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Recently, a partial wave 
rently produced bf I10 GeV /c 
been performed 11 . 

analysis of rr+rr-rr-events cohe
rr- mesons on nuclear targets has 

The analysis gives a set of intensities as 3rr -mass distri-
butions for each partial wave amplitude (PWA) and a relative 

p 1 - -p phase between them (J L:l S, 0 S, 0 ,etc.). 
The PWA can be prPscntPd in the following form .' 2/ 

F ~IF I e10 k 
k ' k 

(I ) 

The high cuhcrencP of c.liffert•nt PWJ\ in thc pruc.luctions of the 
3rr sysLPm (the strong angular inl!!rferencP bc·twPen waves) 

mnkcs rc>liabll' tlw detcrminnlion or Lll(' n·lntivc phase of two 
waves. 

For two PWA, k~ 1,2 (say, 1+ S and u-p an· the st at<'s of the 
3rr system, then: F1 -F1+8and FB~I<' 0-p) Lht· nsult of tlw PWA
analysis gives IF

1
12, IF2 i2 and the relaLivc phasP: 

¢ ~~ 8 1 - 8 2 . ( 2 ) 

The usual method of searching for resonance parameters isba
sed on the Breit-Wigner (B-W) analysis of the intl·nsi ty dis
tribution. The energy dependence of the relative phase should 
show a fast variation in the resonance region. Background con
tributions and sometimes the presence of resonance in both 
PI~A makes such an analysis quite model-dependent. 

The aim of this paper is to present a method of determin
ing resonance parameters using Pade approximants and Laking 
into account the whole set of available experimental data ob
tained from PWA analysis, i.e., the intensides or the PWA 
and the relative phase between the PWA. This method contrary 
Lo B-W analysis, does not make use of any hypothesis about 
the number of resonances or their parameters in any PWA. 

In order to check our method we used a mathematical model 
with two resonance poles in each PWA. The method is also 
checked for the case of a resonance modifiPd by a nonresonance 
background 

F 1 =FR. F B, 
(3) 

where FR is the resonant part of the PWA. 
The definition which we adopt for the resonance is given 

by the existence of the PWA pole situated on the low·er-half 
part of the complex energy plane . 
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The method is based on Pade approximants (PA) analysis 
which gives an accurate interpolation and extrapolation (in 
the complex plane) of the analytic complex functions 13 •41 • Be
cause we deal with finite numbers of function values, which 
are experimentally determinated, the most useful method to 
analyse them via PA should be the so-called second type PA 
(PA II). The PA of type I, which are the ratio of two polyno
mials of degree N and M constructed from the given coeffi
cients of the Taylor series of the complex function to be ap
proximated: 

~ 

PAl: f(z) :: f(z) = 2: a zn => f(z) 
n 

P (z,a ) 
N n ----

QM(z,an) 
(4) 

The second type PA uses for its construction a set of function 
values fi(xi) at a given set of points xi(Z=X+iy) on the real 
axis. The PA II, which has been classically called the Cauchy 
interpolation 13•51 is the pointwise interpolation by rational 
functions: 

P N (z, f. (x.)) 
PAil: !f. (x.) I => f(z) = __ !._~-, (5) 

1 1 QM(z, f. (x. )) 
1 1 

which is yractically constructed using the so-called v algo-
rithm 14•5 for continued fractions based on an iteration 
procedure which gives the PN from PN-l and PN_2 and similar 
for QN' In order to best represent the experimental data (the 
experimental values of the complex function f i(x 1)) we used 
a subsequent improvement of the approximant by a least squares 
minimization where as the free parameters exactly the functi
ons are used (the set lf 1(x 1)!). This new approximant is P.A of 
the third type (PA III). 

So, if the PWA (eq. (1)) are known, the PA can give the va
lid approximant (VA) of the form: 

n W- w ~~) 
F =a ll ___ __!_ ____ , k = 1,2, 

k ki=l w- w (k) 
- -p 1 

where ak is a complex constant and 
(k) 

w z i 

(6) 

(k) 
wPi are the zeros 

and poles in the complex energy plane (w) of the PWA. The re
sonance pole is that stable pole (it will have the same value 
when n is increasing) for which Irnwp

1
< 0. 

In order to use the information obtained from the PWA ana
lysis ( \F1 i2 , IF 2 12 and ¢ ) one can construct two combinations 
of the PWA having exactly the same relative phase: 

- i¢ 
F1 xF 2 =iF1 \·IF2 \e , (7) 

Fl IF tl i¢ 
-=--6 
F2 IF21 

(8) 

2 

( 

1\ 

i.e., the product of one amplitude and the complex conjugate 
of the second one, and the ratio of the two PWA. 

The PA analysis of eq. (7) and eq. (8) can give the exact 
location of the zeros and poles as does the VA. The price paid 
for the lack of knowledge of each individual phase cal 'a~d 82) 
and the knowledge only of the relative phase ¢, is the deter
mination of the constant norm of the PWA ( ak from eq. (6)) 
up to a constant phase. 

The approximant of each PWA constructed in such a way and 
called the evaluated valid approximant (EVA) is given by: 

(k) _ n w-wz
1 

F k = \ak I II --. (9) 
i= 1 w - w (k) 

The undetermined const~ht phase of ak is irrelevant for our 
purpose, i.e., for finding the resonance parameters of the PWA 
or, in other words, the EVA of PWA contains all the informati
on needed for the resonance determination, as the VA itself. 

In our procedure, the experimental data on the product (eq. 
(7)) and ratio (eq.(8)) are analysed by the PA of the III type. 
From the zero analysis of the nominator and denominator of the 
PA III, the product and ratio of two PWA are given by: 

·¢ N W-W 
\Fll X \F2 I e 

1 
=a n __ :.L_, (10) 

i=l w- wp
1 

1Ft I i¢ N w- w~ i 
-e =13 II 
IF. I i=l w-w' 

2 Pi 

(II) 

with N = n/2. 
The EVA of each PWA given by eq. (9) is obtained by compari-

son of the two sets of zeros and poles from the PA analysis of 
eq. (7) and eq. (8) in order to identify the zeros and poles 
belonging to each PWA (eq.(6)): 

(wZi ; WPi : i = l. .. N) 
... (w(l) ~ (2) · w (1) w (2) : t-1 N/2) 

Zj' Zf' Pi' PI ... 

(w ; w : i = l. .. N) 
z i pi 

-+ (w (1), w<2); w (l) , w (2 ) : ial. .. N/2) 
Zf Pi P! Zt 

From the knowledge of the complex constants a and {3 from eq. 
(10) and eq.(ll) one can calculate only the absolute value 
\a k I from eq. (9) to establish the EVA of the PWA. The unknown 
constant phase does not affect the position of the zeros and 
poles of the PWA approximant. This means thnt our procedure 
can give information only on the zeros and poles of the PWA. 
The EVA of the PWA is capable to give resonance parameters 
just as the full knowledge of the PWA (or VA). The numerical 
values of the parameters used in our mathematical model (eq. 
(6)) are given in table I (with N=2 ). The relevant zeros 
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Table I 

Parameters for eq. (6) 

a k Wz Wp 

F e 181 
1 

-0.03484+i0.2687 I604.35+i72.083 1181.13-il53.999 
(R) 

F io2 
2e I.O+io.o I663.72+i754.103 1535.07-i91.191 

(R) 

Fig. I. Zeros (o) and poles (x) 
for PWA model. 
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Fig.3. The energy dependence 
clJF2l and 82 (eq.(l)). 

and poles are shown in Fig.!. The example chosen is similar 
to the real case of o- S and o-p PWA from the PWA analysis 
of diffractive 3rr production on nuclei 111 . The PA used in our 
analysis is [2/2]. The energy behaviour of the amplitude modu-
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lus and PWA phase ate shown in figs.2 and 3. Each PWA has re
sonance poles and we must find them from the knowledge of the 
IFtl, IF2I and only the relative phase ¢=o1 -o 2 (fig.4). 

From inspection of the energy dependence of the PWA modu
lus we can suspect resonance behaviour in each PWA, but the 
same energy dependence of I Fk I can be obtained using F k in
stead of Fk, i.e., without the resonance pole but with a pole 
on the upper-half part of the complex energy plane. Moreover, 
if we examine the product and ratio of the two PWA intensi
ties IFk I (Fig.S), only one resonance can be expected. This 
means that a simple Breit-Wigner analysis of IF~I or combina
tions of IFkl cannot decide in favour of the ex1stence of 
a resonance. 

A hypothesis, but not always reqsonable, which can help 
in the decision on the existence of a resonance in a given 
PWA is to consider one PWA phase constant in the analysis of 
the other, i.e., the main energy dependence of the relative 
phase ¢ is given by the energy dependence of its PW~ phase 
(at least around the resonance position): 

iOl(w) i¢(w) 
F

1 (w)=IF
1 (w)le :::c1 1F 1 (w)le , (12) 

F2 (w) = IF2 (w) I e 102 (w) = c2 IF 2(w) le -i¢(w) • (13) 

The PA analysis of eq. (12) and eq. (13) can give only an 
indication on the existence of a resonance pole in the lower
half part of the complex energy plane, but the resonance pa
rameters are not correctly determined. The values of the ze
ros and poles obtained from the PA III analysis of eq. (12) 
and eq. (13) are given in table 2. Our method of finding the 
EVA of each PWA by using the PA analysis of the product and 
ratio (eq. (10) and eq. (I I)) is more powerful. It gives the 
exact values of the resonance poles as well as of the zeros 
of each PWA. This conclusion becomes clear by examination of 

... 

to u u u u "' ~ v 
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Fig.4. The energy dependence 
of the relative phase (eq.(2)). 

Fig.S. The energy dependence 
of the product: I F1 I xlFel and 
the ratio IF 11/1Fel· 
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Table 2 

[2/2] PA III analysis of eqs.(12) and (13) 

a Wz1 Wz2 

F1 e 1¢ 0.0423+i0.282 1576.46-i200.88 1616.41+i69.62 

1162.00-i330. 74 1716.56-il39.8 F2 e-i¢ 3.547+i0.2043 
============================================================= 

F ei¢ 
1 

F2e-i¢ 

Wp1 

1187.84-il48. 18 
(R) 

1539. 34-il 02.03 
(R) 

Wp2 

1623.32+i213.6 

1803.11+i401.23 

Table 3 

[2/2] PA III analysis of eqs. (10) and (II) 

IF 1 I x IF 2 I e i¢ 

W Zi w<K> 

1604.35+i72.09 w (1) 
z -

2 1663. 71-i754.18 w (2) 
z 

IFtl 1¢ 
~e 

11"21 

wzi 

1604.34+i72.09 

1535.07-i.9l.20 

w<K> 

w<l) 
z 

w<2> 
p 

:============================================================ 

WPi 
w<K> 

1181.14-i.l54.00 w<l) 
p 
-

2 1535.08+i91.21 w (2) 
p 

w-pi 

118 I. 13-i 154.00 

!663.58+i754.05 

W (K) 

w<t> p 

w<2> 
p 

table 3, where there are presented the values of the zeros 
and poles obtaine'd in such an analysis. 

In order to simulate more accurately the real case, we have 
complicated the mathematical model of F1 by introducing a non
resonant background of the type (eq.(3)): 

F =(w-w<1>)e yw, (14) 
B z2 

where y i.s a complex constant and FR is our old example F 1 
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(with the same parameters as in table 1). This new amplitude 
is shown in Fig.2. Without the exponential part in eq. (14), 
our method should give the exact results for zero and pole po
sitions using only the [3/2) PA. Due to the exponential part, 
the resonance poles are shifted from the true position for 
[3/2) PA analysis, but [3/3) PA gives already a good answer. 
The [4/3) PA and [4/4) give the exact values of the poles as 
well as of the zeros of the F1 and F2 , i.e., the true zeros 
and poles of the PWA become stable as the order of PA increa
ses. The exponential part of the background is approximated 
by zeros and poles which have different values when the order 
of PA increases (these are the unstable zeros and poles). 
The values of the zeros and poles of the PWA with back
ground are shown in table 4. 

In conclusion, we have presented a new method of searching 
for resonance parameters in PWA, when only the intensity of 
two PWA and the relative phase between them are known. This 
method is based on the PA analysis of two combinations of the 
PWA which preserve the same relative phase or, in other words 
use the full experimental information obtained in a PWA ana
lysis of coherently produced 3". From such analysisone can a~ 
proximate the PWA up to a constant phase by the EVA appro
ximant which has the same zeros and poles as the PWA itself. 

In practical application of this method to real experimen
tal data we need to make use of the PA III analysis as well 
as subsequent analysis by a simultaneous fit of the data with 
eq. (9). 
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HHKHTHY $,, 3aHMHAopora O.A. E2-82-120 
MeroA onpeAeneHHR napaMerpo8 peaoHaHC08 
no HHTCHCH8HOCTH H OTHOCHTC/'IbHOH ~a3e napuHanbHOH 80/'IHW 
C nOM~bO naAe-annpOKCHMaUHH 

npeACTa8/'ICH MeTOA,OCH08aHH~H Ha HCnOI'Ib3080HHH naAe-annpOKCHMaUHH AaHH~X 
n~PUHa/'lbH0-80/'IH080rO aHa/'IH30 3" CHCTCMW, n0380/'IR~HH HaHTH CTa6HnbHWH nonoc 
0 OMni'IHTYAC Hd HH~HCH ~dCTH 3HeprerH~CCKOH KOMnneKCHOH o6naCTH, OT8e~a~eH 
PC30HaHcy o aMnnHTYAe. AnR C08MeCTHor'o onHcaHHR 3HepreTH~eCKOH 3aoHCHMOCTH 
HttTCHCHBHOCTH H OTHOCHTC/'IbH~X ~a3 napuHa/'lbHWX BO/'IH HaHAeH BHA naAe-annpoK 
CHMn~HH H a~y~ccroneHa npooepKa MeToAa. HccneAOBaHo 8nHRHHe ~Ha Ha nono 
Jt<CltH10 nonoca. Pcl3DHTWH MeTOA nOHCKa CTa6HnbHWX nonocoo B 3HepreTH4CCKOH 
KOMn/'ICKC:.ttOH ni'IOCKOCTH C nOMO~btO naAe-annpOKCHMaHTOB n03BOnReT OAH03Hd~HO 
OnPOACI'IHTb WHPHHY H nonoJt<eHHe pe3oHaHcos o nap~HanbH~x aMnnHTYAax. 

Pafiora o~nonHeHa B na6opaTopHH RAePH~X npo6neM OHRH. 

C~eHHe 06~eAHHeHHOrO HHCTHTyTa RAepH~X HCC/'IeAOBOHHH, 

Nichltiu F., Zaimidoroga O.A. 
A Method of Determining Resonance Parameters 
by Pade Approximants Using Intensities and Relclttve Pitta 
of the Partial Waves 

A new method is presented for resonance parom 
Pade approximants and taking into account the lnton'llti 
wave amplitudes and only their relative pt>ao;c. Tit" llCthod 
partial wave analysis of the 3" system produced In dlfr~ 
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