

объединенныи
 ииститут
 ядерНых

исследования

дубна

E1-81-289
A.Bujak, P.Devensky, E.Jenkins, A.Kuznetsov, E.Malamud, ${ }^{2}$ M.Miyajima, ${ }^{2}$ B.Morozov, V.Nikitin, P.Nomokonov, Yu.Pilipenko, V.Smirnov, R. Yamada ${ }^{2}$

PROTON-HELIUM ELASTIC SCATTERING FROM 45 TO 400 GeV

Submitted to "The Physical Review D"

1) University of Arizona Tucson, Arizona 85721 USA
2) Fermi National Accelerator Laboratory Batavia, lllinois 60510 USA.
I. INTRODUCTION

Previous studies of proton-helium elastic scattering have been made at low and intermediate energies". Results at 24 GaV/C have been reported ${ }^{2}$. An experiment on the inverse reaction He-proton elastic scatcering at $1.75,2.51$ and 4.13 GeV/nucleon has also been reported $\mathrm{J-4}$. The measurements of e^{4} He up to $1 \mathrm{GeV} / \mathrm{c}^{5}{ }^{6}$ and of T^{-}- He at $7.76 \mathrm{GeV} / \mathrm{c}^{7}$ are available in the Literature. All these experiments exhibit a diffraction minimum or dip in the differential cross section. Such a structure is more pronounced at higher energies.

There are several theoretical models capable of describing the shape of the differential cross section ${ }^{\text {m }}$. Czyź, Leśniak, and others ${ }^{10,11,12}$ have developed the Glauber multiple scattering model extensively. In this model the Eicst minimum arises due to the interference between the single $(k=1)$ and multiple $(k=2,3,4)$ scattering of the incident particle inside the nucleus. The $k=1$ and $k=2$ imaginary amplitudes cancel at the diffraction minimum. What remeins is the coherent sum of the real amplitudes for $k=1$ 4, imaginary amplitudes $(k=3,4)$, apin effects and, for $k=2,3,4$ scattering, the amplitudes for the processes going through intermediate inelastic states. The He is the most compact light nucleus. In the case of pHe coliisions, inelagtic rescattering is expected to be much larger than in another light nucleus. Thus, comparison of the results of proton-proton, proton-deuteron, and proton-helifin scattering experiments is a promising way to estimate the most important corzections to the Glauber multiple scattering model.

Table I:
do/dt differential cross sections for elzstic Pite at 45. 97, 146, 200, 259, 301, and 393 GeV. Errors are only atatiatical, and the error in sbsolute normalization is 44.8 as stated in texr

45 GeV

B.8339	768.4	* ${ }^{\text {P }}$	©.1360E	6.52	0.14
6.04073	74.5	7.0	6.14215	4.55	1.89
8.0e5al	670.2	12.3	B. 14743	3.62	0.E5
0.04032	478.4	5.3	-. 15298	3.22	1. 18
A.04762	593.4	16.3	-. 15657	2,19	4. 65
- . 0 ve15	597.3	3.9	©. 16394	1.73	6.03
0.0xter	355.7	5.4	0.17581	0.993	- 8.88
0.0jerz	347.3	3.2	0. 19113	0.695	0.614
-.81115	535.9	4.9	9. 18930	d.459	-.tis
-. 1168	510.6	3.4	0. 19243	. .334	8.816
-.01250	515.2	6.3	6.19323	0.334	- -816
	518.4	6.9	-6.19824	0.296	6.815
-. 81326	590.7	7.9	-.19997	0.197	0.020
6.814.7	41.2	4.6	6. 19918	6.189	- . 819
6.01474	479.2	4.8	- 24.336	0.234	- 818
6. 61510	454.7	5.8	0.20094	-. 162	-8.89
-. 4 ¢553	464.7	5.6	- *2173	-. 171	-
-8.8is8\%	458.5	6.2	-.20181	-100	- 111
6.01564	471.6	7.8	- 28257	-150	- 113
0.b1815	423.4	3.3	0.21258	-0760	C.6064
B. $8189{ }^{\prime}$	411.7	2.1	0.21345	-6.644	C.tict
0.02122	376.3	4.7	0.21343	0.0599	8.6071
-. 22198	372.1	3.7	6. 1469	- 0.006	0.2066
0.62285	365.6	5.1	- 21639	6.0571	-. 0863
0.0.6379	350.9	3.8	E. 21717	8.0568	- 0.896
-.02592	336.5	3.7	0.22933	6.0242	0.ear6
- beger	329.9	4.8	0.22110	0.6342	- 0.067
0.02645	318.1	4.1	-. 22336	\%-0320	-0.ces
-.02757	312.3	3.0	0.2243	C.6197	-. 9631
b.02trs	296.8	1.9	0.22747	6.616\%	B.843
0.03183	268.0	3.6	0.23129	Q.0338	- -24
0.03418	247.4	2.5	8. 23545	\%.0271	-.8943
- . 0342	250.0	4.1	0.23636	6.8294	
0.03643	237.0	3.6	D-23869	0.8325	-.0.043
- 0.03729	222.3	2.8	-24011	8.0481	
- 0.3772	216.9	3.1	0.24294	B. 8376	0.0059
- . 4026	203.8	1.9	0.24370	8. 3316	-. 0.059
E. 04337	186.4	2.5	-. 24.4883	8.0426	-.8070
0.84594	175.2	2.1	-.24667	8.0441	-. 8.0 .41
8.84587	169.8	2.8	1. 24688	0.0521	0.0.0.09
8.846E9	163.9	1.3	8.24768	6.08445	-.tersa
-.84912	151.0	1.8	8.25434 0.26181	6.0946	
0.95427	126.4	2.1	-. 26181		
0.28632	118.8	1.1	-.26279	0.6815 0.8799	0.0872
-. 05889	187.7 68.1	1.9	0.25420	0.8888	6.0.089
C.es644	83.9	0.0	0.26832	日. 113	- 0 - ${ }^{\text {cop }}$
-.0.6938	77.6	0.9	0.26919	E. 285	B.Exe
8.87598	59.3	0.5	0.27144	6. 114	0.0.6
B. 87772	56.5	0.6	\%. 27838	Q. 127	
0.02112	58.3	0.5	-. 28674	-. 139	8.815
-.tar92	48.2	B.4	-. 29404	0.165	
8.26908	36.5	8.6	0.30993 0.31765	0. 174	-.813
-.esc3	37.2	0.6 0.3	0.31765	6. 6.164	-8.0.11
8.89752	32.2	0.3	0.34121	-. 183	0.nes
-.18116	24,4	0.2	D. 35896	A. 174	- ${ }^{41}$

		$\begin{gathered} \text { A(do/dt) } \\ \text { statistice] } \\ \text { [mb/(Gey/c)2] } \end{gathered}$	$\left(\begin{array}{c} -t \\ (\text { GeV/c }) \end{array}\right.$	$\begin{aligned} & \mathrm{do} / \mathrm{dt} \\ & \left.(\mathrm{Gev} / \mathrm{c})^{2}\right\} \end{aligned}$	
. 01268	505.6	3.2	. 17089	. 891	.022
$.01336$	493.8	4.5	. 17992	. 522	. 021
. 01548	-62. ${ }^{\text {¢ }}$	3.2	. 18387	. 425	. 022
. 01584	457.6	3.3	. 18983	. 260	. 009
. 01781	420.3	3.0	. 19736	. 138	. 009
. 02001	399.8	4.5	- 19951	. 114	. 012
. 02027	388.3	2.4	. 20977	. 0334	. 0052
. 02071	383.3	4.2	. 21458	. 1209	. 0042
. 03396	345.3	4.0	. 22859	.0094	. 0020
. 02538	328.7	3.4	. 23146	. 004E'	. 0020
. 02566	330.4	2.2	. 24012	. 0209	. 0331
. 03056	271.8	3.2	-24029	. 0167	. 0042
. 03009	271.2	2.6	-24779	. 0376	. 0042
. 03576	229.6	2.5	-25082	. 0543	. 0052
.03797	217.0	2.7	- 26270	. 0793	. 0073
. 04374	172.8	2.0	. 26519	. 0783	. 2052
. 04486	167.8	1.8	. 27481	. 105	. 004
. 05060	134.2	1.4	. 23610	. 108	. 009
. 05252	132.0	1.6	. 29231	. 127	. 005
. 05375	125.1	1.2	. 29921	. 144	. 007
. 06712	93.3	1.0	. 30432	. 143	. 009
. 06288	90.5	1.0	. 31198	. 148	. 005
. 06491	84.2	1.0	-32418	. 144	. 008
. 07142	E6.t	0.7	-33747	. 147	. 005
. 07272	62.7	0.6	. 34357	. 171	. 007
. 07676	55.8	0.7	- 36397	. 147	. 005
.07934	50.4	0.5	- 38451	. 0678	.0031
202 GeV					
. 00382	716.6	7.0	. 09659	25.1	0.3
. 00532	652.8	6.3	. 10045	21.6	0.1
. 00658	628.9	8.0	. 10565	17.5	0.1
. 00708	615.2	5.0	- 11104	14.4	0.1
$.00730$	620.0	7.2	.11396	12.7	0.1
. 00909	578.7	4.5	. 12074	9.48	.11
. 00934	563.8	5.7	. 12649	7.52	. 09
. 01164	518.1	5.3	. 13685	4.73	. 09
. 01248	507.5	3.7	- 14296	3.54	. 06
. 01316	504.0	4.7	. 14907	2.63	. 03
.01417	476.6	4.2	. 75396	2.32	. 05
.01491	467.2	4.7	. 16811	1.12	. 01
.01585	457.5	4.2	. 18420	. 378	. 009
. 01677	434.4	2.5	. 19845	- 108	. 012
. 01794	418.0	$3 \cdot 3$. 20236	. 0727	. 0085
.02036	390.9	4.2	- 2051 ?	. 06.48	. 0064
. 02124	374.9	1.9	. 20646	. 0410	. 0064
. 02443	337.1	2.3	. 21375	. 0200	. 0031
. 02544	325.4	3.0	-21781	. 0076	. 0021
. 02685	309.5	2.7	. 22599	.0157	. 0051
. 02835	295.3	2.7	- 22739	. 0110	. 0045
. 02976	276.7	2.3	. 24052	. 0217	. 0038
. 03108	267.0	2.5	. 24231	. 0317	. 0036
. 03245	252.4	1.6	. 24498	. 0323	. 0036
. 03584	223.8	2.0	. 24933	. 0502	. 0061
$.03656$	206.4	2.2	. 25350	. 0543	. 0046
- 33948	202.4	2.5	. 25735	. 0666	. 0061
. 04123	185.0	2.2	. 26196	. 0756	. 0046
.04248	178.4	1.7	- 26647	. 0877	. 0052
. 04543	161.8	1.3	. 27592	. 102	. 003
$.05083$	136.1	2.6 1.0	$.28862$. 128	. 0007
$.05265$	125.8	1.0	$\begin{array}{r} 30169 \\ .31496 \end{array}$. 138	.003
$.05540$	114.3	1.2	$+31496$	-147	. 007
$.06145$	93.4	1.2	$\text { . } 33124$	-149	. 003
. 06342	86.8	0.9	- 35801	. 139	. 003
. 06645	76.7	0.7	. 38482	. 121	. 004

$\left\{\begin{array}{c} -\mathrm{t} \\ \left\{(\mathrm{GeV} / \mathrm{c})^{2} \mathrm{~J}\right. \end{array}\right.$	$\begin{gathered} \mathrm{dof} / \mathrm{dt} \\ {\left[\mathrm{mb} /(\mathrm{GeV} / \mathrm{c})^{2}\right]} \end{gathered}$		$\left[(\mathrm{GeV} / \mathrm{c})^{2}\right\}$	$\begin{gathered} \mathrm{do} / \mathrm{dt} \\ {\left[\mathrm{mb} /(\mathrm{GeV} / \mathrm{c})^{2}\right)} \end{gathered}$	$\begin{gathered} \Delta(d \mathrm{f} / \mathrm{dt}) \\ \operatorname{statistical} \\ \left\{\mathrm{mb} /(\mathrm{GeV} / \mathrm{c})^{2}\right] \end{gathered}$
.07416	58.3	0.5	. 11319	. 102	. 003
.07851	49.7	0.4	.44397	. 0722	.0031
. 08315	41.3	0.5	.47632	. 0519	. 0032
.08693	36.0	0.3	.50900	. 0298	. 0032
. 09158	30.5	0.2			

.00388
.00719
.00922
.00946
.01277
.01333
.01435
.07599
.01605
.07684
.01717
.02062
.02112
.02752
.02452
.02574
.02716
.02867
.03009
.03144
.03279
.03623
.03899
.03993
.04293
.04589
.04943
.05138
.05345
.05599
.06208
.06410
.06715
.07380
.07932
.08403
.08655
.08872
.09258
.09758
.10031
.10274
729.0
629.6
578.4
569.3
512.6
502.6
488.2
465.4
461.4
439.5
439.0
391.5
384.7
377.5
336.8
322.3
309.2
294.0
286.6
267.2
254.3
225.1
208.2
198.6
179.7
161.3
139.7
134.5
122.5
110.9
92.6
82.0
75.8
59.8
48.1
41.1
36.9
33.9
29.6
24.9
22.2
19.6
8.5
8.3
5.0
7.0
6.6
5.8
5.4
5.9
4.7
4.0
4.2
1.3
4.3
2.8
3.3
3.5
3.2
3.3
3.0
3.1
1.9
2.4
2.3
2.1
2.0
1.4
1.9
1.7
1.5
1.2
1.3
0.7.
0.7
0.7
0.4
0.5
0.5
0.4
0.3
0.3
0.2
0.2

259 GeV

301 GeV

19.7	0.1
16.4	0.2
13.1	0.1
11.6	0.1
8.49	.10
6.68	.08
4.02	.08
3.15	.06
2.24	.03
1.86	.05
.930	.013
.274	.008
.0789	.0090
.0581	.0080

. 02062	387.6	4.4	. 20764	. 0529	. 0047
. 02147	374.1	1.9	. 20900	. 0351	. 0070
. 02473	328.4	2.3	. 21646	. 0039	. 0024
. 02576	317.9	3.0	. 22049	. 0024	. 0019
. 02716	300.9	2.7	- 22713	. 0119	. 0033
. 02869	293.0	2.7	- 22876	. 0085	. 0047
. 03010	278.1	3.1	. 23020	. 0127	. 0047
. 03148	261.2	2.5	. 23124	. 0123	. 0033
. 03263	247.7	2.4	. 24358	. 0378	. 0048
. 03626	220.5	2.1	. 24528	. 0454	. 0043
. 03902	201.9	2.3	. 24784	. 0464	. 0039
. 04172	186.6	2.3	. 25242	. 0647	. 0075
. 04298	174.2	1.7	- 25662	. 0761	. 0057
. 04595	157.2	1.1	- 26062	. 0743	. 0071
. 04951	138.5	2.0	- 26502	. 0805	. 0058
. 05744	128.1	1.8	- 26977	. 0915	. 0058
. 05328	122.5	1.0	. 27891	. 110	. 003
. 05607	109.8	1.1	. 29217	- 130	. 006
. 06217	88.2	1.1	. 30544	. 142	. 003
. 06413	82.0	0.8	- 31887	- 140	. 007
. 06727	72.4	0.6	. 33514	. 139	. 003
. 07509	55.2	0.4	. 36251	. 122	. 003
. 07948	46.8	0.4	- 38898	. 0980	. 0032
.08421	39.2	0.4	. 41760	-0822	. 0028
. 08671	35.0	0.3	. 44944	. 0551	. 0025
. 08943	31.3	0.5	. 48243	. 0428	. 0027
. 09271	28.7	0.2	. 51534	. 0332	.0034
. 09781	23,4	0.2			

.00395 .00718
.00922
.00948
.01180
.01278
. 01335
.01439
.01513
.01609
.01702
.01804 . 02067 .02160 .02483 . 02584
.02727
.03023
.03158
.03295
.03641
.03917
.04190
.04317
$.04 b 14$
.04970
.05167
.05339
.05631
.06247
. 06475
.06757
.07428
.07642
.07983
720.9
639.8
597.7
591.8
540.8
511.0
512.1
495.9
490.9
166.3
451.2
437.6
399.1
377.2
342.9
328.5
315.0
285.3
267.4
253.7
225.4
208.5
186.2
177.6
160.1
138.6
128.1
121.8
113.1
89.6
81.9
75.2
58.1
52.6
46.0
10.1
7.4
6.0
8.7
6.7
7.7
7.0
6.5
7.2
5.7
3.4
5.5
5.1
2.6
3.0
4.1
3.7
3.5
3.5
2.2
2.7
2.7
2.1
2.3
1.5
2.2
1.9
1.1
1.4
1.5
1.0
0.8
0.8
0.7
0.5

393 GeV

.10392	18.4	0.4
.10746	16.0	0.1
.11293	12.9	0.2
.11591	11.4	0.1
.12291	8.56	.19
.12867	6.68	.09
.13920	4.10	.09
.14543	3.14	.07
.15118	2.16	.04
.16322	1.21	.05
.16920	.809	.018
.18205	.415	.024
.18805	.247	.009
.20191	.0625	.0118
.20589	.0441	.0085
.20869	.0284	.0088
.21004	.0100	.0079
.21750	.0073	.0060
.22162	.0092	.0053
.22821	.0193	.0053
.22994	.0125	.0066
.23134	.0183	.0081
.23242	.0132	.0046
.24475	.0384	.0074
.24654	.0542	.0053
.24913	.0539	.0061
.25369	.0868	.0679
.25795	.0824	.0067
.26189	.0985	.0141
.26641	.0957	.0107
.27861	.116	.003
.29370	.121	.012
.30707	.142	.004
.32051	.142	.013
.33723	.141	.004

In Section II we descr ibe the experiment and details of the analysia. The method of absolute normalization of the differential cross section is presented in section III. In Section IV and Table I we present our proton-helium data at 45, 97, $146,200,259,301$ and 393 GeV . The 45 GeV data was originally taken as two separate experiments at 44.9 GeV and 45.5 GeV. In the differential cross sections shown in Table 1 these two sets of data have been averaged. The figures and tables derived from fits to the differential cross sections preserve these data as two independent points and illustrate the reproducibility of the data.

The results of the fits to the low |t| region are digcussed in Section V. The tables with a list of parameters include the slope $b(s)$, the t-dependence of the slope, the real part of the amplitude at $|t|=0$, the total p^{4} He cross section, and the s-dependence of all the above parameters using a linear approximation. In Section VI we compare the Glauber model predictions to the data in the entire tegion including the diffraction dip. In Eection VII we summarize the results.

II. EXPERIMENTAL APPARATUS AND DATA ANALYSIS

The experimental apparatus is shown in Fig. 1. The Fermilab circulating proton beam intercepts a gas target with

an average thicknegs of $4 \times 10^{-7} \mathrm{~g} / \mathrm{cm}^{2}$ and a jet width (r.m.s.) of $\pm 3 \mathrm{~mm}$. The gas jet pulse length is 100 msec and occurs at two energies during the accelerator ramp cycle. During the "live time" of the gas jet the value of the actual beam energy is written into the computer every 40 mec. The pariation of primary energy over the jet pulse length is ± 8 Gev or less depending on the accelerator rate of rise.

Helium is injected into a 250 liter buffer rolume, and 90: of the gas is removed by a 5000 liter/sec diffusion pulap. The remainder is removed from the accelerator vacuum chamber by \quad diffusion pumps spaced at 5 intervals upstreat and downetrean from the target. These pumps constitute a differential pumping system and reduce the helium partial pressure to 10^{-9} ng beyond the last upstrean and downstream pumps.

The target is viewed at near 90° by sets of stacks of solid state detectors. Each stack consists of two silicon detectore with typical dimensions of $5 \times 30 \min ^{2}$. The
thickness of the front detectors ranges from $15 \mu \mathrm{~m}$ to $250 \mu \mathrm{~m}$ and of the back detectors from $200 \mu \mathrm{~m}$ to $1500 \mu \mathrm{~m}$. The detectors have a noise of 50 KeV and energy resolutions of $50-$ 150 KeV . The 6 movable stacks are installed at 7.2 m from the target inside of the vacuum chamber, which togetherwith the "ion-guide" connecting it with the target chamber forms a remotely movable arm. The range of laboratory angles covered by the detectors is $84.5^{\circ}-89.7^{\circ}$ (relative to the beam direction). The relative position of the detector arm is measured with accuracy $\mathbf{~} 0.02$ mrad; the relative angles between stacks are known with accuracy ± 0.025 mrad and remain constant for the whole experiment.

Figure 2: Mass distribution obtained from the twodimensional plot using relation (1). The peaks corresponding to isotopes ${ }^{3} \mathrm{He},{ }^{4} \mathrm{He}$ are shown.

The 7.2 distance from the target and the detector dimensions yields a geometric resolution of $\Delta \theta= \pm 0.7 \mathrm{mrad}$. The resulting kinetic energy uncertainty $\Delta T / T=2 \Delta \theta / \theta$, where θ is the recoil angle with respece to 90°, is good enough to provide separation between the elastic and inelastic reactions. Two additional permanently fixed stacks are used to monitor the jet-bean interaction rate. During readout of a stack, the inputs to all other stacks are inhibited. Thus, all channels have the same dead time percentage (3\%). A typical counting rate is about 1000 events per beam spill distributed over 8 btacks.

The $|t|$ interval studied is $.003 \leq|t| \leq 0.52(\mathrm{GeV} / \mathrm{c})^{2}$ corresponding to recoil angles of $6<\theta<96 \mathrm{mrad}$ and ranges of $2<R<1800 \mu m$ in silicon. The multiple scattering of the outgoing recoil particle in the target gas is negligible except at the smallest | t | values. In the worst case, at $|t|=.003$ (GeV/C) ${ }^{2}$, the multiple scattering mainly affects the energy resolution but the corrections to the cross section are smaller than 1%.

The detectors are calibrated against a ${ }_{90} 0^{234} \mathrm{Th}$ alpha particle source. When compared with survey measurements, the absolute angles determined from the elastic peak show an offset difference of 0.3 mrad; this is consistent with the absolute angular uncertainty estimated to be less than $\pm 0.2 \mathrm{mrad}$. The magnetic Eield action on the recoils is reduced by shielding to ≤ 0.03 gauss in order to minimize angular ersors at low $|t|$. At $|t|=.003(\mathrm{GeV} / \mathrm{c})^{2}$ the remaining field can cause at most an angular change of $\leq 0.12 \mathrm{mrad}$.

The first step in the analysis is to separate coherent ${ }^{4}$ He recoila fron $H, D, T,{ }^{3}$ He. The energies in MeV deposited in the detector sandwiches are sorted into 256×256 plots of the Eront detector T_{F} versus the back detector T_{B}. The mass of
a ${ }^{4}$ Ee particle stopping in the back element is deduced from the known range-energy relation and is given by the empirical formula:

$$
\begin{equation*}
==s_{B}\left[\left.\frac{a}{d_{F} Z^{2}} \right\rvert\,\left(T_{F}+r_{0} B-T_{B} B \mid\right]^{1 /(B-1)}\right. \tag{1}
\end{equation*}
$$

where $\alpha=13.3, \beta=1.73$, and d_{F} is the tisicknes s of the front detector in my. In Fig. $2 a$ and b we plot the recoil mass distribution for $t=-0.149$ and $-0.450(\mathrm{GeV} / \mathrm{c})^{2}$ respectively. The ${ }^{4} \mathrm{He},{ }^{3}$ He mass separation is excellent at these |t| values.

For the separated ${ }^{4}$ He recoils the momentum spectra are obtained and described by a formula which contains Gaussian plus polynomial background terms. The number of elastic scattering events is calculated as the sum cyer thr peak Within the linit \pm 保. The number of background events under the elastic peak is usually $1-31$ except for the region of the diffraction minimum. In the dip region, $t=-0.22(G e V / u)^{2}$, the \mathbf{p}^{4} He elastic cross section drops 5 orders of magnitude, and the systgmatic uncertainty is about ± 50 d due to inelastic background subtraction.

The results from an analysia of the inelastic p He are presented in the accompanying papers on coherent protun diffraction dissociation of helium from 45 to 40 GeV .

III. ABSOLUTE MORMALIZATION

The ratios of the proton-heliun to the proton-hydrogen differential cross sections have been obtained from auxiliary meagurements using a hydxogen/helium mixture as a target. Three f the movable stacks and one of the two fixed monitor-
ing stacks are used to observe pp elastic scattering. The other half of the detector atacks are used to see phe elastic scattering.

The absolute value of dopHe/Aw is calculated from the relation

$$
\begin{equation*}
\frac{d_{p H e}}{d_{\omega}}=\frac{n_{H e}}{n_{p}} \frac{\Delta \omega_{p}}{\Delta \omega_{H e}} \frac{k_{p}}{k_{H e}} \frac{d_{p P}}{d \omega} \tag{2}
\end{equation*}
$$

where n is the number of elastic scattering events, sw is the solid angle of the stack, k is the atomic concentration of gas and d $\sigma_{p p} / d \omega$ is the known differential cross section for elastic pp scattering. The auxiliary experiment has been done at 9 energies: 49, 66, 90, 161, 200, 258, 280, 301 and 393 GeV in a range $0.001<|t|<0.02$ for pp and $0.007<|\mathrm{t}|<0.11(\mathrm{GeV} / \mathrm{c})^{2}$ for pHe. Since this is a new technique there are a number of concerns we have about possible syscematic errors. The mixture ratio could change as the gas emerged from the gas jet nozzle. To examine tinis possibility we loaked for possible time structure in the ratio, $\pi_{H e} / n_{p}$ within the 100 msec spill. We also compared the shape and width of the hydrogen and helium jets obtained by unfolding them from the elastic pulse height distribution using elastic kinematics. No differences were seen.

To look for longer term time variation we plotted the ratio of the number of detected elastic events for pp and pHe collisions from run to run for the two fixed stacks. This ratic remains constant during the data collection time of about 30 hours (16 independent runs). We conclude that the ratio of lumincsities of the partial targets (hydroger and helifu) is independent of time.

An additional check of this technique has been performed using a hydrogen-deuterium mixture as a target. In this case
both differential cross sections are known. From the measured ratio $n_{\mathbf{p}} / \mathbf{n}_{\mathbf{d}}$ we deduce the absolute value of the differential pd oross section and, using the optical theorem, calculate the total cross section for pd interactions: $\sigma_{\text {tot }}(\mathrm{Pd})=73.24 \pm 0.47 \mathrm{mb}$ at $\mathrm{E}=49 \mathrm{GeV}$ and $74.61 \pm 0.47 \mathrm{mb}$ at $E=259$ Gev. This is in good agreement with the data by Carrol et al. 14

The auxiliary experiment with a hydrogen-helium mixture has been done at a limited number of angular points. The data obtained are used only for absolute norpalization of the celative cross sections measured in the course of the main experiment.

Nocialimation is done as follows. Using a starting value for the total crome mection, fite are done to the data of the Eain expariment by techniques described in section IV. Once parametere jescribing the shape of the differential cross saction are found the mixture data is used to find the correct norealisation for the main experiment. With normalization now fired, new fit is done to the main experiment data and iteration continued until the parameters are stable. Since the energy of the primary bean in these two sets of measurement is sifghtly diffe:ent, corresponding interpolation is done.

Results are shown in Fig. 3. The errors shown are only statiatical. rithe systematic error is hard to estimate given some of the problems discussed above. The hydrogen/helium mixture ia 48.332/51.56t. This ratio is known with a precision of ± 4. The corresponding uncertainty ino pHe is $\pm 2.5 \mathrm{mb}$. There are two additional sources of systematic uncertairity in $\sigma_{\text {tot }}^{\text {phe }}$ Background subtraction in the mixture experiment contributes an uncertainty of $\pm 1.5 \mathrm{mb}$. Extrapolation to the optisal point depends on the model used. If, e.g.,

Figure 3:
Total cross section for $p^{4} \mathrm{He}$ interactions. The straight line is calculated according to the geonetric scaling relation, $\sigma_{\text {tot }}$ proportional to b, the slope parameter (see Table IV). The dashed area is the one standard deviation corridor uncertainty.
we use the parameterization of Schiz et al ${ }^{13}$ instear of the pp parameterization we have used this lowers oftot by about 1.7 mb . The total systeratic error in opHe is then estimated as $\pm 3 \mathrm{mb}$.

After this paper was written preliminary results from a new CERN experiment became known to us. ${ }^{18}$ since they use an external beam and a conventional target they, in principal, can determine their normalization more accurately. of course to obtain o phe one must assume a shape for the differential eross section and extrapolate to $t=0$. Their preliminary total eross section is 8-9 mb higher than ours; their quoted total error is $\pm 0.8 \mathrm{mb}$. The amusing part is that these preliminary CERN results agree with our preliminary results, presented at the Tokyo conference ${ }^{17}$. In that case we normalized using the differential cross section in the Coulomb
interference region. Although it gave statistical accuracy comparable to this paper we feel the mixture technique is inherently more reliable than the Coulamb technique because in that case the value obtained depends critically on the cross section shape used.

The main virtue of our measurements lies in the wide range of and t - covered with one experimental setup. It is a simple matter at a later date, if necessary, to renormalize the data in Table I and refit to any desired model.
IV. DIFF'ERENTIAL CROSS SECTIONS

The differential cross sections for p^{4} He elastic scattering are given in Table 1 . The errors listed are statistical only. Examples of the differential cross section, do/dt, are shown in Figs. $4 a$ and b. The general characteristics of the data are a differential cross section which drops 4-5 orders of magnitude to a first dip at $|\mathrm{t}|=0.22(\mathrm{GeV} / \mathrm{c})^{2}$ and a subsequent rise to a secondary maximun at $|t|=0.33(\mathrm{GeV} / \mathrm{c})^{2}$.

Figure 4: Examples of the differential cross section of P^{4} He alastic scattering: (a) Elab $=45 \mathrm{GeV}$,
(b) $E_{1 a b}=301 \mathrm{GeV}$.

Sybtenatic erxors in do/dt

	Dependent on t	Dependent on $E_{\text {1ab }}$	$\begin{gathered} \text { Lowest } \\ \|t\| \end{gathered}$		$\begin{gathered} \text { H1ghest } \\ \hline t! \end{gathered}$		D10 Region	
						$\begin{gathered} \mathrm{t}_{\text {min }}-.22 \\ \text { Highest } \\ \mathrm{E}_{1 \mathrm{ab}} \\ \hline \\ \hline \end{gathered}$		
			Lowest $E_{1 a b}$ \qquad	Hiọhest fab + +			Lowest $E_{\text {lab }}$ ± 3	H1ghest Elab \qquad
Collimator area	Ne	No	0.5	0.5	0.5	0.5	0.5	0.5
```Monitor (statistical grror)```	Ho	No	1.0	1.0	1.0	1.0	1.0	1.0
Absolute angular scale uncertainty $\pm 0.2 \mathrm{mrad}$	Yes	10*	0.3	0.3	0.3	0.3	2.0	2.0
Magnetic field	Yes	No	0.1	0.1	0	0	0	0
Background (residual gas)	Ho	No	0.3	0.3	0.3	0.3	0.3	0.3
Inelast ic background	Yes	Yes	0.0	0.0	0.0	3.0	0.0	50.0
nus- 's normalization	No	No	5.4	5.4	5.4	5.4	5.4	5.4
Total			5.5	5.5	5.5	6.3	5.9	50

*Systematic error depends on the depth of the dip region.

Table III: Total elastic cross section, position and height of the second maximum. The systematic error in $\sigma_{\text {tot }}$ el is $\pm 0.62 \mathrm{mb}$

$\begin{aligned} & \mathrm{E}_{\mathrm{lab}} \\ & \mathrm{GeV} \end{aligned}$	$\begin{gathered} { }^{9} \text { tot el } \\ (\mathrm{mb}) \end{gathered}$	$\begin{aligned} & -\mathrm{t}_{\mathrm{sec} . \max } \\ & {\left[(\operatorname{Gev} / \mathrm{c})^{2}\right]} \end{aligned}$	$\begin{aligned} & (\mathrm{do} / \mathrm{dt}) \text { sec.max } \\ & {\left[\mathrm{mb} /(\mathrm{GeV} / \mathrm{c})^{2}\right]} \end{aligned}$
45	$23.09 \pm 0.23$	0.319	$0.190 \pm 0.015$
46	$22.80 \pm 0.23$	0.318	$0.184 \pm 0.016$
97	$22.26 \pm 0.22$	0.321	$0.160 \pm 0.010$
148	$22.37 \pm 0.22$	0.328	$0.167 \pm 0.010$
200	$22.18 \pm 0.22$	0.324	$0.166 \pm 0.010$
259	$22.54 \pm 0.23$	0.326	$0.150 \pm 0.016$
301	$22.11=0.22$	0.327	c. $153 \pm 0.012$
393	$22.93 \pm 0.23$	0.333	$0.147 \pm 0.010$

The sources of systematic errors and their variation with $E_{1 a b}$ anc $t$ are liated in Table II. These systematic errors are errors on the individual data points; an additional error
in the overall normalization must be added. The statistical ecror of absolute normalization is $\pm 0.74$, the systematic uncertainty is $\pm 4.89$ as explained above. Thus the total error in absolute normalization of the sifferential cross sections given in gable I is 44.8 .

Table III lista values of the total elastic $\mathrm{p}^{4} \mathrm{He}$ cross sections. They are obtained by integration of the differential cross section in the t-range $0 \leq|t| \leq 0.5$ (GeV/c) ${ }^{2}$ after Coulomb and Covimb-nuclear interference effects are subtracted. Another general characteristic of the differential cross section is the position and the magnitude of the second maximum. They are given in Table III as well.

## V. SMALL $t$ REGION

The results for the $p^{4}$ He elastic cross section, listed in Table $I$, are described in the range $0.003 \leq|t| \leq 0.11$ $(\mathrm{GeV} / \mathrm{c})^{2}$ by the Bethe interference formula ${ }^{3}$

$$
\begin{equation*}
\frac{d g}{d t}=\left|f_{c} \cdot e^{1 \phi}+f_{n}\right|^{2} \tag{3}
\end{equation*}
$$

where the Coulomb swattering amplitude takes the form

$$
\begin{equation*}
f_{c}=\frac{4 c^{t} \sqrt{\pi}}{t} G_{p}(t)^{\prime} G_{H e}(t) \tag{4}
\end{equation*}
$$

Here $a$ ia the fine structure constant, $=40 \pi \frac{1.06 h}{8 / i f i}$ is the Coulonb phase, $R-\sqrt{\frac{2}{3}}<R_{H e}{ }^{2}>I / 2$ ia the ${ }^{4} H e$ electromagnetic radiun $\boldsymbol{H}^{*}$ ( $R_{\text {Rie }}=1.67$ ) derived from $e^{4} \mathrm{He}$ scattering, $G_{p}(t)=$ (1. $-t / 0.71)^{-2}$ is the proton electromagnetic form factor, and $G_{H e}(t)=\left[1-(2.56 t)^{6}\right] \times e^{11.70 t}$ is the ${ }^{4}$ He electromagnetic form factor. $\mathrm{g}_{\mathrm{g}}$ The nuclear scattering amplitude takes the form

$$
\begin{equation*}
f_{n}=\frac{\sigma_{\text {tot }}^{\text {pRe }}}{4 n \sqrt{\pi}}(i+\rho) \cdot e^{\frac{b t+c t^{2}}{2}}, \tag{5}
\end{equation*}
$$

where $\sigma$ phe is the total proton-belium cross section, $\rho=\left.\frac{\text { Ref }}{\text { Imf }}\right|_{t=0}$ is the ratio of the real to the imaginary part of the forward scattering amplitude, and $b, c$ are the linear and quadratic slope parameters.

The results of the $f i t$ in the range $0.003<|t|<0.11$ (GeV/C) ${ }^{2}$ are listed in Table IV. The fitted parameters are ofot, the proton helium toial cross section, $p, b$, and $c$. The values given for $\sigma_{\text {tot }}^{p H e}$ in Table IV are directly related to the nermalization obtained from the mixture analysis. In Fig. 3 we show the Table iv proton-heiium total cross sections at 45 , 46. 97 , 146, 200, 259, 301, and 393 GeV . Since the quadratic slope parameter $c=22(\mathrm{GeV} / \mathrm{c})^{-4}$ is ener'gy independent within errors, an alternate fit with c fixed i. listed in Table $V$.

Table VI presents the average slope parameter in different $t$ intervals $0.003<|t|<0.007 \quad(\mathrm{GeV} / \mathrm{c})^{2}, 0.03<|t|<0.1$

Table IV: The parameters of Bethe's formula Eq; (3)-(5) describing the differential cross section for elastic $p^{4}$ He scattering in an interval $0.003 \leq t \leq 0.11(\mathrm{GeV} / \mathrm{c})^{2}$

$\begin{aligned} & E_{\mathrm{l}_{\mathrm{db}}}^{\mathrm{GeV}} \end{aligned}$	$\begin{aligned} & \mathrm{o}_{\text {tot }}^{\mathrm{pHe}} \\ & \mathrm{mb}_{\mathrm{p}} \end{aligned}$	D	$\left[\begin{array}{c}\text { b } \\ (\mathrm{GeV} / \mathrm{c})^{-2}\end{array}\right]$	$\left[\begin{array}{c} \mathrm{c} \\ (\mathrm{Ge} \mathrm{y} / \mathrm{c})^{-4} \end{array}\right]$	$\begin{gathered} x^{2} / 1 \\ \text { of pints } \end{gathered}$
45	121.1 $=1.0$	-0.056 $\pm 0.030$	$31.4 \pm 0.4$	-25.0: 3	81/72
46	$121.4 \pm 0.9$	-0.012 $\pm 0.032$	$32.0 \pm 0.4$	$-18.6 \pm 3$	56/60
97	$120.3 \pm 0.9$	$-0.053 \pm 0.026$	$32.1 \pm 0.3$	$-23.2 \pm 3$	98/57
146	$121.8 \pm 0.8$	$-0.024 \pm 0.024$	$32.5 \pm 0.3$	$-24.7 \pm 3$	100/71
200	$122.3 \pm 0.7$	+0.041 $\pm 0.023$	$32.9 \pm 0.3$	$-25.3 \pm 2$	59/73
259	$123.9 \pm 0.7$	+0.046 $\pm 0.031$	$33.5 \pm 0.3$	$-21.1 \pm 3$	55/60
301	$122.8=0.7$	$+0.042 \pm 0.030$	$33.4 \pm 0.3$	$-24.4 \pm 3$	58/65
393	$125.9 \pm 0.6$	$+0.102 \pm 0.035$	$34.2 \pm 0.4$	$-20.6 \pm 3$	54/64
$\left\lvert\, \begin{gathered} \text { systematic } \\ \text { error } \end{gathered}\right.$	$\pm 2.48$	$\pm 0.05$	$\pm 0.16$	$\pm 0.7$	

$(\mathrm{GeV} / \mathrm{c})^{2}$ and $0.06<|\varepsilon|<0.13(\mathrm{GeV} / \mathrm{c})^{2}$ calculated as $b_{t=t} m b+2 c t_{0}$ where $b$ and $c$ have been fitted in each interval. Fig. 5 shows the slope parameter $b$ as listed in Table VI. The rate of shrinkage weakly depends on $t$; for energies $E>100 \mathrm{GeV}$ the rate of shrinkage ist-independent (see dashed lines on Fig. 5).

Finally to conplete our analysis using the Bethe formula, the s-dependence of the $b$, $\sigma$ pHe, tot values given in Table $V$ have been parameterized in the form $P_{i}=A_{i}+B_{i} \ln \left(s_{p H e} / s_{0}\right)$ with $s_{0}=1 \mathrm{GeV}^{2}$. These resulcs ar= given in Tatle Vil. The energy dependence of $\rho$ is plotted in Fig. 6.

The parameters $\rho(s, t=0)$ and $b(s, t)$ of the pHe scattering amplitude obtained show a rate of shrinkage of the pHe


Figure 5:
Average slope parameter of the diffraction peak of $p^{4}$ He elastic scattering at different $t$ intervals (values from Table VI). The solid lines, are fits over the entire energy range. The dashed lines correspond to the fit for energies $\mathrm{E} \geq 100 \mathrm{GeV}$.

Table V: The same as in Table IV but with $c=\mathbf{- 2 2}$ $(G e V / C)^{-4}$ a fixed parameter

$\mathrm{E}_{1 \mathrm{ab}}$	$\begin{aligned} & c_{\text {tot }}^{\text {pHe }} \\ & (\mathrm{mb}) \end{aligned}$	$p$	b	$x^{2} / f$   of points
45	$121.33 \pm 0.59$	$-0.068 \pm 0.032$	$31.71 \pm 0.10$	$82 / 72$
46	120.3i $\pm 0.60$	-0.063 $\pm 0.025$	$31.55 \pm 0.11$	56/60
97	$120.49 \pm 0.56$	-0.065 $=0.021$	$32.32 \pm 0.09$	210/5)
146	$121.97 \pm 0.43$	-0.036 $\pm 0.018$	$32.74 \pm 0.08$	101/71
260	$222.80 \pm 029$	$-0.035 \pm 0.017$	33.3: $\pm 0.08$	62i73
259	$123.62 \pm 0.37$	$+0.010=0.024$	$33.39 \pm 0.09$	56/60
301	$123.22 \pm 0.31$	$+0.038=0.022$	$33.71 \pm 0.08$	62/65
393	$125.78 \pm 0.31$	+0.067 $\pm 0.027$	$34.07 \pm 0.10$	54/64



Figure 6: $\quad \rho=\operatorname{Re}(f) / \operatorname{Im}(f) \quad(t=0)$ for $p^{4}$ we elastic scattering. The valurs are from sable lv. The straight line fit shows the parameterization listed in Table VII.
diffraction cone $b_{1}(t)=\frac{\partial}{\partial \ln s} b(s, t)$ more than twice as large as that for pp scattering. ${ }^{19}$ This effect is in qualitative agreement with the expectation based on the Glauber model provided the screening correction is energydependent. ${ }^{20}$ The other consequence of this model is the
increase of the rate of shrinkage $b_{1}(t)$ when $|t|$ increases. This prediction is not supported from the present experiment since $b_{1}$ shows no t-dependence (see Fig. 5 and Table VI).

In Tables III and IV, and Fig. 3 we test two interesting predictions of geometric scaling. Geometric scaling, $\sigma_{\text {tot }}(E)$ propartional to $b(E)$, is satisfied (Eig. 3), but the other geometrical relation for the height of the second maximum, $\frac{d_{d}}{d t}\left(E, t_{s e c . m a x}\right)$ proportional to $\sigma_{\text {tot }}{ }^{2}(E)$, is strongly violated since the function $\frac{d 0}{d t}$ ( $B$ ) sec.max $^{\text {decreases }}$ and the runction $\sigma_{\text {tot }}(\mathrm{E})$ rises with E .

Fable VI: Average slope parameter - three different :
intervals

$\begin{aligned} & E_{\text {qeb }} \\ & G e v \end{aligned}$	$0.003 \times\|t\|<0.07$		$0.03<\|t\|<0.1$		$0.05 \times\|t\| \times 0.13$	
	${ }^{6} \mathrm{l} \mid$ l $=0.035$	$\mathrm{x}^{2} / 0.5$.	${ }^{6}\|t\|=0.565$	$\mathrm{x}^{2} / \mathrm{D} . \mathrm{F}$.	${ }^{6}\|t\|=0.095$	$x^{2} / 0 . F$.
45	$33.13 \pm 0.12$	60/55	$34.48 \pm 0.14$	33/26	$35.63=0.28$	33/20
46	$33.23 \pm 0.13$	40/47	$34.24 \pm 0.15$	17/21	$36.59: 0.25$	21/13
97	$33.55 \pm 0.13$	75/40	$34.90 \pm 0.13$	41/17	$37.35 \pm 0.17$	24/15
146	$34.18 \pm 0.10$	61/52	$35.60 \pm 0.10$	59/20	$38.16 \pm 0.14$	61/22
200	$34.68 \pm 0.09$	44/52	36.06 $\pm 0.09$	19/30	$38.57 \pm 0.13$	15/24
259	$35.06 \pm 0.10$	35/42	$36.11=0.11$	32/27	$38.28 \pm 0.14$	31/27
301	$35.16 \pm 0.09$	39/46	$36.43: 0.10$	30/29	$38.87 \pm 0.13$	28/27
393	$35.66 \pm 0.12$	35/44	$36.75 \pm 0.12$	30/30	$39.09=0.17$	13/21

## YI. GLAUBER MODEL ANALYSIS

Data from the whole t-region, $0.003 \leq|t| \leq 0.52$ $(G e V / c)^{2}$, were cimpared and fitted to the multiple nuclenn scattering model, the Glauber model. In this model the full scattering amplitude is a coherent sum of single, double, triple, and quadruple scatterings from the four nuclathisn he.

Table VII: Energy dependence of the $b, o_{\text {tot, and }}$ p parameters. Parameterization in the form $P_{i}=A_{i}+B_{i} \ln \left(s_{p_{H e}} / s_{o}\right)$, with $s_{o}=1 \operatorname{GeV}^{2}$

Parameter	$A_{1}$	$B_{1}$	$x^{2 / 0 . F}$.
$t_{t=0}(G e y / c)^{-2}$	$24.8 \pm 1.3$	$1.13 \pm 0.18$	4/6
$b_{t=0} \mathrm{~cm}^{-22}(\mathrm{GeV} / \mathrm{c})^{-4}$ fixed	$24.9 \pm 0.3$	$1.14 \pm 0.04$	10/6
${ }^{0} t=0.035(\mathrm{GeV} / \mathrm{c})^{-2}$	$26.2 \pm 0.4$	$1.17 \pm 0.05$	15/6
$\mathrm{b}_{\mathrm{t}=0.065}(\mathrm{GeV} / \mathrm{c})^{-2}$	$26.6=0.4$	$1.14 \pm 0.06$	7/6
$b_{t=0.095}(\mathrm{GeV} / \mathrm{c})^{-2}$	$28.6 \pm 1.0$	1.32 $=0.10$	23/6
- ${ }_{\text {- }}^{\text {ple }}$ (mb)	$109.7 \pm 2.8$	$23 \pm 2.8$	14/6
${ }^{p} \mathrm{t}=0$	$-0.41=0.1$	$0.059 \pm 0.014$	7/6

In our analysis we have assumed that the nucleon-nucleon scattering amplitude is spin independent and the procon-proton and proton-neutron amplitudes are equivalent. Coulomb effects are neglisted for $|t|>0.05(G e V / C)^{2}$. We use a noncorrelated internal (or center-of-mass) wave function for the ${ }^{4}$ He nucleus and identical one-particle density distributions for the protons and neutrons. No inelastic intermediate states are included in the parameterization.

Many of the details and parameter definitions are placed in the Appendix. The values of the parameters are lisied in Table LX. Two versions have been developed. For both of them comparison with the experimental data in the entire t-range is done. In Version $I$ we calculated the nuclear amplitude in the simplest way identical with that described in ref. 10. The phenomenological analysis of its parasetera is performed in the soall t-range. The more complex parameterization is done in Version II.

In the small t-region the data may be successfully fitted with the following restrictive assumptions:

$$
\begin{align*}
& F_{\text {nucleon }}=\frac{\sigma_{t o t}}{4 \pi} p[1+\rho] e^{-\frac{b}{2} q^{2} \text { nucleon-nucleon }} \begin{array}{l}
\text { amplitude, }(6)
\end{array} \\
& f_{i}\left(\vec{r}_{i}\right)=\frac{e^{-r_{i}^{2} / R_{1}}}{\pi^{3 / 2} R_{1}^{3}} \quad \text { density, } R_{1}=1.36 \mathrm{fm} . \tag{7}
\end{align*}
$$

The fitted parameters are $b=$ slope parameter, $\rho=$ ratio of the real to imaginary parts of the forward scattering amplitude, and $\sigma_{\text {tot }}=$ the total nucleon-nucleon cross section; $p$ is the proton laboratory momentur. He restrict the analysis

Table VIIL: Parameters of the NN elastic scatering amplitude as Eitted by the Glauber model, Version I, $|t| \leq 0.07(\mathrm{GeV} / \mathrm{c})^{2}$. otot pp is listed for comparison (from ref. 14). Energy dependent fits to the values of $\rho$ and $b$ are shown

$\begin{aligned} & E_{\text {lab }} \\ & G e V \end{aligned}$	${ }^{\square} \mathrm{p}$ ¢1	$\begin{gathered} \mathrm{bppg}_{\mathrm{gl}} \\ {\left[(\mathrm{GcV} / \mathrm{c})^{-2}\right.} \end{gathered}$	$\sigma_{(\mathrm{mb})}$	$\underset{\substack{\text { tot } \\(m b p)}}{ }$	$x^{2} / \mathrm{D}, \mathrm{F}$.
45	$-0.087 \pm 0.028$	$11.23 \pm 0.14$	$35.22 \pm 0.22$	38.36	$60 / 57$
46	$-0.062 \pm 0.032$	$11.31 \pm 0.16$	$35.00 \pm 0.22$	38.35	40/50
97	$-0.090 \pm 0.027$	$11.89 \leq 0.14$	$34.78 \pm 0.22$	38.38	76/44
146	$-0.049 \pm 0.024$	$12.29 \leq 0.12$	$35.31 \pm 0.15$	33.64	62/55
200	$-0.022 \pm 0.022$	$12.76 \pm 0.12$	$35.45 \pm 0.08$	38.97	46/5;
259	$+0.024 \leq 0.030$	$13.03: 0.13$	$35.88 \pm 0.10$	39.32	34/45
301	+0.031 $\pm 0.029$	$13.20 \pm 0.12$	$35.58 \pm 0.09$	39.56	38/49
393	$+0.067 \pm 0.036$	$13.47 \pm 0.16$	$36.38 \pm 0.08$	40.04	44/47

$\mathrm{P}_{\text {PP G1 }}=-0.400 \pm 0.079+(0.068 \pm 0.014) \ln \left(\mathrm{s}_{\mathrm{pp}} / \mathrm{s}_{0}\right) \quad \mathrm{s}_{\mathrm{o}}=1 \mathrm{Gev}^{2}$
$\mathrm{b}_{\mathrm{PP} \text { G1 }}=6.63 \pm 0.38+(1.03 \pm 0.07) 1 \mathrm{n}\left(\mathrm{s}_{\mathrm{PP}} / \mathrm{s}_{0}\right)$
zange to $|t|<0.07(\mathrm{GeV} / \mathrm{c})^{2}$. The results of these fits are given in Table vili. For comparison the values from the proton-proton experiment ${ }^{17}$ are listed as well. In Fig. 7 the differential cross Bection at 393 GeV is shown. The fitted curve agrees well with the data but at the expense of increasing $b$, and decreasing $\sigma_{\text {tot }}$ from the known nucleonnucleon values. The curve extrapolated into the wider t-


Figure 7:
The elastic differential $p^{4} \mathrm{He}$ cross section at 393 GeV . The solid line is the Glauber model prediction; the simplest form of the elementary amplitude and one-particle density has been used (Version $I$ in the text). The Coulomb effect for $-t<0.03(G e V / c)^{2}$ is extracted. The data $f$ it is over the range $0.003 \leq|t| \leq 0.07$ (GeV/c) ${ }^{2}$. The data is plotted as 2 ratio of the differential elastic cross section to that of the Glauber model prediction.
interval does not agree with the data in the region $|t| \geq 0.22$ $(G e V / c)^{2}$. A similar discrepency in the secondary maximum has been observed at lower energies ${ }^{1,2}$, and interpreted by some


Figure 8: The elastic differential $p^{4}$ He cross section .t 393. otot, b, $\rho$ have been taken from PP experiments ${ }^{17} \mathbf{1}^{21}$ and listed in Table IX. The solid Iine is the Glauber model prediction with these paremeters (Version I). The Coulomb effect for $|\mathrm{t}|<0.03$ (GeV/c) ${ }^{2}$ is extracted.
authors' as a consequerice of a non-realistic form of the wave function (Eq. 7).

Using the same formalism we calculate the differential cross section with fixed $\sigma_{\text {tot }}, b$ and $\rho$ parameters taken from pp experiments. As an illustration Figs. 8,9 and 11 show our 393, 45 and 301 Gev data conpared with corresponding curves. This qualitative shape of the data is reproduced with a deep minimum and a secondary maximum, but the discrepancy between the data and theory is large at all energies, especially in the small t-region. A normalization change upwardi would lessen this discrepancy.


Figure 9:
The elastic differential cross section at 393 GeV shown as a ratio to the Glauber model prediction (Version I). $\sigma_{\text {tot }}, b, \rho$ values are those used with Figure 8.

Taole Ix:
The parameters used in the calculation of $\frac{d o}{d t}$ ( $p^{4} \mathrm{He}$ ). The corresponding curves are shown in Figs. 8, 9 and 11


## Version II

For this more complex parameterization, many of the details are given in the Appendix. A double Gausgian expression replaces the single Gaussien expression in the nucleonnucleon amplitude. In addition, $\rho$, the ratio of the real to the imaginary parts of the nucleon scattering amplitude, is given a $t$ (or $q^{\mathbf{2}}$ ) dependence.

The choice of the wave function parameterization is difficult. We have chosen a double Gaussian expression taken from ref. 9, 21 (see Eq. A5 in the Appendix) containing three parameters $R_{1}, R_{2}$ and $C$. Different values of these parameters
 helium datas, Usually the efforts to fit better, the position of the minimum and the magnitude of the second maximum of the ${ }^{4} \mathrm{He}$ form factor were made at the expense of a worse agreement with experimental data in the lower $t$ region. In order to calculate correctly the $p^{4}$ He differential cross


Fig. 10. The charge form factor of ${ }^{4}$ He calculated from the singleparticle wave function (A5). The parameters (see Table IX) have been fitted to the data of refs,5,6 for $|t| \leq 0.35(\mathrm{GeV} / \mathrm{c})^{2}$.
section in the relatively saall t-region we obtainednew valuas for tha wavefunction parameter: from ainultaneously fitting the two electron ${ }^{4}$ He experiment of refa. 5,6 for the limited region $q^{2} \leq 9 \mathrm{fm}^{-2}\left(|t| \leq 0.36\right.$ (GeV/Gi $\mathcal{C}^{2}$. Our fitted values are $R_{1}=39.4 f m, R_{2}=14.8 \mathrm{fm} C=1 \mathrm{ta}$ found in the limit of the constraint $0 \leq c \leq 2$. The result of thia $e^{4}$ Be is shown in Fig. 10.

In Fig. lia and $b$ we show the ratio of our Version II curves to the curves of version I calculated at 45 and 301 GeV respectively. Alsa shown are two additional curves where
alternative parameterizations for the wave function are used; these are the Bassel-Wilkin' and the Chou ${ }^{21}$ models. The agrement with the data is still not govd. The three curves in Fig. Lla, $b$ show the importance of the choice of the wave function parameterization. The discrepancy between the data and theory in the very small t-regions is 10-15\%, as contrasted to the 4.8 total normalization error.

If we were to assume that the normalization error is higher than estimated (See Section III) one can try to reach a better agreement (between data and theory) by changing the normalization of the data. The change of the normalization causes a parallel shift of points in a up-down direction on the logarithmic scale of Fig. lla and $b$, but the differences in the shape of the curves and the data are still significant. It is very likely that the major cause of the failure of the Version II parameterizations is the failure to include inelastic intermediate states in the double, triple, and quadruple nucleon rescattering terms. We have not pursued this matter Eurther quantitatively because of the normalization difficulties mentioned previously but do suggest the high energy and the accuracy of our data allow further analysis. Data on non A-l targets are the only way to study the short range interaction of $\mathbb{N}^{*}$ excited nucleon states.

Pinally we show the difference between the data and the Glauber model calculation using amplitudes. Let us assume that the correction amplitude, $F_{\text {corr }}$, satisfies the relation

$$
\begin{equation*}
\frac{d \sigma}{d t_{e x p}}=\left|F_{G \text { lauber }}+F_{\text {corr }}\right|^{2} \tag{8}
\end{equation*}
$$

where $\frac{d \sigma}{d t}$ is experimental differential cross section.
Assuming that

$$
\begin{equation*}
\operatorname{Re}\left(F_{\text {cor } r}\right)=0 \tag{9}
\end{equation*}
$$

one cin determine $F_{\text {corr }}$ directly from experimental data as

$$
\begin{equation*}
F_{\mathrm{corr}}= \pm \sqrt{\frac{\mathrm{da}}{\mathrm{dt}} \mathrm{exp}-\left(\operatorname{Re}\left(\mathrm{F}_{\mathrm{Gl} \text { auber }}\right)\right)^{2}}-\operatorname{In}\left(F_{\text {Glauber }}\right) \tag{10}
\end{equation*}
$$



The result is shown in Fig. 12 fonly one of two solutions of Eq. (10) is plotted). In the calculation of $\vec{F}_{\text {Glauber }}$ we use the Bassel-Wilkin wave function parameterization (Version II(ii)). The analysis, similar to that aade for pd and dd cases ${ }^{2}$, suggests that $F_{\text {cors }}$ can be interpreted as an interference of rescatterings with intermediate inelastic utates.

The inelastic screening correction at $t=0$ is estinated under the assumption that the diacrepancy between the data and the Glauber model prediction is mainly due to this effect. The contribution of the inelastic screening correction, $\Delta d_{i n}$, to the total cross section $1 \sigma_{p H e}=40_{p N}-\Delta \sigma_{e l}-\Delta a_{\text {in }}{ }^{\prime}$ is s9 ab which is slf times higher than in pd scattering and somewhat nig'ar than the prediction given in ref. B.

The elastic $p^{4} \mathrm{He}$ differential cross section. All data points have been renormalized to the Version I Glauber model prediction. The curves show the results for variors Version II fitting procedures. Inelastic rescatterings are excluded in the analysis; the nucleon-nucleon amplitude is given by (A3). Three one-particle wave function (A5) parameterizations are used: -.-...-. - our values for $R_{1}, R_{2}, C(I I(i))$.
 - - - - Chou (II(iii)), ref. 21.

These three parameterizations are listed in Table IX. The Coulomb effect in the small tregion is marked with:
(a) $E_{l a b}=45 \mathrm{GeV}$, (b) $E_{l a b}=301 \mathrm{GeV}$.

Fig. 12. The Glauber correction amplitude $\mathrm{F}_{\text {corr }}$ determined from the elagtic differ.ential cross section at 45 GeV . The Bassel-Wilkin parameters (ref.9) for the ${ }^{4} \mathrm{He}$ wave function have been used. The points have negative sign, 0 = positive sign.

VII. CONCLUSIONS

In this experiment elastic $p^{\mathbf{4}}$ He scattering has been investigated in an energy range $45 \leq E_{l a b} \leq 400 \mathrm{GeV}$. The $t$ interval $0.003 \leq|t| \leq 0.5(G e V / c)^{2}$, where the differential cross section has been obtained, comprises the coulomb interference region, the forward diffraction peak, the Glauber minimum, and the second maximum. It contains about 110-140 data points at each primary proton energy and is measured with a typical relative statistical error of about 1.5-38, except In the region of the minimum around $|t| \simeq 0.22\{G e V / c\}^{2}$ where errors sometimes reach 508.

The technique of the mixed bydrogen-helium jet target allows one to obtain absolute normalization of the differential cross section. The optical theorem is used to determine the total crass section for pire interactions. $0_{\text {tot }}{ }^{(E)}$ Ifses for $\mathrm{E} \geq 100 \mathrm{GeV}$.

The parameters $\rho!s, t=0)$ and $b(s, t)$ of the pHe scattering amplitude are obtained. The rate of shrinkage of the pHe diffraction cone is more than twice as large as that for pp scattering. Geometrical scaling, $\sigma_{t o t}(E)$ proportional to $b(E)$, is satisfied but the other geometrical relation for the height of the second maximum, $\frac{d^{0}}{d t}\left(E, t_{\text {sec.max }}\right.$ ) proportional to tot $^{2}(E)$, is strongly vialated.

The analysis of simple forms of the Glauber model show that substantial corrections to the elastic scattering amplitude are needed. Inelastic screening seems to be important in the region of the diffractive cone as well as in the second maximum of the differential cross section. $A$ more accurate estimation of the effect requires a better understanding of ${ }^{4}$ He wave function.

ACKNO .EDGEMENTS
We acknowledge the strong support of the Fermilab Internal Target Group led by Dr. Tom Nash, the Accelerator Division led by Dr. Russ Huson, and the Fermilab Computing Department led by Dr. Al Brenner. We are grateful to Professor Vladimir Kadeshevsky for his help, One of us (A. B.) acknowledges Dr. Z. Ajduk and Dr. L. Lesniak for helpful discussions. The Dubna members of the collaboration wish to acknowledge the support and hospitality of the Fermilab Directorate during their stay in the Onited statea. Finally, the authors are grateful to their colleague, Dr. Andrzej Sandacz for his help.

## APPEROIX

In this Appendix we show the formalism of the multiple scattering Giauber model and list some of the
detailed parameterizations to which we have fitted our data; results are given in Section Vi, Tables fifo, IX, Figures 7-12.

Defining the total density of the nucleus as a product of separate nucleon densities

$$
\begin{align*}
& =\nabla^{\star}=\prod_{i=1}^{1} \rho_{i}\left(\bar{r}_{1}\right)  \tag{Al}\\
& \quad w \text { th }\left(\int_{\rho_{i}}\left(\bar{r}_{i}\right) d^{3} r_{i} \equiv 1\right)
\end{align*}
$$

$$
\begin{aligned}
& -\quad 6 \frac{G^{2}\left(-\frac{\bar{\Delta}}{q}\right)}{2 \pi f p} \int d^{2} q f\left(\frac{3}{4} \bar{\Delta}-\bar{q}\right) \cdot f\left(\frac{\bar{\Delta}}{4}+\bar{q}\right) \\
& \cdot G\left(\frac{\bar{a}}{2}-\bar{q}\right) \cdot G(\bar{q})+4 \frac{G\left(-\frac{\bar{\Delta}}{4}\right)}{(2 \pi i p)^{2}} \int d^{2} q_{1} d^{2} q_{2} \\
& \cdot f\left(\frac{\bar{\Delta}}{4}+\bar{q}_{1}\right) \cdot f\left(\frac{\bar{\Delta}}{4}+\bar{q}_{2}\right) \cdot f\left(\frac{\bar{\Delta}}{2}-\bar{q}_{1}-\bar{q}_{2}\right) \\
& \cdot G\left(\bar{q}_{1}\right) \cdot G\left(\bar{a}_{2}\right) \cdot G\left(\frac{\bar{\Delta}}{4}-\bar{q}_{1}-\overline{\mathrm{a}}_{2}\right) \\
& -\frac{1}{(2 \pi i p)^{3}} \int d^{2} q_{1} d^{2} q_{2} d^{2} q_{3} \cdot f\left(\frac{\bar{A}}{4}+\bar{q}_{1}\right) \\
& \cdot f\left(\frac{\bar{a}}{4}+\bar{a}_{2}\right) \cdot f\left(\frac{\bar{d}}{\overline{4}}+\bar{u}_{3}\right) \cdot f\left(\frac{\bar{\pi}}{4}-\bar{q}_{1}-\bar{q}_{2}-\bar{q}_{3}\right) \\
& \cdot G\left(\bar{q}_{1}\right) \cdot G\left(\bar{q}_{2}\right) \cdot G\left(\bar{q}_{3}\right) \cdot G\left(-\bar{q}_{1}-\bar{q}_{2}-\bar{q}_{3}\right) .
\end{aligned}
$$

The fourier transform of the one-particle density is

$$
G(\bar{q})=\int e^{i \bar{q} \bar{r}} \cdot p_{1}(\bar{r}) d^{3} r \quad .
$$

$\bar{A}$ and $\bar{q}$ are the vectors of the transverse momentum transfers to the nucleus and to the nucleon respectively, $p$ is the
laboratory momentum of the projectile, and $\bar{r}_{\boldsymbol{i}}$ is the postdion of the 1 -th nucleon in cam. system of the nucleus.

Formula ( $A \bar{Z}$ ) contains the constraint associated with the uni-
form motion of the nuclear center-of-mass.
The amplitude $f$ is normalized as

$$
\frac{d o}{d t}=\left|\frac{\sqrt{\pi}}{p} \cdot F\right|^{2},
$$

where -t $=q^{2}$.
The nucleon-nucleon amplitude is parameterized in the form

$$
\begin{equation*}
f(q)=\frac{\sigma_{\mathrm{tot}}}{4 \pi} \cdot p \cdot[i+\rho(q)] \cdot e^{-\frac{e_{1}}{-\frac{1}{2} q^{2}}+\frac{B}{1+e^{-\frac{b_{2}}{2} q^{2}}}} \tag{AB}
\end{equation*}
$$

where $\sigma_{\text {tot }}$ is the nucleon-nucleon total cross section and $\rho(q)$, the ratio of the real to imaginary parts of the amplitude is

$$
\begin{equation*}
\rho(q)=\frac{\operatorname{ReE(q)}}{\operatorname{Im} E(q)}=p(0)+\rho^{\prime}\left(e^{\gamma q^{2}}-1\right), \tag{AA}
\end{equation*}
$$

$b_{1}, b_{2}, B, \rho$, and $\gamma$ are all arbitrary parameters.
For the one-particle density we take the form of a double Gaussian proposed by Easel and Wilkins', and Chou ${ }^{21}$;
$\rho_{i}\left(\bar{r}_{i}\right)=K\left[\exp \left(-\frac{\bar{r}_{i}^{2}}{R_{1}^{2}}\right)-c \cdot \operatorname{eap}\left(-\frac{\bar{r}_{i}^{2}}{R_{2}^{2}}\right)\right]$
with $\quad k=\pi \quad-\frac{3}{2} \cdot\left(\left.R_{1}\right|^{3}-c \cdot\left|R_{2}\right|^{3}\right)^{-1}$,
where $K$ is the normalization factor $R_{1}, R_{2}$, and $C$ are free parameters, which can be deduced from the charge form factor of the ${ }^{4} \mathrm{He}$ nucleus.

The Gassian form of Eqs. A3, A4, and A5 has been chosen partially in order to sidplify the necessary integrations.

The Fourier traneform of Eq. A5 ia

$$
\begin{align*}
& G(\bar{q})=\frac{1}{1-D} \cdot\left[\exp \left(-\frac{R_{1}^{2} q^{2}}{4}\right)-D \cdot \exp \left(\frac{R_{2}{ }^{2} q^{2}}{4}\right)\right]  \tag{A6}\\
& \text { with } \quad D=C \cdot\left(R_{2} / R_{1}\right)^{3}
\end{align*}
$$

Inserting Egs. A3 and A6 into Bg . A2 we may calculate the differential cross section in two ways:

## Version I

$$
B, D, \rho^{\prime}=0
$$

In this case the amplitude $F$ (Eq. A2) takes a well known form. ${ }^{1 *}$ The parameters $b=b_{p p} \rho=\rho_{p p}(t=0)$, and $\sigma_{\text {tot }}=$ otot $_{\text {tot }}^{\text {Pp }}$ ared by pp experiments ${ }^{14,1^{1 /} \text { or treated as variable }}$ parameters. The parameter $R_{1}=1.36$ fin. ${ }^{2}$

Version II
A more realistic version for calculation is to take into account more coaplex expressions for the nucleon-nucleon amplitude and a more realistic expression for the charge form factor of ${ }^{4} \mathrm{He}$ nucleus.

The parametern $B, b_{1}, b_{2}$ of the elementary amplitude have been deternined at follow:
(i) The experimental pp data have been interpolated to our energies uning the known ${ }^{1 \%} 24$ energy dependence of the parametexs.
(ii) The reconstructed differential cross sections have been fitted using our parameterization (A4) with fixed values
of $p^{\prime}=2$, and $7=-0.44(\mathrm{Gev} / c)^{2}$. We have assumed here that the amplitude ratio (A4) is approximated as.

$$
\begin{aligned}
\rho(t) & =\frac{R e f(t)}{I m f(t)}=o_{0}^{p p}(s, t=0)+\frac{1}{2} \pi\left[\begin{array}{c}
(t) \\
\text { Pomeron }
\end{array}\right] \\
& =p_{0}^{p p}+0.44 t \simeq p_{0}^{p p}+\left\{e^{0.44 t}-1\right\}
\end{aligned}
$$

where $\boldsymbol{a}_{\text {pomeron }}=1+0.27 \mathrm{t}$.

## REFERENCES

1. See e.g. review by $G$. $1 g o$ in High Energy Physics and Nuclear Structure, $p$. 63, Proceedings of the Santa Fe conference, published by American Inst. of Physics (1975).
2. J. Berthot et al, Clermont-Ferrand, Lyon, stasbourg collaboration, preliminary results as reported at various conferences, e.g., Proceedings of the conference on figh Energy Physics and Nuciear Structure, Uppsaia, 1973.
3. V. Avdeichikov, Soviet Journal of Nucl. Phys. 27, 710 (1978).
4. V. G. Ableev et al., Commanication of the J.I.N.R., f210555, Dubna (1977).
5. R. F. Frosch et al.: Phys. Rev. 160, 874 (1967).
6. E. C. MoCarthy et al., Phys. Rev. 15C, 1396 (1977).
7. T. Ekelö́ et al. Nucl. Phys. B35, 495 (1971).
8. E. M. Levin and M. I. Strikman, Leningrad Nuclear Physics Institute, Report 203 (1975).
9. R. Bassel and W. Wilkin, Phys. Rev. 174, 1179 (1968).
10. W. Czyź and L. Leśniak, Phys. Lett. 24B, 227 (1967).
11. W. Czyź and L. C. Maximon, Phys. Lett. 27B, 354 (1968).
12. J. Auger et al., Nucl. Phys. A262, 372 (1976):
13. A. Bujak et al., "Coherent Diffraction Dissociation of Helium from 46 to 400 GeV." Phys. Rev. D, following paper.
14. A. S. Carrol et al.. Phys. Rev. Lett. 33. 928 (1974).
15. Schiz et al., to be published in Phys. Rev. D.
16. J. P. Burg et al, Measurements of the total $\pi$-He and $p$ He cross sections and the slopes of the forward diffraction peak at energies from 50 to $300 \mathrm{GeV} \mathbf{n}^{n}$ preliminary results presented at the 20th Incernational Conference on High Energy Physics, Madison, USA, July 1, 1980.
17. E. Jenkins et al, "Proton-Helium Elastic Scattering from 40 to 400 GeV." Preliminary results from this experiment presented at the I9th International Conference on High Energy Physics, Tokyo, August 1978. Also quoted in rapporteur talk by V. A. Nikitin "Soft Hadron Reactions" published in the proceedings of the European Physical Society Conference, Geneva, 1979 p, 547-567.
18. H. Bethe, Ann Phys. (N.Y.) 3, 190 (1958).
19. D. Gross et al., Phys. Rev. Lett. 41, 217 (1978).
20. Yu. Y. Azimov et al., JETP Lett. 23, 131 (1976).
21. T. T. Chou, Phys. Rev. 168, 1594 (1968).
22. G. Goggi et al., Nucl. Phys. B149, 381 (1979).
23. E. Lambert and H. Feshbach, Ann. of Phys. 76, 80 (1973), p: 102.
24. D. S. Ayres et al., Phys. Rev. 150, 3105 (1977).
