>312 \mathrm{MeV} / \mathrm{c}^{2}$ on the assumption that they are pions.
3. The angle between the tracks of particles having opposite signs of charge is $>0.25 \mathrm{mrad}$.
4. The distance from the median plane of the SP-40 magnet to the decay point of Λ° candidates is $>270 \mathrm{~cm}$.
5. The distance from the target centre to the decay point of Λ° candidates is $>12 \mathrm{~cm}$.
6. The minimum distance between the tracks of particles from the decay of Λ° candidates is smaller than 0.3 cm .
7. Assuming that one particle is a proton and another is a pion, their effective masses are
a) $1111 \mathrm{MeV} / \mathrm{c}^{2}<\mathrm{M}\left(\mathrm{p} \pi^{-}\right)<1120 \mathrm{MeV} / \mathrm{c}^{2}$ or
b) $1105 \mathrm{MeV} / \mathrm{c}^{2}<\mathrm{M}\left(\mathrm{p} \pi^{-}\right)<1109 \mathrm{MeV} / \mathrm{c}^{2}$,
c) $1123 \mathrm{MeV} / \mathrm{c}^{2}<\mathrm{M}\left(\mathrm{p} \pi^{-}\right)<1127 \mathrm{MeV} / \mathrm{c}^{2}$.

The tracks were assumed to be substantially different if conditions 1,2 or 3 were fulfilled. Otherwise of these tracks one was left with the best x^{2} per degree of freedom. If in one event there were several candidates of Λ°, one was left with a minimal value of x^{2}.

The events, satisfying criterion 7 b , were used to estimate and subtract background events.

Similar selection criteria were used for a part of the statistics to select $K_{s}^{\circ} \rightarrow \pi^{+} \pi^{\boldsymbol{r}}$ candidates.

The effective mass, longitudinal and transverse momentum distributions of 83705 candidates of Λ°, and 26055 candidates of K_{s} are shown in figs. 2 and 3 , respectively.
${ }^{s}$ The Λ° polarization was measured relative to the normal ($\overline{\mathrm{Y}}$) to the plane of Λ° production. In this case Cartesian coordinates $\bar{X}, \bar{Y}=n \bar{X} \bar{P}, Z=\overline{\mathrm{P}}$ were used, where $\overline{\mathrm{n}}$ and $\overline{\mathrm{P}}$ are unit vectors along the axis of the beam of neutrons and the momentum of Λ° in the laboratory system, respectively, and X was chosen so that the coordinate system was right.

If the polarization of Λ° is P , the density of the probability of the number of protons from decay $\Lambda^{\circ} \rightarrow p+\pi^{-}$can be written as (see, e.g., /19/)

$$
\begin{equation*}
\frac{\mathrm{d} W}{\mathrm{~d} \cos \Theta} \sim(1+a P \cos \Theta) / 2 \tag{1}
\end{equation*}
$$

where $a=0.642^{/ 20 /}$, the parameter of asymmetry in decays $\Lambda^{\circ} \rightarrow \mathrm{p}+\pi^{-}$

$$
\begin{equation*}
\cos \Theta=\overline{\mathrm{Y}}_{\mathrm{Y}} \overline{\mathrm{P}}_{\mathrm{p}} /\left|\overline{\mathrm{P}}_{\mathrm{p}}^{*}\right| \tag{2}
\end{equation*}
$$

Here $\overline{\mathrm{P}}_{\mathrm{p}}^{*}$ and $\overline{\mathrm{P}}_{\mathrm{p}}$ are the proton momenta in the Λ° rest system and in the laboratory system, respectively.

The polarization of Λ° versus P was found from the experimental data using relations (1) and (2).

All candidates of Λ° were divided into groups of P_{\perp} intervals. The first intervals of P were equal to $0.2 \mathrm{GeV} / \mathrm{c}$, and the last one was opened from large P_{1}.

The $\cos \Theta$ distributions were constructed for each group of events both for the events, satisfying condition $7 a$, and for the background events satisfying 7b. After normalization the distributions of background events were subtracted from the corresponding distributions satisfying condition 7 a.

Below for short we use the designations $\mathrm{X}=\cos \Theta$ and $\beta=a \mathrm{P}$. The experimental distributions of events for each P_{\perp} interval versus X can be presented as

$$
\begin{equation*}
N_{E}(X)=\frac{d W(X)}{d X} \Phi(X) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi(X)=\int N(U) \epsilon(U, X) d U, \tag{4}
\end{equation*}
$$

U is a six-dimensional variable characterizing the momentum and coordinates of the decay point of $\Lambda^{\circ} ; N(U)$ is the number of produced Λ° in the interval dU; $\epsilon(\mathrm{U}, \mathrm{X})$ is the efficiency of Λ° registration.

Fig.2. Distributions of events over: a) $M\left(p_{\pi^{-}}\right)$ effective mass, b) Λ° transverse momentum, c) Λ° longitudinal momentum.

Fig.3. Distributions of events over: a) $M\left(\pi^{+} \pi^{-}\right)$ effective mass, b) $\mathrm{K}_{\mathrm{s}}^{\circ}$ transverse momentum, c) $\mathrm{K}_{\mathrm{s}}^{\circ}$ longitudinal momentum.

Fig.4. Detection efficiencies for six P_{\perp} intervals in relative units. The P_{\perp} intervals are denoted by figures: 1 - ($0 \div 0.2$) $\mathrm{GeV} / \mathrm{c} ; 2$ ($0.2 \div 0.4$) $\mathrm{GeV} / \mathrm{c}$; 3 - $(0.4 \div 0.6) \mathrm{GeV} / \mathrm{c}$; $4-(0.6 \div 0.8) \mathrm{GeV} / \mathrm{c} ; 5-(0.8 \div 1) \mathrm{GeV} / \mathrm{c}$; 6 - larger than $1.0 \mathrm{GeV} / \mathrm{c}$.

From eq. (3) it follows that for the calculation of Λ° polarization it is sufficient to know the function $\Phi(X)$ that was determined by Monte-Carlo simulation. In simulation, the events detected in the experiment were used, the number of which in the interval ΔU is
$\Delta \mathrm{N}_{\mathrm{E}}(\mathrm{U})=$
$=N(U) \Delta U \int_{-1}^{+1} \frac{d W(X)}{d X} r(U, X) d X$.

The isotropic decay of Λ° into proton and pion was assumed. The known experimental conditions, the logic of geometric reconstruction programs and the criteria of statistical data analysis were taken into account.

As a result, the distributions were obtained

$$
\begin{equation*}
N_{n}(X)=C \int N(U) \in(U, X)(1+\beta \overline{\mathrm{X}}(\mathrm{U})) \bar{X}^{n}(\mathrm{U}) d \mathrm{U} \tag{6}
\end{equation*}
$$

where $n=0,1,2,3 ; C$ is a constant, $f(U, X)$ is the efficiency of Λ° detection;

$$
\bar{X}(U)=\int_{-1}^{+1} X_{\epsilon}(U, X) d X / \int_{-1}^{+1} \epsilon(U, X) d X
$$

As is seen, for $\mathrm{n}=0$ the right-hand sides of eqs. (4) and (6) differ from one another by factor ($1+\beta \bar{X}(\mathrm{U})$) under the integral.

As $\beta \overline{\mathrm{X}}(\mathrm{U})=a \operatorname{l}=\overline{\mathrm{X}}(\mathrm{U})<1$, the method of iterations was used to calculate β. First approximations were found by approximating the ratio of the left parts of eqs. (3) and (6) to the linear function $\mathrm{B}^{\prime}\left(1+\beta_{0} \mathrm{X}\right)$ for $\mathrm{n}=0$ (B is a constant).

P_{\perp} interval $(\mathrm{GeV} / \mathrm{c})$	Average value of P_{\perp}. int.	Polarization of Λ°	χ^{2} per 18 degrees of freedom
$0 \div 0.2$	0.131	$+0.002+0.032$	22.3
$0.2+0.4$	0.305	-0.137 ± 0.022	20.5
$0.4 \div 0.6$	0.492	-0.199 ± 0.025	22.1
$0.6+0.8$	0.683	-0.296 ± 0.035	19.4
$0.8 \div 1.0$	0.881	$-0.303+0.062$	18.5
>1	1.150	$-0.189+0.125$	10.6

Subsequent approximations were found by approximating

$$
\begin{equation*}
N_{E}(X) / \sum_{n=0}^{3}\left(-\beta_{j}\right)^{n} N_{n}(X) \tag{7}
\end{equation*}
$$

to the linear function $B(1+\beta \dot{X})$, where j is the number of iteration. In practice, it was enough to find the second approximations, i.e., one could limit oneself to the calculation of β_{1}.

The justice of this procedure was checked by simulations of
Λ° with the known β meanings.
Figure 4 presents the distributions

$$
\Phi_{1}(X)=F(X)=\sum_{n=0}^{3}\left(-\beta_{1}\right)^{n} N_{n}(X)
$$

for different P_{\perp} intervals.
The analysis of $\mathrm{K}_{\mathrm{s}}^{\circ} \rightarrow \pi^{+} \pi^{-}$events detected in this experiment has shown that the asymmetry of $\mathrm{K}_{\mathrm{s}}^{\circ}$ decays agrees with a zero value $\left(\mathscr{P}\left(K_{\mathrm{g}}^{\circ}\right)=0.011+0.028\right.$ for the P intervals from 0 to $1.2 \mathrm{GeV} / \mathrm{c})$. The analysis of $\mathrm{K}_{\mathrm{s}}^{\circ}$ events is made similar to that of Λ°.

The results of measuring the polarization of Λ° versus P_{\perp} are presented in the Table and fig. 5 . The errors in the polarization values are given taking the procedure of their calculation into account. These data show that the P dependence of the polarization of Λ°, produced in inclusive processes by 40 GeV neutrons and by protons $1-8$, is the same. These experimental data do not contradict the theoretical predictions/10/about a weak dependence of Λ° polarization on the type of beam particles at high energy and large P_{\perp}.

Our data are described by the relation/21/
$\mathscr{P}=-2 m \mathrm{P}_{\perp} \sin \Phi\left[4 \mathrm{~m}^{2}(1+\cos \Phi)+\mathrm{P}_{\perp}^{2}\right]$
for $\mathrm{m}=1 \mathrm{GeV} / \mathrm{c}^{2}$ and $\Phi=(1.41+0.08) \mathrm{rad}$.
Figure 5 also shows the average value of the lomgitudinal asymmetry of Λ° relative to their momentum vector in the laboratory system obtained in this experiment in the P_{\perp} interval from 0 to $1.2 \mathrm{GeV} / \mathrm{c}$.

This asymmetry agrees with zero value, as it follows from the parity conservation law in strong interactions, and equals $0.003+0.033$.

The authors express their deep gratitude to A.M.Baldin, N.S.Amaglobeli, I.S.Zlatev, K.Lanius, A.A.Logunov, E.I.Maltsev, M.G.Meshcheryakov, I.A.Savin, L.D.Soloviev, P.A.Cherenkov, Kh. Ya. Khristov for the support of these experiments.

Fig.5. Λ° polarization versus P_{1}.Data of this paper: ${ }^{-1}$ polarization,気, average values of $\mathrm{K}_{\mathrm{s}}^{\mathrm{o}}$ asymmetry relative to the production plane and of Λ° relative to their momentum vector in the lab. system, respectively. x, 0 - data from paper /5/ (pp for $\int \overrightarrow{\mathrm{s}}=53 \mathrm{GeV}$ and 62 GeV).

REFERENCES

1. Bunce G. et al. Phys.Rev.Lett., 1976, 36, p.l113. 2. Heller K. et al. Phys.Lett., 1977, 68B, p.480.
2. Heller K. et al. Phys.Rev.Lett., 1978, 41, p. 607. 4. Skubie P. et al. Phys.Rev., 1978, D18, p. 3115.
3. Aahlin P. et al. Lett. Nuovo Cim., 1978, 21, p. 236 .
4. Erhan S. et al. Phys.Lett., 1979, 82, p. 301.
5. Lomanno F. et al. Phys.Rev.Lett., 1979, 43, p. 1905.
6. Raychaudhur K. et' al. Phys.Lett., 1980, 90B, p. 319.
7. Andersson B. et al. Phys.Lett., 1979, 85B, p.417.
8. Efremov A.F. YaF, 1978, 28, p. 166.
9. Szwed J. Phys.Lett., 1981, 105B, p. 403.
10. Temnikov P.P. et al. JINR, P1-12138, Dubna, 1979.
11. Aleev A.N. et al. Froc. XX Int.Conf. on High Energy Physics, Madison, USA, July, 1980, No.375; JINR, P1-8i-165, Dubna, 1981.
12. Eichner G. et a1. JINR, 1-80-644, Dubna, 1980; Maksimov A.N. JINR, 1-81-574, Dubna, 1981.
13. Aleev A.N. et al. JINR, 1-81-67, Dubna, 1981.
14. Eichner G. et al. JINR, 13-80-463 and 13-80-464, Dubna, 1980.
15. Eichner G. et al. JINR, 13-80-161, Dubna, 1980.
16. Burilkov D.T. et al. JINR, 10-80-656, Dubna, 1980; JINR, 10-81-772, Dubna, 1981.
17. Bourrely C. et al. Phys.Rep., 1980, 59/80/, 2, p.95-297.
18. Bricman C. et al. Phys.Lett., 1978, 75B, p.1; Review of Part.Prop. Rev.Mod.Phys., 1980, 52, No.2, part 11.
19. Amado R.D. et al. BNL-27025, 1980.

Received by Publishing Department on November 31982.

```
Алеев А.Н. и др.

Поляризация \(\Lambda^{\circ}\), рожденных нейтронами
с энергией около 40 ГэВ на ядрах углерода
С помощью спектрометра БИС-2 ОИЯИ измерена поляризация \(\Lambda^{\circ}\) рожденных в инклюзивных процессах нейтронами с энергией около 40 ГэВ на ядрах углерода. Наблюдена поляризация \(\Lambda^{\circ}\), растущая с ростом поперечного импульса и согласующаяся с результатами измерения поляризации \(\Lambda^{\circ}\), рожденных протонами.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт 05ъединенного института ядерных исследований. Дубна 1982
```

Aleev A.N. et al.
E1-82-760
Polarization of Λ° Produced by Neutrons

```
with an Energy of \(\sim 40 \mathrm{GeV}\) on Carbon Nuclei
The polarization of \(\Lambda^{\circ}\) inclusively produced by neutrons on carbon at an average neutron energy of \(\sim 40 \mathrm{GeV}\) has been measured over the range of transverse momenta from 0 to \(1.2 \mathrm{GeV} / \mathrm{c}\).
The \(\Lambda^{\circ}\) polarization increases with increasing \(P_{\perp}\) achieving \(30 \%\) for about \(0.8 \mathrm{GeV} / \mathrm{c}\). The experiment has been performed using the BIS-2 spectrometer at the Serpukhov accelerator.

The investigation has been performed at the Laboratory of High Energies, JINR.```


[^0]:    Submitted to the XXI International Conference on High Energy Physics, Paris, July 26-31, 1982.

