

OбGEAMHEHAGM
 HHCTMTYT
 ЯAEPHыX иеследованй
 дубна

$4652 / 82$
E1-82-510

PERIPIIERAL AND CENTRAL
 NUCleUS-NUCLEUS COLLISIONs

AT $4 . \bar{Z}$ Gevje DER NUELEON

Alma-Atu-Baku-Belgrade-Bucharest-Dubna-Kishinev-Moscow-Prague-Samarkand-Sofia-Tashkent-Thilisi-Han-Hator-Varna-WarsawYerevan Collaboration

Submitted to the XXI International Conference on High Energy Physics (Paris, 1982)
and to the International Conference
on Nucleus-Nucleus Collisions (East Lansing,
1982); to the Zeitschrift für Physik
N.Akhababian,Ts.Baatar, A.M.Baldin, J.Bartke, J.Bogdanowicz A.P.Cheplakov, A.P.Gasparian, V.G.Grishin, I.A.Ivanovskaya, T. Kanarek, E.N.Kladnitskaya, E.Kondor, D.K.Kopylova, M. Kowalski R.A.Kvatadze, V.B.Lyubimov, V.F.Nikitina, M.I.Soloviev,
V.D.Toneev V.D.Toneev

Joint Institute for Nuclear Research, Dubna, USSR
I.Ya.Chasnikov, M.I.Izbasarov, A.Kh.Vinitsky

Institute of High Energy Physics, Kazakh Academy of Sciences, Alma-Ata, USSK
O.B.Abdinov, H.N.Agakishiev, R.R.Mekhdiev, M.K.Suleimanov

Institute of Physics, Azerbaijan Academy of Sciences, Baku, USSR
S. Backović, V.Damianović, S.Drndarević, D.Krmpotić, D.Kpić, L.Simić

Institute of Physics, Belgrade, Yugoslavia
E.Balea, O.Balea, V.Boldea, S.Hakman, T.Ponta

Central Institute of Physics, Bucharest, Romania
K.K.Gudima, Yu.P.Keloglu

Kishinev State University, Kishinev, USSR
A.I.Anoshin, I.N.Erofeeva, L.A.Didenko, S.I.Lyutov, N.N.Melnikova V.S.Murzin, V.M.Popova, L.I.Sarycheva, L.M.Shcheglova,
L.N.Smirnova, A.N.Solomin, G.P.Toneeva

Scientific Research Institute for Nuclear Physics
Moscow State University, Moscow, USSR
Z.Korbel, Z.Trka, Ya.Trkova

Charles University, Prague, Czechoslovakia
F A Tcmatnon, M M Muminor, !. S.urana:
Samarkand State University, Samarkand, USSR
N.Angelov, L.D.Grekova, P.Kerachev, H.Semerdzhiev, P.P.Temnikov Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
S.A.Azimov, S.O.Edgorov, Sh.V.Inogamov, A.A.Yuldashev B. S.Yuldashev

Physical and Technical Institute of the Uzbek Academy of Sciences, Tashkent, USSR
N.S.Amaglobeli, N.S.Grigalashvi1i, M.A.Dasaeva, Z.V.Metreveli, Yu.V.Tevzadze, M.V.Topuridze
Tbilisi State University, Tbilisi, USSR
D.Tuvdendorzh, G.Sharkhu

Institute of Physics and Technics of the Mongolian Academy of Sciences, Ulan-Bator, Mongolia
D.Armutlijsky, N.Kochnev, S.Prokopieva

Higher Machino-Electrotechnical Institute, Varna, Bulgaria
H.Białkowska

Institute of Experimental Physics, Warsaw University, Warsaw, Poland
S.G.Arakelian, G.R.Gulkanian, Z.A.Kirakosian, S.A.Korchagin, I.M.Ravinovich, V.A.Vartanian

Yerevan Physical Institute, Yerevan, USSR

1. INTRODUCTION

Nuclear physics has gained quite new possibilities for experimental studies since high energy nuclear beams have been obtained/1/. On the one hand, this is due to experimental technique advantages. In a peripheral collision of the beam nucleus with the target a number of relativistic fragments arises, having almost the same direction and velocity as the projectile. This gives us a good experimental possibility of measuring lifetimes of excited projectile fragments and their interaction cross sections, to study properties of short-lived isotopes and hyperfragments, to obtain, in fact, unique beams, etc. One can thus study various interesting processes sweeped in space and Lorentz time-dilated.

A first part of this paper deals with a measurement of interaction cross sections of multicharged carbon beam fragments. Such experiments are of considerable interest now as they provide an opportunity to observe excited fragments with abnormally large cross section and 1 ifetimes below $10^{-10} \mathrm{sec}$.

On the other hand, nucleus-nucleus collisions at small impact parameters allow essentially multinucteon inceractions lo de actualized, when a considerable number of particle emission sources are created within the inner volume of a nucleus. It is also very important to study the dependence of multiple production process on the number of nucleons involved in the interaction. At small momentum transfers, comparable with Fermi motion, nucleus is well described as an assembly of nucleons. But at transfers greater than about $1 \mathrm{GeV} / \mathrm{c}$ such a notion contradicts the data. Quark degrees of freedom begin to play an important role. Previous theoretical ${ }^{/ 2 /}$ and experimental ${ }^{/ 3 /}$ studies have shown that in hadron-nucleus interactions particles are produced far beyond the kinematic limit for hadron-nucleon collisions (cumulative effect). Characteristics of such processes are scaleinvariant and are determined by local properties of hadronic matter. The shapes of secondary particle spectra become universal, independent neither of the atomic weight of the target nucleus nor of the type of incomning or secondary particles. For soft processes, which dominate the inelastic cross section, the a A-dependence of the secondary particle yield is determined by transverse sizes of the colliding objects and could be parametrized as A^{α}, where $\alpha<1$. In the case of violent collisions an enhanced or anomalous A-dependence is observed, where a tends
to values close to unity，thus reflecting a local character of the interaction．

The main aim of this experiment is to search for quark degret of freedom in nucleus－nucleus collisions at high energies．In this paper we present data on central collisions of carbon nuc－ lei and multinucleon collisions of protons，deuterons，helium and carbon nuclei with tantalum at $4.2 \mathrm{GeV} / \mathrm{c}$ nucleon．

It is worth mentioning that to study such a complex multiple production process as nucleus－nucleus interaction，it is very advantageous to use bubble－chamber facilities，enabling us to obtain quite a detailed picture of interaction．As it will be shown below，not only soft processes but also hard processes wit a momentum transfer of $>1 \mathrm{GeV} / \mathrm{c}$ can be studied by means of bubble－chamber technique．

Some experimental results obtained recently by the 2 m JINR propane bubble－chamber collaboration are presented in this pa－ per．The chamber with an internal tantalum target was exposed to protons at $(2 \div 10) \mathrm{GeV} / \mathrm{c}$ ，deuterons，helium and carbon at （ $2 \div 5$ ） $\mathrm{HeV} / \mathrm{c}$ nucleon．Our experimental data on interaction cross sections for inelastic nuclear collisions ${ }^{4-6 /}$ ，on charged secon－ dary multiplicities $/ 5-12 /$ on cumulative π^{-}production ${ }^{\prime 13-15 /}$ ，on particle emission region dimensions ${ }^{5,16 /}$ ．on correlated emis－ sion of π^{-}－meson systems $/ 18 / 17 /$ ，and also preliminary results on anomalous cross sections ${ }^{18 /}$ of carbon projectile multicharged fragments have been published elsewhere．

2．ANOMALOUS CROSS SECTIONS

In recent experiments ${ }^{19-21 /}$ enhanced cross sections for in－ teractions of projectile nuclear fragments（with $Z \geq 3$ ）with emulsion nuclei have been observed．Oxygen，argon and iron nuc－ lear beams with a kinetic energy of -2 GeV per nucleon were used $\mathrm{in}^{\prime 19,20 /}$ while $\mathrm{in}^{\prime 21 /}$ emulsion stacks were exposed in cosmic rays．It was observed that within the range of a few centimeters from the origin of the fragments their interaction cross section are appreciably higher than those which can be evaluated from the available experimental data on the cross sections for inter－ actions of accelerated nuclei，having charges $2 \leq Z \leq 26$ ，with emulsion．The authors of ref．${ }^{/ 22 /}$ conclude that the effect va－ nishes at a primary energy of $\mathrm{T}_{0}-1 \mathrm{GeV} / \mathrm{nucleon}$ ．However，in a cosmic ray experiment $/ 23 /$ no evidence of the effect was found． Research in this direction started in the 50－ies ${ }^{\prime 24}$ ！but up till now the situation is ambiguous．All the experiments were perfor－ med using emulsion technique．

We studied ${ }^{18 /}$ this phenomenon using films taken from the 2 m propane bubble chamber exposed to a beam of carbon nuclei at $4.2 \mathrm{Gev} / \mathrm{c}$ per nucleon．Interaction cross sections for the carbon

Fig．1．Dependence of the number of noninteracting carbon projectile frag－ ments on the distance X from the pri－ mary vertex．
projectile fragments with $\mathrm{Z} \geq 2$ were measured within different ranges from the points of their origin．For the fragments with $\mathrm{Z}=6$ an appreciable increase of the cross section was ob－ served within a range of 7 cm from the origin．But for the fragments with $\mathrm{Z}=2$ the cross section was obser－ ved to decrease．An analysis of the experimental data shows that there are certain experimental complications due to the overlapping of tracks and stars pro－ duced by different fragments coming out of the same primary in－ teraction．

In this paper we present data on interactions of the frag－ ments with charges $Z=5,6$ ．A fragment charge was determined by δ－electron density and by evaluation of the total charge of the stripping－like particles emitted from the primary star and from all relevant secondary ones ${ }^{18,25 /}$ ．Positively charged par－ ticles with momenta $P_{+} \geq 3 \mathrm{GeV} / \mathrm{c}$ emitted at angles $\theta \leq 4^{\circ}$ with ここことここも $=$ the banm dirontion worn taton ac ctrinned ones．Fi－ gure 1 shows the dependence of the number of fragments，which have escaped interaction，on the distance X away from the pri－ mary vertex，i．e．，the rate of attenuation of the beam as a func－ tion of the thickness of the target．A similar dependence for doubly charged fragments is taken from a previous paper ${ }^{18 /}$ ba－ sed on four times smaller statistics．The arrows indicate a boun－ dary（ $X=10 \mathrm{~cm}$ ）below which the scanning and fragment identifi－ cation are not reliable．

The experimental points to the right from the boundary $X=$ $=10 \mathrm{~cm}$ are consistent with a single exponential．The dashed lines correspond to an expected rate of attenuation of the beam for the fragments，which was evaluated from the experimental cross sections for interactions of primary protons，deuterons， helium and carbon nuclei in propane ${ }^{714 /}$ ．The curves are normali－ zed to the observed number of fragments at the distance $X=10 \mathrm{~cm}$ ． For fragments with $\mathrm{Z}=6$ the slope of the dashed line corresponds to the experimental value of the cross section for a beam car－ bon nucleus interaction with propane，i．e．，it shows the upper limit of the slope for nonexcited fragments with $Z=6$ ．The lines for $Z=2$ and $Z=5$ fragments include small corrections to the experimental values of cross sections for beam helium and car－ bon nuclei interactions with propane．

From data in Fig. 1 it follows that the values of the interaction cross sections of carbon fragments with $Z=5,6$ are $\sim 10 \%$ greater than expected. This fact is presumably indicative of a contribution of excited fragments with a lifetime of $t \geq 10^{-10} \mathrm{sec}$ the size of which becomes greater than that of the fragments in the ground state. It is worthwhile to note here that targets with smaller atomic weights are more expedient for the detection of deviations (if any) of interaction cross sections from those expected for the ground state fragments. It is known that inelastic cross sections for two nuclei depend mainly on the sum of their geometric dimensions. From this point of view emulsion nuclei are too large as compared to propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ to observe small changes in fragment dimensions.

3. $.^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ CENTRAL COLLISIONS

For central multinucleon CC collisions the following selection criteria were chosen: a) there are no carbon projectile spectator fragments with charge $Z \geq 2 ; b)$ the number of singly charged stripped projectile fragments $\mathrm{n}_{\mathrm{s}} \leq 2$; c) the total charge of secondary particles $Q>7$.

From 12000 carbon-propane interactions, scanned according to the above selection criteria, 876 events were selected. According to experimental estimates, the average number of interacting nucleons in these events is 15 with a standard deviation of $\sigma \sim 3$. The selected multinucleon $C C$ collisions are approximately symmetric. To extract protons and heavier baryons from all positive particles, we used the following procedure. In the range of positive particle momenta $\mathrm{P}_{+} \leq 500 \mathrm{MeV} / \mathrm{c}$ protons were well distinguished from $\pi^{ \pm}$mesons by ionization density. For positive particles with $P_{+}>500 \mathrm{MeV} / \mathrm{c}$ weights depending on momentum and angle were introduced. These weights were calculated to take into account the π^{+}meson contribution estimated from the π^{-}meson one.

According to the multinucleon CC interaction selection criteria, only singly charged spectator fragments may be present in the projectile fragmentation region. In the target fragmentation region the energy of the spectator fragments like d, t or He is not high enough to produce a detectable track with $\ell \geqslant 3$ min in propane. Protons were detected starting from a momentum of $P_{p} \geq 150 \mathrm{MeV} / \mathrm{c}$.

It should also be noted that we have observed about 70 positive particles with momenta of $P_{+} \geq 1 \mathrm{GeV} / \mathrm{c}$ and a mean emission angle of $\langle\theta\rangle=35^{\circ}$, which had ionization losses considerably higher than those for protons with $P_{+} \geq 1 \mathrm{GeV} / \mathrm{c}$. Such particles were considered as deuterons, tritons and helium nuclei without separation. The fraction of spectator deuterons and tritons

Fig.2. Plot of transverse momentum vs rapidity for π^{-}mesons produced in central $\mathrm{C}+\mathrm{C}$ interactions. The dashed line denotes the NN kinematic limit.

Fig. 3. Transverse momentum squared distribution for π^{-}mesons in central $C+C$ col1isions.

from the incoming carbon nuclei and of heavy particles identified by ionization turned out to be $\sim 5 \%$ of all charged baryons.

Shown in Fig. 2 are π^{+}mesons plotted in the plane of transverse momentum $\left(\bar{P}_{\perp}\right)$ and rapidity ($\left.y=0,5 \ln \left[\left(E+P_{n}\right) /\left(E-P_{n}\right]\right)\right]$ The kinematic limit for NN collisions at $4.2 \mathrm{GeV} / \mathrm{c}$ is shown as a dashed line. Rapidities of the projectile and target are shown with arrows. A densely populated area is seen in the region near the c.m.s. rapidity $y=1.1$ for $N N$ collisions and at small transverse momenta. In the target rapidity region a certain loss of π^{-}mesons ($\sim 2 \%$ according to our estimates) is seen. Outside the kinematic boundary π^{-}mesons are observed predominantly in the central rapidity region. The points are distributed slightly asymmetrically due to the selection criteria for CC central multinucleon collisions. According to these criteria, we select events where, on average, a larger number of nucleons interact from the projectile nucleus than from the target.

The transverse momentum squared distribution of π^{-}-mesons is presented in Fig. 3. The horizontal bars indicate the P_{\perp}^{2} experimental resolution. The experimental points were fitted by a sum of two exponentials

$$
\begin{equation*}
\mathrm{dN} / \mathrm{dP}_{\perp}^{2}=\mathrm{Ae}^{-\mathrm{aP}}{ }_{\perp}^{2}+\mathrm{Be}^{-\mathrm{bP} \mathrm{P}_{\perp}^{2}} . \tag{1}
\end{equation*}
$$

The result of the approximation is shown as a solid line. The slopes found are: $a=(23.1+1.8)(\mathrm{GeV} / \mathrm{c})^{-2}, \quad b=(6.2+0.9)(\mathrm{GeV} / \mathrm{c})^{2}$, while $x^{2} /$ N.D.F. $=1.18$. The slope parameters for $\bar{C} \bar{C}$ collisions on-

Fig. 4. Plot of transverse momentum vs rapidity for protons produced in central $C+C$ interactions. The dashed line corresponds to the NN kinematic limit.

Fig. 5. Transverse momentum squared distribution of protons in central $\mathrm{C}+\mathrm{C}$ collisions. The arrow points to the NN kinematic limit.

1y slightly differ from those for NN collisions ${ }^{26}$ at similar beam momentum. But the relative contribution of the second exponential is higher: 33% as compared to 23% in NN interactions.

A similar two-dimensional plot for protons is presented in Fig. 4. All charged baryons were considered as protons. The kinematic limit for NN collisions is shown as a dashed line. The solid lines with arrows denote approximately the expected regions for spectator fragments of projectile and target. An apparent systematic loss of protons with $P_{p} \leq 150 \mathrm{MeV} / \mathrm{c}$, which have a range of less than 3 mm in propane, is seen in the target rapidity region. A concentration of experimental points corresponding to the spectator protons from carbon target is also seen. In the projectile fragmentation region the increase of point density is insignificant due to the inefficiency of the selection criteria for multinucleon CC collisions. The values of the total momenta of spectator deuterons and tritons are essentially higher than those of stripping protons. Thus the values of their rapidities calculated with proton mass are considerably greater than that of the projectile nucleus rapidity. However it is seen that even outside the projectile and target fragmentation regions the plot is to some extent asymmetric. This is again due to the selection criteria as explained for π^{-}mesons in Fig. 2.

An interesting aspect is that quite a number of protons fall outside the NN kinematically allowed region.

The P^{2} digtrihntinn for all protnoc $i c$ chnom in Fig. 5. At small transverse momenta of $P_{1}^{2}<0.1(\mathrm{GeV} / \mathrm{c})^{2}$, where systematic losses and the inefficiency of $C C$ multinucleon event selection are essential, the experimental points are show as open triangles. The horizontal error bars indicate the P_{1}^{2} experimental resolution. The arrow points to the kinematic limit for $N N$ interactions. The experimental data were parametrized as

$$
\begin{equation*}
\mathrm{dN} / \mathrm{P}_{\perp}^{2}=\mathrm{Ae} \mathrm{a}_{\perp}^{-\mathrm{a} \mathrm{P}_{\perp}^{2}}+\mathrm{Be} \mathrm{BP}_{\perp}^{-b \mathrm{C}^{2}}+\mathrm{CP}_{\perp}^{2} \tag{2}
\end{equation*}
$$

The slope parameters were found to be:

$$
\begin{align*}
& \mathrm{a}=(8.7 \pm 1.3)(\mathrm{GeV} / \mathrm{c})^{-2}, \quad \mathrm{~b}=(2.4 \pm 0.2)(\mathrm{GeV} / \mathrm{c})^{-2}, \tag{3}\\
& \mathrm{c}=(0.2 \pm 0.8)(\mathrm{GeV} / \mathrm{c})^{-2} .
\end{align*}
$$

The result of the fit is shown as a solid line ($x^{2} /$ N.D.F. $=0.81$). In the high P_{1}^{2} region the result of the approximation is shown as a dashed line reflecting an uncertainty of the third slope parameter.

Figure 5 illustrates well the main processes of proton emission. The maximum slope (open triangles) corresponds to fragmentation processes with some contamination of peripheral NNcolli-

Fig.6.Transverse momentum squared distribution of those protons in central $\mathrm{C}+\mathrm{C}$ collisions which fall outside the NN kinematically allowed region in the (y, P_{\perp}) plot.
sions. The value of the second slope $\sim 9(\mathrm{GeV} / \mathrm{c})^{-2}$ indicates a considerable contribution of NN elastic scattering. The third slope can be treated as a manifestation of NN inelastic collisions. The decrease of the slope at P_{\perp}^{2} greater than the NN kinematic limit is still to be explained.

Figure 6 presents the P_{\perp}^{2} distribution for protons falling outside the NN kinematic limit in Fig. 4 (dashed line). The open circles correspond to the region where the nucleus fragmentation processes are essential. The experimental distribution was approximated by a sum of two exponentials of Eq. (1). The result of this approximation is shown as a solid line ($x^{2} /$ N.D.F. $=1.07$). The following slope parameter values were found

$$
\begin{equation*}
\mathrm{a}=(11.8+2)(\mathrm{GeV} / \mathrm{c})^{-2}, \quad \mathrm{~b}=(1.2 \pm 0.1)(\mathrm{GeV} / \mathrm{c})^{-2} . \tag{4}
\end{equation*}
$$

As is seen trom Fig.6, there is a distinct break in the slope of the distribution near $\mathrm{P}_{\perp}^{2} \sim 0.5(\mathrm{GeV} / \mathrm{c})^{2}$. Another structure is possibly seen in the vicinity of $P_{\perp}^{2} \sim 1(\mathrm{GeV} / \mathrm{c})^{2}$.

Attention is also called to a small value of the second exponential slope $\sim 1(\mathrm{GeV} / \mathrm{c})^{-2}$. Such a value of the slope parameter corresponds to proton production processes in hard collisions at small distances.

It is interesting to study collective characteristics of secondary particles in multinucleon interactions. Different models ${ }^{\prime 27-30}$ for nucleus-nucleus collisions predict different configuration of events in phase space which one fails to analyze in terms of single-particle inclusive distributions. For given CC central collisions the analysis of jet production of secondary particles is made by means of collective variable sphericity,

$$
\begin{equation*}
S=3 / 2 \min \left(\sum_{i} P_{\perp i}^{2} / \sum_{i} \vec{P}_{i}^{2}\right) \tag{5}
\end{equation*}
$$

Here P_{\perp}^{2} is the transverse momentum of a secondary particle relative to a certain axis, which is chosen so that the sum $\sum_{i} P_{\perp}{ }_{i}^{2}$ over all charged particles in an event should be minimal. This axis is a jet axis on the assumption of two-jet structure of the events. The \vec{P}_{i} vectors are the secondary particle momenta
in the c.m.s. of the colliding carbon nuclei. This variable is calculated by diagonalization of a matrix built of the components of secondary particles momenta in the CCc.m.s. frame, which coincides with the $N \mathrm{~N}$ c.m.s. frame. A similar analysis was done for all inelastic CC collisions extracted from experimental $\mathrm{C}\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ collisions.

While investigating the jet structure of CC interactions, multicharged fragments of the projectile nucleus as well as singly charged stripping particles were excluded. Besides, protons with a laboratory momenta of $P_{p} \leq 300 \mathrm{MeV} / \mathrm{c}$ were excluded because in this region the contamination of evaporation protons from target nucleus is large. We analyzed CC interactions with a charged multiplicity of $n_{c h} \geq 4$.

The sphericity value distributions for CC interactions are shown in Fig.7. The calculation according to an intranuclear cascade mode1 ${ }^{127 /}$ taking into account the experimental restrictions is also shown here by a histogram. It is seen that the jet-1ike behaviour of all secondary particles in complete CC interactions agrees well with the cascade model. The mean values of sphericity in the experiment and in the model are respectively equal to $\left\langle\mathrm{S}_{\text {expt }}\right\rangle=0.356+0.009,\left\langle\mathrm{~S}_{\text {mod }}\right\rangle=0.371$. Central CC collisions demonstrate higher sphericity $\left\langle\mathrm{S}_{\text {exp }}\right\rangle=0.477 \pm 0.006$ than all CC interactions, and they are not described by the intranuclear cascade model. The mean value of sphericity in the model turned out to be $\left\langle\mathrm{S}_{\text {mod }}\right\rangle=0.412$.
for multinucieon interactions the dimensions of secondary pion emission region were determined by the like-particle interferometry method ${ }^{\prime 31 /}$. In the case of CC central collisions the space size of π^{-}meson emission region appeared to be $\mathrm{r}=$ $=(3.10+0.89) \mathrm{fm}$. It is worth to note here that interference effects are observed for particles with small four-momentum differences. At our incident energy, low energy π^{-}mesons are mainly produced. Therefore the size of the emission region is determined by processes with the production of just these $\pi^{-m e-}$ sons. Of more interest should be a measurement of space-time characteristics of interactions where two high $P_{\perp} \pi^{-}$mesons are detected.

Fig.7. Sphericity distribution for $\mathrm{C}+\mathrm{C}$ events. The histogram shows calculations according to the intranuclear cascade mode1: a) for all C+C interactions; b) for central $C+$ C interactions.

4. INTERACTIONS WITH HEAVY NUCLEUS

A target consisting of three tantalum plates 1 mm thick was placed inside the bubble chamber. Experimental details were published elsewhere ${ }^{18,32-34 /}$. The data sample consists of 769 pTa , $1331 \mathrm{dTa}, 780 \mathrm{HeTa}$ and 117.6 CTa inelastic interactions. It is possible to estimate to what extent an interaction is multinucleonic from the experimental data on the rise of secondary particle multiplicity, and of the average numbers of interacting protons depending on the atomic numbers of incoming nuclei, and from theoretical calculations ${ }^{12 /}$.

For all inelastic (p,d,He,C)Ta
interactions the average number of interacting nucleon pairs is approximately equal to 4,7,12 and 27, respectively. For CTa central collisions, when in the forward cone $\left(\theta \leq 4^{\circ}\right)$ positively charged particles with momenta of $P_{+} \geq 3 \mathrm{GeV} / \mathrm{c}$ are completely absent, the average number of nucleon-nucleon interacting pairs amounts to 50 . Such events consist of many charged particles, and this leads to considerable difficulties in data handling procedure. Therefore measurements were performed for all particles in an event except positively charged baryons with momenta of $P_{+} \leqslant 700 \mathrm{MeV} / \mathrm{c}$.

Figure 8 presents the two-dimensional π^{-}distribution of transverse momentum versus rapidity for CTa interactions. The kinematic limit for NN collisions at $4.2 \mathrm{GeV} / \mathrm{c}$ is shown as a dashed line. In the target rapidity region a loss of π^{-}mesons (according to our estimate 25%) is seen. A considerable asymmetry in the point distribution is connected with the fact that a larger number of nucleons interact on behalf of tantalum nucleus than from carbon nucleus. Quite a number of π^{-}mesons fall outside the NN kinematic boundary.

The differential cross sections of π^{-}mesons produced in (circles) and in dTa (triangles) interactions versus the transverse momentum squared are presented in Fig.9. The experimental points were approximated by a function (1). The result of the approximation is shown as solid lines, $x^{2} /$ N.D.F. $=0.96$ (CTa) and $x^{2} /$ N.D.F. $=0.87(\mathrm{dTa})$. The slope parameters of the exponentials were found to be equal to: $\mathbf{a}=(45.4 \pm 2.8)(\mathrm{GeV} / \mathrm{c})^{-2}, \quad b=$ $=(8.3+0.4)\left(\mathrm{GeV} / \mathrm{c}^{-2}\right.$ for CTa and $\mathrm{a}^{-}=(43.8+4.4)(\mathrm{GeV} / \mathrm{c})^{-2}, \mathrm{~b}=$ $=(7.8+0.8)(\mathrm{GeV} / \mathrm{c})^{-2}$ for dTa interactions. The relative contributions of the second exponential are 47% for CTa and 41% for dTa interactions. As is seen, the values of the slope parameters of the second exponentials in NN, dTa, CTa and CC central interactions turned out to be similar. A large difference in the values of the slope parameters of the first exponentials seems to be connected with the contribution of π^{-}mesons produced in the interactions of secondary nucleons in tantalum.

The invariant π^{-}meson spectra were analyzed also in terms of A and P_{\perp}. It is known ${ }^{\prime 3.35-37 /}$ that the ratio of π^{-}meson

Fig. 8. Plot of transverse momentum vs rapidity for π^{-}mesons produced in C+Ta interactions. The dashed line represents the NN kinematic limit.

Fig. 9. π^{-}meson yields vs transverse momentum squared in $\mathrm{C}_{+} \mathrm{Ta}$ (circles) and in $d+T a$ (triangles) interactions.
structure functions in $p A$ and pp interactions obeys the powerlike A-dependence

$$
\begin{equation*}
\mathrm{R}=\left(\mathrm{Ed}^{3}{ }_{\sigma} / \mathrm{d}^{3} \mathrm{p}\right)_{\mathrm{pA}} /\left(\mathrm{Ed}^{3} \sigma / \mathrm{d}^{3} \mathrm{p}\right)_{\mathrm{pp}}=\mathrm{A}^{a\left(\mathrm{p}_{\perp}\right)} \tag{6}
\end{equation*}
$$

where $a\left(p_{\perp}\right)$ is a universal rising function of transverse momentum independent of atomic number A, and at high p_{\perp} its values become equal to $1.1 \div 1.3$. Search and investigation of such anomalous A-dependences are of great importance for testing and development of present-day quark models ${ }^{\prime 38,39 /}$.

To study the A-dependence of π^{-}meson structure functions in our experiment, it is natural to suggest that parametrization (6) may be generalized directly for nucleus-nucleus interactions

$$
\begin{align*}
& \mathrm{R}_{\mathrm{A}_{1} \mathrm{~B}_{1} / \mathrm{A}_{2} \mathrm{~B}_{2}}=\left(\mathrm{Ed}_{\sigma}^{3} / \mathrm{d}^{3} \mathrm{p}\right)_{\mathrm{A}_{1} \mathrm{~B}_{1}} /\left(\mathrm{Ed}^{3} \sigma / \mathrm{d}^{3} \mathrm{p}_{\mathrm{A}_{2} \mathrm{~B}_{2}}=\right. \tag{7}\\
& =\left(\mathrm{A}_{1} \mathrm{~B}_{1} / \mathrm{A}_{2} \mathrm{~B}_{2}\right)^{a\left(\mathrm{p}_{1}\right)} .
\end{align*}
$$

where A_{1}, A_{2} and B_{1}, B_{2} are atomic numbers of projectile and target nuclei, respectively. In our case the ratios of π^{-}meson structure functions over p_{\perp} in (d, He, C)Ta interactions to the corresponding distributions in pTa interactions were studied. We investigated also analogous ratios with the dTa data in the dominator. Let us denote the ratios with pTa data in the

dominator as $R_{A / p}$, and those with dTa data as $R_{A / d}$. Experimental ratios $R_{A / p}$ (and $R_{A / d}$) were jointly fitted for different intervals of transverse momentum.

Figure 10 presents the obtained $a\left(x_{\perp}\right)$ dependences for the ratios of the π^{-}structure functions $R_{A / p}$ and $R_{A / d}$, where $x_{\perp}=2 P_{\perp} / \sqrt{s}$. Similar dependences, obtained in pA -coliisions at $400 \mathrm{GeV} / \mathrm{c}^{/ 37 /}$ and $70 \mathrm{GeV} / \mathrm{c}^{/ 40 /}$, are also shown. It is seen that due to low statistics the errors of the values of parameter a are large. In the interval $0.2 \leqslant x \leqslant 0.5$ the values of parameter $a \geq 1$. This result should be considered as an indication of an anomalous A-dependence of π^{-}meson yield in nucleus-nucleus interactions at relatively small transverse momenta $0.2 \leqslant P_{\perp} \leqslant 1 \mathrm{GeV} / \mathrm{c}$ and at not high momentum per beam nucleon.

In Fig. 11 is presented a plot of P_{\perp} versus the rapidity of positive particles with momenta of $\mathrm{P}_{+} \geq 700 \mathrm{MeV} / \mathrm{c}$ for CTa interactions. Multicharged stripping fragments of incoming carbon nucleus are not included in this plot. The π^{+}meson contamination estimated from π^{-}mesons amounts to 8% of all the particles in the plot. Among positive particles with $P_{+} \geq 700 \mathrm{MeV} / \mathrm{c}$ about 4% of particles with $P_{+} \geq 1 \mathrm{GeV} / \mathrm{c}$ were found having higher ionization density, which were considered as d,t,He nuclei. While calculating rapidity, all particles were classified as protons. The absence of particles with $\mathrm{P}_{+}<700 \mathrm{MeV} / \mathrm{c}$ is distinctly seen in Fig. 11 in the tantalum nucleus fragmentation region. The dashan 1 ino ontresponds to the nen kiñuatic iimii. Ii is seen that a considerable part of protons falls outside the kinematic limit.

In Fig. 12 are presented differential cross sections of protons produced in CTa (circles) and in dTa (triangles) interactions versus the transverse momentum squared for $\mathrm{P}^{2} \geq 0.5(\mathrm{GeV} / \mathrm{c})^{2}$. The π^{+} meson contamination amounted to 4\%. The transverse momentum squared for spectator fragments of

Fig.12. Proton yields vs transverse momentum squared for $\mathrm{P}_{1}^{2} 2$ $\geq 0.5(\mathrm{GeV} / \mathrm{c})^{2}$. The arrow points to the NN kinematic limit. The histograms represent two versions of the intranuclear cascade model calculations for $\mathrm{C}+\mathrm{Ta}$ interactions.
carbon nucleus did not exceed $0.5(\mathrm{GeV} / \mathrm{c})^{2}$. Therefore if in a first approximation we neglect the yield of composite particles, then hadrons with high transverse momenta can be considered as protons. In Fig. 12 the kinematic limit for NN collisions is shown with an arrow. Experimental points for (d,He,C)Ta interactions were approximated by the function (1). For pTa collisions the experimental points were approximated by a single exponential due to low statistics. The slope parameters of the exponentials for all exposures are presented in the Table.

Table
Exponential slope parameters obtained by fitting the P^{2} distributions of protons in ($p, d, H e, C$) + Ta interactions

Fitted parameters	p	d	He	C
\mathbf{a}	$3.19+0.62$	$3.29+0.39$	$3.21+0.35$	$2.62+0.33$
b	-	$0.56+0.54$	$0.44+0.35$	$0.99+0.54$
$x^{2} /$ N.D.F.	0.31	0.82	1.16	1.05

Figure 12 shows two versions of calculations according to the Dubna cascade model DCMi天iifor CTa interactions in the torm of histograms. The theoretical calculations are normalized to the experimental proton yields with $\mathrm{P}_{1}{ }^{2} \geq 0.5(\mathrm{GeV} / \mathrm{c})^{2}$. In the first version of the model (dashed line) the secondary protons did not interact in the final state. In the second version (solid line) any two or more nucleons in an event with momenta, which differ by a value less than parameter P_{0}, were considered as composite particles (d,t,He). The P_{0} parameter, the radius of momentum sphere for sticking together, was estimated from the secondary particle spectra in $\mathrm{Ne}+\mathrm{U}$ collisions ${ }^{1 / 41 /}$ at energies of $0.4 \div 2.1 \mathrm{GeV}$ per projectile nucleon and was taken equal to $90 \mathrm{MeV} / \mathrm{c}$. Such an approach is similar to introducing final state interactions in the coalescence model/42/.

In order to reproduce the experimental conditions, all composite particles, obtained in the second version of calculations, were considered as protons. It is seen that with the final state interactions not taken into account the model does not describe the data in the region of high momentum transfers. With the coalescence introduced, the description improves, but there are still essential deviations from the experiment.

Rapidity distributions of protons with high transverse momenta for dTa and CTainteractions are presented in Fig. 13 along

Fig. 13.Rapidity distributions of protons with $P_{1}^{2} \geq 0.5(\mathrm{GeV} / \mathrm{c})$ for $\mathrm{d}+\mathrm{Ta}($ triangles) and for $\mathrm{C}+\mathrm{Ta}$ (circles) interactions. The histograms show two versions of the intranuclear cascade model calculations.

Fig.15. A-dependence of the proton yields on transverse momentum squared in the intervals $\left(0.5 \leq \mathrm{P}_{\perp}^{2}<1.0\right)(\mathrm{GeV} / \mathrm{c})^{2}-\mathrm{tri}-$ angles, and $P_{\perp}^{2} \geq 1(\mathrm{GeV} / \mathrm{c})^{2}$ circles.
with the DCM calculations. The agreement cannot be considered as satisfactory.

The P_{1}^{2} distribution of protons falling outside the NN kinematic limit on the (y, P_{\perp}) plot is given in Fig. 14. Circles correspond to CTa interactions, while triangles represent dTa interactions. The experimental points were approximated by the function

$$
\begin{equation*}
\mathrm{d} \sigma / \mathrm{dP}_{\perp}^{2}=\mathrm{Ae}^{-\mathrm{ap}}{ }_{\perp}^{2} \tag{8}
\end{equation*}
$$

Fig. 16. Average multiplicities of positive particles (squares), $\pi^{-\quad}$ mesons (circles) and protons with $P_{1}^{2} \geq 0.5(\mathrm{GeV} / \mathrm{c})^{2}$ (triangles) vs maximum transverse momentum of proton in an event, P_{\perp}^{2} max. The lines represent the intranuclear cascade model calculations (lower line for protons, middle for pions, and upper for all positive secondaries).

The result of the approximation is shown as solid lines, $x /$ N.D:F. $=$ $=0.81$ for dTa and $x^{2} /$ N.D.F. $=1.4$ for CTa interactions. According to DCM with final state interactions, the calculations disagree with the data.

Shown in Fig. 15 is the A-dependence of the proton yields in the regions of $\mathrm{P}_{\perp}^{2}\left(0.5 \leq \mathrm{P}_{\perp}^{2}<1\right)(\mathrm{GeV} / \mathrm{c})^{2} \quad$ (triangles) and $\mathrm{P}_{\perp}^{2}>$ $\geq 1(\mathrm{GeV} / \mathrm{c})^{2}$ (circles). The lines represent a power-like fit given by

$$
\begin{equation*}
\sigma=c A^{a} \tag{9}
\end{equation*}
$$

where A is the atomic weight of the projectile. For the two P_{\perp}^{2} intervals $a=1.07 \pm 0.02$ and $\alpha=1.17+0.03$, respectively. When fitting, the first point was fixed. The A-dependence becomes steeper with increasing P_{\perp}^{2}, and the a-values are greater than unity in both intervals.

Fig. 16 shows the average multiplicities of positive particles (squares), π^{-}mesons (circles) and protons with $\mathrm{P}_{\perp}^{2} \geq 0.5(\mathrm{GeV} / \mathrm{c})^{2}$ (triangles) versus the maximum value of P_{\perp}^{2} in the event. Predictions of DCM with proton coalescence are shown with lines. It is seen that events with high P_{\perp}^{2} protons demonstrate a high charged multiplicity. Starting from the NN kinematic limit $\mathrm{P}_{\perp}^{2}{ }_{\sim}^{2}$ $-1.5(\mathrm{GeV} / \mathrm{c})^{2}$, the average charged multiplicities are practical$1 y$ independen't of P_{1}^{2} max . The cascade model qualitatively reproduces the correlation but overestimates the particle multiplicities.

For all inelastic as well as for central CTa interactions the size, r, of the π^{-}meson emission region was measured by the interferometry method. It was found that $r=(3.44 \pm 0.41) \mathrm{fm}$ and $\mathrm{r}=$ $=(4.11+1.07) f m$ for all inelastic CTa and for CTa central in-
teractions, respectively. As is seen, the r value is determined within the statistical errors by the size of carbon projectile.

CONCLUSIONS

The experimental dependence is obtained of the cross sections for multicharged carbon beam fragment interactions with propane on the distance from the origin of these fragments. It follows from the data that the values of the interaction cross sections of carbon fragments with $Z=5,6$ in propane at a distance of $X \geq 10 \mathrm{~cm}$ from the vertex are -10% greater than those expected. It is probably an indication of the contribution of excited fragments with a life-time of $\tau \gtrsim 10^{-10}$ sec the size of which becomes greater than that of the ground state.

In multinucleon CC and (d,He,C)Ta collisions $\pi^{-\quad}$ mesons and protons are produced far outside the NN kinematic boundary. For secondary charged baryons a new exponential dependence on $P_{\perp}{ }^{2}$ is observed with the value of slope parameter $-1(\mathrm{GeV} / \mathrm{c})^{-2}$. In the A-dependence of proton yields with $P_{\perp}>1 \mathrm{GeV} / \mathrm{c}$ in the interactions of light nuclei with tantalum α is close or exceeds unity. The data are not described by a cascade model with finalstate interactions included. Thus a considerable contribution of cumulative interactions is observed.

In the future an increase of statistics is planned. We also
 correlations and further comparison of models with the data.

The authors are indebted to the technical staff for film taking and for assistance in data processing.

REFERENCES

1. Baldin A.M. et al. PTE, 1971, 3, p.29; JINR, P9-5442, Dubna, 1970.
2. Baldin A.M. JINR, P7-5808, Dubna, 1971; Brief Comm. on Phys., 1971, 1, p.35; Progress in Particle and Nuclear Physics, 1980, 4, p. 95.
3. Baldin A.M. et al. JINR, P1-5819, Dubna, 1971; Proc. Rochester Meeting APS/OPF, N.Y., 1971, p.131; Stavinsky V.S. ECHAYA, 1979, 10, p. 949.
4. Akhababian N. et al. JINR, 1-12114, Dubna, 1979; Gasparian A.P. et al. JINR, 1-12797, Dubna, 1979.
5. Angelov N. et al. Z. Physik C, 1980, 5, p.1.
6. Angelov N. et al. Yad.Fiz., 1981, 33, 4, p. 1046.
7. Angelov N. et al. Yad.Fiz., 1978, 27, 4, p. 1020.
8. Angelov N. et al. JINR, E1-11517, Dubna, 1978; Yad.Fiz., 1978, 28, 5, p. 1304.
9. Angelov N. et al. Yad.Fiz., 1979, 30, 6, p. 1590.
10. Baatar Ts. et al. Yad.Fiz., 1980, 32, 5, p. 1372.
11. Baatar Ts. et al. JINR, P1-80-209, Dubna, 1980.
12. Gasparian A.P. et al. Yad.Fiz., 1981, 34, 5, p. 1328.
13. Agakishiev H.N. et a1. Yad.Fiz., 1981, 34, 6, p. 1517.
14. Baatar Ts. et al. JINR, P1-81-516, Dubna, 1981.
15. Agakishiev H.N. et al. INR, 1904/VI/PH/A, Warsaw, 1981.
16. Angelov N. et al. Yad.Fiz., 1980, 31, 2, p. 411.
17. Akhababian N. et al. JINR, E1-81-470, Dubna, 1981.
18. Agakishiev H.N. et al. JINR, Pl-81-79, Dubna, 1981.
19. Friedlander E.M. et al. Phys.Rev.Lett., 1980, 45, p. 1084.
20. Jain P.L., Das G. Phys.Rev.Lett., 1982, 48, p. 305.
21. Barber H.B. et al. Phys.Rev.Lett., 1982, 48, p.856.
22. Aggarwal M.M. et al. Proc. of the Fifth Heavy-Ion Conf., University of California at Berkeley, 18-22 May, 1981; Phys.Lett.B, 1982, 112, p.31.
23. Freier P.S., Waddington C.J. Astrophys.Space Sci., 1975 38, p.419.
24. Judek B. Can.J.Phys., 1968, 46, p.343; Gleghorn T.F. et al. Can.J.Phys.Suppl., 1968, 46, p.572.
25. Gasparian A.P., Grigalashvili N.S. JINR, 1-11335, Dubna, 1979.
26. Abdivaliev A. et al. JINR, P1-81-437, Dubna, 1981.
27. Gudima K.K., Toneev V.D. JINR, P2-10431, Dubna, 1977; Yad.Fiz., 1978, 27, p.658.

28. Stöcker H. et al. Phys.Rev.Lett., 1980, 44, p. 725.
29. Kapusta J., Strottman. Phys.Rev., 1981, C23, p. 1282.
30. Kopylov G.I., Podgoretsky M.I. Yad.Fiz., 1973, 18, p.656; JETP, 1975, 69, p.414.
31. Angelov N. et al. Yad. Fiz., 1980, 32, p. 1582.
32. Angelov N. et al. JINR, 1-12424, Dubna, 1979.
33. Gasparian A.P. et al. JINR, 1-80-778, Dubna, 1980.
34. Cronin J.W. et al. Phys.Rev.D., 1975, 11, p. 3105.
35. Kluberg L. et al. Phys.Rev.Lett., 1977, 38, p.670.
36. Antreasyan D. et al. Phys.Rev.D, 1979, 19, p.764.
37. Zmushko V.V. Yad.Fiz., 1980, 32, p.448.
38. Treleani D., Wilk G. Nuovo Cim. A, 1980, 60, p. 201.
39. Abramov V.V. et al. Yad.Fiz., 1980, 31, p.660.
40. Sandoval A. et al. Phys.Rev.C, 1980, 21, p. 1321.
41. Gutbrod H.H. et al. Phys.Rev.Lett., 1976, 37, p.667; Gosset J. et al. Phys.Rev.C., 1977, 16, p.629; Lemaire H.C. Phys.Lett.B, 1979, 85, p. 38.

WILL YOU FILL BLANK SPACES IN YOUR LIBRAHY?

You can receive by post the books listed below. Prices - in US 8

 including the packing and registered postage13-11807 Proceedings of the III International Meeting Proceedings of the III International Meeting
on Proportional and Drift Chambers. Dubna, 19 Proceedings of the VI All-Union Conference on Charged Particle Accelerators. Dubna, 1978. 2 volumes.
D1,2-12450 Proceedings of the XII International School on High Energy Physics for Young Scientists. Bulgaria, Primorsko, 1978.

D-12965 The Proceedings of the International School on the Problems of Charged Particle Accelerators for Young Scientists. Minsk, 1979.
D11-80-13 The Proceedings of the International Conference on Systems and Techniques of Analytical Computing and Their Applications in Theoretical Physics. Dubna, 1979.

D4-80-271 The Proceedings of the International Symposium on Few Particle Problems in Nuclear Physics. Dubna, 1979.
D4-80-385 The Proceedings of the International School on Nuclear Structure. Alushta, 1980
proceedings of the VII All-Union Conference on Charged Particle Accelerators. Dubna, 1980.

D4-80-572 N.N.Kolesnikov et al. "The Energies and Half-Lives for the $a-$ and β-Decays of Transfermi um Elements"

D2-81-543 Proceedings of the VI International Conference on the Problems of Quantum Field Theory.
Alushta, 1981
D10,11-81-622 Proceedings of the International Meeting on Problems of Mathematical Simulation in Nuclear Physics Researches. Dubna, 1980

D1,2-81-728 Proceedings of the VI International Seminar on High Energy Physics Problems. Dubna, 1981
D17-81-758 Proceedings of the II International Symposium on Selected Problems in Statistical Mechanics. Dubna, 1981.
D1,2-82-27 Proceedings of the International Symposium on Polarization Phenomena in High Energy Physics. Dubna, 1981.

Received by Publishing Department on July 21982.

Orders for the above-mentioned books can be sent at the address: Publishing nepartment, JINR Head Post Office, P.O.Box 79101000 Moscow, USSR

SUBJECT CATEGORIES OF THE JINR PUBLICATIONS

Index
1. High energy experimental physics
2. High energy theoretical physics
3. Low energy experimental physics
4. Low energy theoretical physics
5. Mathematics
6. Nuc!ear spectrescriny and radinchemistry
7. Heavy ion physics
8. Cryogenics
9. Accelerators
10. Automatization of data processing
11. Computing mathematics and technique
12. Chemistry
13. Experimental techniques and methods
14. Solid state physics. Liquids
15. Experimental physics of nuclear reactions
at low energies
16. Health physics. Shieldings
17. Theory of condenced matter
18. Applied researches
19. Biophysics

Ахабабян Н. и др.
E1-82-510
Периферические и центральные ядро-ядерные столкновения при 4,2 ГэВ/с/нуклон

Представлен экспериментальный материал по взаимодействию релятивистских ядер $\mathrm{p}, \mathrm{d},{ }^{4} \mathrm{He},{ }^{12} \mathrm{C}$ с ядрами углерода и тантала, полученный с помощью 2 -метровой пропановой пузырьковой камеры с внутренней мишенью из тантала. Установлено, что сечения взаимодействия вторичных фрагментов налетающих ядер углерода с зарядом $\mathrm{Z}=5,6$ на 10% больше ожидаемой величины. В пятнадцатинуклонном столкновении ядер углерода и многонуклонных взаимодействиях ядер $\mathrm{d},{ }^{4} \mathrm{He},{ }^{12} \mathrm{C}$ с танталом наблюдается вклад коллективных взаимодействий, не сводящихся к суперпозиции NN -столкновений с учетом ферми-движения, взаимодействия в конечном состоянии, перерассеяний и т.д.

Работа выполнена в Лаборатории высоких энергий оияи.

Препринт 0бъединенного института ядерных исследований. Дубна 1982
Akhababian N. et al. El-82-510

Peripheral and Central Nucleus-Nucleus Collisions at $4.2 \mathrm{GeV} / \mathrm{c}$ per Nucleon

Experimental data on interactions of relativistic p, d ,He and C nuclei with carbon and tantalum nuclei are presented. The data come from the 2 m propane bubble chamber with an internal tantalum target. It is found that interaction cross sections for carbon projectile fragments with charges $\mathrm{Z}=5,6$ are 10% greater than expected. In central $\mathrm{C}+\mathrm{C}$ collisions and in multinucleon interactions of $d, H e$ and C with tantalum a contribution is observed from cumulative interactions irreducible to the superposition of NN -collisions taking into account final state interactions, rescattering effects, etc.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1982

