

3562/82

|r111-82 E1-82

1982

THE STUDY OF DIFFRACTIVE DISSOCIATION IN THE REACTION $\bar{p}p \rightarrow \bar{p}p \pi^+ \pi^-$ AT 22.4 GeV/c

Dubna-Alma-Ata-Helsinki-Prague Collaboration

Submitted to the XXI International Conference on High Energy Physics (Paris, 1982) and to the VI European Symposium on Antinucleon-Nucleon Interactions (Santiago de Compostela, 1982) B.V.Batyunya, I.V.Boguslavsky, N.B.Dashian, I.M.Gramenitsky, R.Lednicky, V.I.Rud^{*}, S.V.Levonian^{**}, I.A.Korzhavina^{*}, L.A.Tikhonova,^{*} Z.Zlatanov, V.Vrba, H.Kanazirsky, R.K.Dementiev^{*}, A.V.Nikitin Joint Institute for Nuclear Research, Dubna

E.D.Ermilova, T.Temiraliev Institute of High Energy Physics, Alma-Ata, USSR

J.Ervanne, E.Hannula, P.Villanen Department of High Energy Physics, University of Helsinki, Helsinki, Finland

I.Herynek, J.Řidky, V.Šimák, M.Lokajiček Institute of Physics, Czechoslovak Academy of Sciences, Prague, ČSSR

A.Valkárová

4 .

15

Nuclear Centre of Charles University, Prague, ČSSR

* Institute of Nuclear Physics, Moscow State University, Moscow, USSR.

1878 B 12.00

** Lebedev Institute of Physics, Moscow, USSR.

The investigation of the reaction

4

÷.

 $\overline{p} p \to \overline{p} p \pi^+ \pi^- \tag{1}$

at a wide interval of energies $^{/1-5/}$ has demonstrated the dominance of two channels: double production of isobars and diffraction dissociation of proton and antiproton.

The results of studying the beam and target diffraction dissociation in reaction (1) at 22.4 GeV/c are presented. The data have been obtained on pictures from the Ludmila bubble chamber exposed to a separated antiproton beam at IHEP (Serpukhov).

The general characteristics of reaction (1) and of $\bar{p}p \rightarrow \Delta^{+} + \bar{\Delta}^{+} + channel$ at 22.4 GeV/c can be found in paper^{/6/}.

2021 events of reaction $(1)^*$ were used to analyse the diffraction dissociation that corresponds to 1.44 events per b.

The separation of proton and antiproton diffraction was performed by two methods: longitudinal phase space(LPS-analysis 77) and method of maximum rapidity gap between secondaries $^{8/}$.

The two-dimensional plot of the reduced longitudinal momenta \mathbf{x}^+ and \mathbf{x}^- of π^\pm -mesons from reaction (1) is presented in fig.1^{/7/}.

The diagrams of the processes which dominate in the corresponding LPS-sectors are also shown here. The whole LPSspace was divided into cells $\delta x = 0.125 \times 0.125$ in size.

The occupation of the separated LPS-sectors by the events is clearly seen from fig.1. The weighted Δ_w distributions were obtained by the formula

$$\Delta_{\mathbf{w}} = \sigma_0 \mathbf{N}_t^{-1} \mathbf{s}^{-1} \sum_{\gamma} \omega_{\gamma} , \qquad (2)$$

where σ_0 is the cross section of reaction (1); N_t, the total number of e in the experiment of the otal energy squared

1

1.84

^{*} The cross section of reaction (1) at 22.4 GeV/c is equal to 1.40+0.04 mb.

in the c.m.s.; γ , the number of events in each cell δx ; ω_{γ} , the weight of each event as a function of longitudinal momenta and energies of particles in the c.m.s.

The number of events in the LPS-sectors and corresponding cross sections are given in table 1.

LPS-sectors	Number of events	Cross section, mb
$A[(\bar{p}\pi^{+}\pi^{-})p]$	598	0.41+0.02
$B\left[\left(\overline{p}\pi^{+}\right)\left(p\pi^{-}\right)\right]$	149	0.10 <u>+</u> 0.01
$C[\bar{p}(p \pi^+ \pi^-)]$	599	0.41 <u>+</u> 0.02
$D[(\bar{p} \pi^{-})(p \pi^{+})]$	638	0.44+0.02

As can be seen from this, the numbers of events in sectors A and C coincide. This fact points to an equal fraction of the proton and antiproton dissociation in reaction (1).

The separation of diffraction by the maximal rapidity gap /8,11/ method was performed by ordering the secondary particles of reaction (1) in each event according to their longitudinal rapidities in the laboratory system $y_i = \ln \frac{E_i + P_{ii}}{E_i - P_{ii}}$. Then rapidity intervals between neighbours were determined. The particles in the diffractively produced system tend to group within a limited rapidity interval. To separate diffractive and nondiffractive components, the variable $\eta^{/9/}$ was introduced:

$$\eta = 1 - e^{-\xi}, \quad \xi = \prod_{i=1}^{2} \frac{\Delta y_{\max} - \Delta y_i}{\langle \Delta y \rangle}, \tag{3}$$

where Δy_{max} is a maximum rapidity gap, Δy_i is a rapidity gap between two neighbouring particles in the diffractively produced system and $\langle \Delta y \rangle$ is their mean value. For diffractive events $\Delta y_{max} \gg \Delta y_i$ and therefore $\eta \approx 1$, for nondiffractive events $\Delta y_{\max} = \Delta y_i$ and $\eta = 0$.

The η distribution for antiproton dissociation at 22.4 GeV/c is shown in fig.2.

As can be seen from fig.2, the separated sample contains some fraction of nondiffractive events overlapping with diffractive ones at intermediate values of η .

ciation.

To minimize this ambiguity, the cutoff value of η_c was determined from the approximation of the η distribution by the function^{/9/}

 $dN/d\eta = e^{a_1 + b_1 \eta} + e^{a_2 + b_2 \eta}$ (4)

After such a cutoff procedure 598 events were selected for antiproton diffraction and 575 events for proton diffraction. The corresponding cross sections were obtained as $\sigma_{\overline{n}}$ =

= 0.41+0.02 mb and $\sigma_{\rm p}$ = 0.40+0.02 mb.

The comparison of these values with the data from table 1 shows an agreement between the results obtained by the methods.

The energy dependence of the single diffraction dissociation cross section for reaction (1) was successfully parametrized by the function

$$\sigma_{\rm D} = C \, {\rm s}^{-n} \tag{5}$$

in a momentum interval from 7.2 GeV/c to $100 \text{GeV/c}^{\prime \circ'}$. The values of the parameters were found to be C=1.7+0.4 and n = = 0.36+0.06. The value of σ_D at $p_{in} = 22.4$ GeV/c (s=43.8 GeV²) for given values of n and C was estimated as 0.43+0.14 mb. This result is in agreement with the previously mentioned cross sections of diffraction in one vertex.

The two peaks at M ~1500 MeV and at M ~1700 MeV were found in the effective mass distributions of the $(p\pi^+\pi^-)$ and $(\bar{p}\pi^+\pi^-)$ systems for events belonging to LPS-sectors A and C (see fig.3a,b).

Fig.3. a) $M(\bar{p} \pi^+ \pi^-)$ -distribution for events from LPS-sector A. b) $M(p \pi^+ \pi^-)$ -distribution for events from LPS-sector C.

These enhancements were observed in reaction (1) at an antiproton momentum interval from 5.7 GeV/c^{/1/} to 40 GeV/c^{/5/} and in the diffractively produced $(p \pi^+ \pi^-)$ -system in πp , Kp and pp interactions at different energies up to ISR^{/10,11,12/}.

Many authors $^{5.11.14}$ connect the first peak according to decay angular distributions with the presence of N*(1470) and N*(1520) isobars; the second peak is considered as a superposition of several isobars with spin values 3/2 and 5/2.

The effective mass distributions of $(p \pi^+ \pi^-) + C.C.$ -systems decaying into $\Delta^+ (\overline{\Lambda^{++}})$ isobar and π -meson are shown in fig.3a,b by dashed lines. The value of isobar mass is restricted by $1.06 \leq M(\pi \pi N) \leq 1.4$ GeV.

As is seen from fig.3 the first $(\pi \pi N)$ peak can be completely explained as a quasi-two-body decay $(\Lambda \pi)$, and for the second peak such a kind of decay is dominant.

The $(p \pi^+)$ and $(\overline{p} \pi^-)$ effective mass spectrum for events belonging to the A- and C- LPS sectors are given in <u>fig.4</u>. The signal of $\Delta^{++}(\overline{\Delta^{++}})$ isobars is prominent.

The experimental $M(p \pi^+ \pi^-)$ distribution was compared with predictions of the OPER-model which successfully describes a lot of exclusive reactions /13/.

The OPER-model describes reaction (1) by means of the diagrams presented in fig.1 for LPS-sectors B and D. The fraction of Pomeron exchange is considered in the model only through the diagram

where no resonant states in the $(\pi\pi N)$ -system are supposed. This permits this model to be used for the calculation of background in describing $(p \pi^+ \pi^-)$ mass enhancements.

The $p \pi^+ \pi^-$ mass distribution for events from LPS-sector C is given in <u>fig.5</u> by the solid line, and the dashed line presents the same distribution for events generated using the OPER-model. It is clear that the model does not describe the

diffractive peaks at M ~ 1500 MeV and M ~1700 MeV; this means that they cannot be connected with the reflection of double $\Delta^{++}\Delta^{\mp}+$ and $\Delta^{\circ}\overline{\Delta^{\circ}}$ -isobar production because the last processes are described by the model very well.

The parameters of resonant states in the $p \pi^+ \pi^-$ -system (listed in <u>Table 2</u>) were defined with the help of two Breit-Wigner functions and a background curve from the OPER-model.

Table 2	2
---------	---

Μ(ππΝ)	M (MeV)	Γ(MeV)	%
M (1500)	1422+22	65 <u>+</u> 34	15+4
M (1700)	1622 <u>+</u> 21	185+49	30 <u>+</u> 6

One of the important characteristics of diffraction dissociation is the slope of the t' distribution ($t'=t-t_{min}$,t is the four-momentum squared transferred from target to $(p_{\pi}+\pi)$ system).

The t' distribution for events of LPS-sectors A and C is presented in <u>fig.6</u>. For t'< 0.12 GeV² this distribution was fitted by a simple exponential function

$$d\sigma/dt' = Ae^{-bt}.$$
 (6)

The value of the slope b is received to be equal to 11.5++1.2 (GeV)⁻² and is consistent with the slope for elastic \overline{p} -scattering for which experimental values are concentrated near a value of 12 (GeV)^{-2/3.4/}.

It is known that the slope of the t distribution in diffraction processes decreases with increasing the diffractive system $^{/2,3,14/}$. The same effect is observed in reaction (1) at 22.4 GeV/c, and the data are given in table 3.

-	- 1	1	-	2	
1.5	3 D	1	e	3	
		_	-	-	

Interval of effective masses (GeV)	Slope (GeV) ⁻²
$1.25 \le M(p \pi^+ \pi^-) + C.C. \le 1.6$	15.0 <u>+</u> 1.3
$1.6 \leq M (p \pi^+ \pi^-) + C.C. \leq 1.8$	9.1 <u>+</u> 1.3
$M(p \pi^+ \pi^-) + C.C. \ge 1.8$	4.8 <u>+</u> 1.1

The main results presented here can be summarized as follows:

1) The cross sections of the proton and antiproton diffractive dissociation in reaction (1) were determined by the two methods: LPS-analysis and rapidity gap.

2) The enhancements in $(p \pi^+ \pi^-)$ - and $(\bar{p} \pi^+ \pi^-)$ -systems were observed at M~1500 MeV and M~1700 MeV.

3) The dependence of the slope of the t'distribution on $(p \pi^+ \pi^-)$ mass was found.

REFERENCES

- 1. Atherton H.W. et al. Nucl. Phys., 1976, B103, p.381.
- 2. Von Apeldoorn G.W. et al. Nucl. Phys., 1979, B156, p.111.
- Van Apeldoorn G.W. et al. Nucl.Phys., 1980, B169, p.365; Borecka J. et al. IL Nuovo Cimento, 1971, vol.5, No.1, p.19.
- 4. Yabiol M.A. et al. Nucl. Phys., 1981, B183, p.330.
- 5. Antipov Yu.M. et al. Nucl. Phys., 1975, B99, p.189.
- 6. Boos E.G. et al. Proc. of the IV European Antiproton Conference (BARR-Strasbourg), 1979, vol.1, p.501.
- Kittel W., Ratti S., Van Hove L. Nucl. Phys., 1971, B30, p.333.
- 8. Burdet W. et al. Nucl. Phys., 1972, B48, p. 13; Benecke T. et al. Nucl. Phys., 1974, B76, p.29.
- 9. Batyunya B.V. et al. JINR, E1-82-79, Dubna, 1979.
- 10. Boesebeck K. et al. Nucl. Phys., 1971, B33, p.445.
- 11. Azhinenko I.V. Preprint IHEP 80-21, Serpukhov, 1980.
- 12. Conta C. et al. Nucl. Phys., 1980, B175, p.97.
- 13. Ponomarev U.A., Tarasov V.E. Preprint IHEP-136, 1977.
- 14. Bogolubsky M.Y. et al. Yad.Fiz., 1981, 33, No.5, p.11.

Received by Publishing Department on June 4 1982.

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY?

You can receive by post the books listed below. Prices - in US \$,

including the packing and registered postage

D13-11807	Proceedings of the III International Meeting on Proportional and Drift Chambers. Dubna, 1978.	14.00
	Proceedings of the VI All-Union Conference on Charged Particle Accelerators. Dubna, 1978. 2 volumes.	25.00
D1 ,2- 12450	Proceedings of the XII International School on High Energy Physics for Young Scientists. Bulgaria, Primorsko, 1978.	18.00
D-12965	The Proceedings of the International School on the Problems of Charged Particle Accelerators for Young Scientists. Minsk, 1979.	8.00
D11-80-13	The Proceedings of the International Conference on Systems and Techniques of Analytical Comput- ing and Their Applications in Theoretical Physics. Dubna, 1979.	8.00
D4-80-271	The Proceedings of the International Symposium on Few Particle Problems in Nuclear Physics. Dubna, 1979.	8.50
D4-80- 385	The Proceedings of the International School on Nuclear Structure. Alushta, 1980.	10.00
	Proceedings of the VII All-Union Conference on Charged Particle Accelerators. Dubna, 1980. 2 volumes.	25.00
D4-80-572	N.N.Kolesnikov et al. "The Energies and Half-Lives for the a - and β -Decays of Transfermium Elements"	10.00
D2-81-543	Proceedings of the VI International Conference on the Problems of Quantum Field Theory. Alushta, 1981	9.50
D10,11-81-622	Proceedings of the International Meeting on Problems of Mathematical Simulation in Nuclear Physics Researches. Dubna, 1980	9.00
D1 ,2- 81-728	Proceedings of the VI International Seminar on High Energy Physics Problems. Dubna, 1981.	9.50
D17-81-758	Proceedings of the II International Symposium on Selected Problems in Statistical Mechanics. Dubna, 1981.	15.50
D1,2-82-27	Proceedings of the International Symposium on Polarization Phenomena in High Energy Physics. Dubna, 1981.	9.00

Orders for the above-mentioned books can be sent at the address: Publishing Department, JINR Head Post Office, P.O.Box 79 101000 Moscow, USSR Батюня Б.В. и др. Е1-82-415 Изучение дифракционной диссоциации в реакции $\overline{p} p \rightarrow \overline{p} p \pi^+ \pi^-$ при 22,4 ГэВ/с

Для 2021 события реакции $\vec{p}p \rightarrow \vec{p}p \pi^+\pi^-$ было проведено выделение механизмов дифракционной диссоциации антипротона и протона методом LPS-анализа и методом быстротных интервалов. Полученное сечение одновершинной диссоциации составляет 0,41±0,02 мбн. Для параметра наклона дифференциального сечения $d\sigma/dt'$ было получено значение b=11,5±1,2 /ГэВ/⁻² при t'≤ $\leq 0,12$ /ГэВ/². В распределении эффективных масс дифракционно образованных систем $\vec{p}\pi^+\pi^-$ и $p\pi^+\pi^-$ обнаружены две особенности при M~1500 МэВ и M~1700 МэВ. Экспериментальные результаты сравнивались с предсказаниями OPER-модели для рассматриваемой реакции.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1982

Batyunya B.V. et al.	E1-82-415
The Study of Diffractive Dissociation in t	he
Reaction $pp \rightarrow pp \pi^+\pi^-$ at 22.4 GeV/c	

The proton and antiproton diffractive dissociation in the reaction $\bar{p}p \rightarrow \bar{p}p \pi^+\pi^-$ (2021 events) was separated by two methods: LPS-analysis and rapidity gap method. The obtained value of the single diffractive dissociation cross section equals 0.41+0.02 mb. The slope of the differential distribution $d\sigma/dt'$ was estimated as b=11.5+1.2 (GeV/c)⁻² at t<0.12 (GeV/c)². The production of two peaks at \bar{M} ~1500 GeV and M~1700 GeV was obserbed in the effective mass distributions of diffractive systems $p\pi^+\pi^-$ and $\bar{p}\pi^+\pi^-$. The experimental data were compared with the predictions of the OPER-model.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1982